
applied  
sciences

Article

WTA: A Static Taint Analysis Framework for PHP Webshell

Jiazhen Zhao 1,2 , Yuliang Lu 1,2,*, Xin Wang 3, Kailong Zhu 1,2 and Lu Yu 1,2

����������
�������

Citation: Zhao, J.; Lu, Y.; Wang, X.;

Zhu, K.; Yu, L. WTA: A Static Taint

Analysis Framework for PHP

Webshell. Appl. Sci. 2021, 11, 7763.

https://doi.org/10.3390/app11167763

Academic Editor: Juan-Carlos Cano

Received: 29 May 2021

Accepted: 19 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
jiazhenzhao@nudt.edu.cn (J.Z.); zhukailong@nudt.edu.cn (K.Z.); yulu@nudt.edu.cn (L.Y.)

2 Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,
Hefei 230037, China

3 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
0906170214@csu.edu.cn

* Correspondence: luyuliang@nudt.edu.cn

Abstract: Webshells are a malicious scripts that can remotely control a webserver to execute arbitrary
commands, steal sensitive files, and further invade the internal network. Existing webshell detection
methods, such as using pattern matching for webshell detection, can be easily bypassed by attackers
using the file include and user-defined functions. Furthermore, detecting unknown webshells has
always been a problem in the field of webshell detection. In this paper, we propose a static webshell
detection method based on taint analysis, which realizes accurate taint analysis based on ZendVM.
We first converted the PHP code into Opline sequences, analyzed the Opline sequences in order,
and marked the externally imported taint source. Then, the propagation of the taint variables was
tracked, and the interprocedural analysis of the taint variables was performed. Finally, considering
the dangerous functions’ call and the referencing of the taint variables at the point of the taint sink, we
completed the webshell judgment. Based on this method, we constructed a taint analysis prototype
system named WTA and evaluated it with a benchmark dataset by comparing its performance with
popular webshell detection tools. The results showed that our method supports interprocedural
analysis and has the ability to detect unknown webshells and that WTA’s performance surpasses
well-known webshell detection tools such as D-shield, SHELLPUB, WebshellKiller, CloudWalker,
ClamAV, LoKi, and findbot.pl.

Keywords: webshell; Opline; taint analysis; webshell detection; WTA

1. Introduction

With the rapid development of network technology, web applications [1] have become
the dominant form by which Internet companies provide users with web services. At
the same time, all kinds of network attacks on web applications have become the main
problem threatening Internet security. In February 2020, Microsoft released a report,
Microsoft Defender Advanced Threat Protection [2], showing that it detects approximately
77,000 active webshells [3] per day, which means that webshells have become some of the
most popular types of malware today. Webshells are a malicious network backdoor that
can exist in multiple scripting languages [4], allowing attackers to gain system privileges or
control the webserver by executing arbitrary commands [5]. Attackers can use webshells to
carry out a series of malicious operations, such as accessing server databases and sensitive
files, stealing and tampering with user data, modifying the home page of a website, and so
on. In terms of website security, it is crucial to detect webshell files and delete them [6].

According to the scripting language, webshells can mainly be divided into three
types, namely ASP, PHP, and JSP scripting Trojans [7]. Due to its simple syntax and
high development efficiency, PHP has become the first choice for developing various
types of web applications [8]. Therefore, this paper mainly studies the PHP webshell
detection method.

Appl. Sci. 2021, 11, 7763. https://doi.org/10.3390/app11167763 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5024-1679
https://orcid.org/0000-0001-5241-0157
https://doi.org/10.3390/app11167763
https://doi.org/10.3390/app11167763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167763
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167763?type=check_update&version=2


Appl. Sci. 2021, 11, 7763 2 of 21

At present, webshell detection methods can be divided into dynamic feature detection
and static feature detection.

The dynamic feature detection method is based on the characteristics of the webshell
execution process, such as the behaviors of webshell files, webshell communication traf-
fic [9], and other characteristics [7]. This method only works when the webshell is executing
dynamically. On the one hand, this method has a certain ability to detect new variants of
scripts and is good at detecting webshell features generated by operations [10]. On the
other hand, this method must detect the traffic during the operation and communication
process and needs to maintain a large behavioral characteristic library, so it may consume
most of the computing resources of the server.

The static feature detection method is mainly based on the text content of webshell
and network log information [11,12] for analysis and detection. Regular expressions [13]
were the earliest method used for webshell content detection. Its disadvantage is that it
can only extract features from the existing known webshells, and it needs to be constantly
updated [14]. D-Shield [15] is a currently popular static webshell detection tool. It uses
signature database matching to detect webshells and divides webshells into six levels
according to the degree of damage: Level 0 is not a webshell, and Level 6 is a known
webshell. Therefore, static feature detection methods cannot detect unknown or new
webshells. In addition, due to the constant evolution and iteration of code obfuscation
and code encryption techniques, webshells can easily bypass regular methods, which are
based on regular expressions. Moreover, the static feature detection method has no way
to conduct interprocedural analysis, that is to detect the included files and user-defined
dangerous function, so the detection method is based on the feature code and syntax
analysis, and the dangerous function [16] name matching can be easily bypassed.

In recent decades, the role of taint analysis [17] in program analysis has attracted
extensive attention from researchers. Static taint propagation analysis, also called static
taint analysis [18], is the analysis of the data dependencies between variables to test whether
data can be propagated from the taint source to a point of the taint sink without running
or modifying them. The object of static taint analysis is generally the source code or
intermediate representation of the program. RIPS [19] uses taint analysis to analyze PHP
codes in a static way, which is based on AST derived from syntax analysis. Yu Li et al. [20]
proposed a detection platform named Shellbreaker. They extracted eight new source codes
and AST syntactic and semantic features. Two of the features are explicit data flow and
implicit data flow, and they are extracted by taint analysis. Then, the eight features are fused
into a vector. Finally, a statistical classifier is used to analyze the feature vector. However,
this method has a limited detection effect on one-sentence webshells [21], because several
types of features extracted by this method are aimed at self-adaptive webshells.

The performance of the dynamic feature detection method is poor, and the construction
of the environment is complex. Traditional static feature detection methods have difficulties
in detecting unknown webshells and lack the capability to perform interprocedural analysis.
In addition, there has been some research that has used taint analysis for webshell detection
with limited effect. To address the above challenges, this paper proposes a webshell
detection method based on static taint analysis.

The main contributions of this paper are as follows:

(1) We applied the ZendVM instruction set to the field of taint analysis for the first time
and defined the taint propagation rules and taint sink rules of the instruction set;

(2) We proposed a novel static detection method based on taint analysis for PHP webshells.
The method can carry out interprocedural analysis and detect more unknown webshells;

(3) We implemented a taint analysis prototype system named WTA for webshell detection
and evaluated the effectiveness of our method by comparing it with existing tools
through a benchmark dataset consisting of ten webshell datasets and six CMSs.

The remainder of this paper is organized as follows. Section 2 describes the back-
ground information on PHP. Section 3 introduces the include-type webshell, the user-
defined function-type webshell, and the unknown webshell, which bring challenges to



Appl. Sci. 2021, 11, 7763 3 of 21

webshell detection. The overview of the proposed approach is described in Section 4.
Section 5 describes the details of the three key steps in our method. Section 6 evaluates
our method. We summarize the related work in Section 7 and provide our conclusions in
Section 8.

2. Background

PHP [22]. PHP is a popular scripting language that is particularly suited to web
development. It runs in four modes: PHP-CLI, PHP-CGI, PHP-FPM, and PHP-MOD. PHP
has three main characteristics: First, PHP code is open-source, and the community is active,
so the number of people using PHP is large. Second, the syntax of PHP is simple; process-
oriented and object-oriented programming can be mixed; it is easy to use; it has many
built-in modules. Third, PHP has strong expansibility. In the process of the continuous
development of PHP, it can take into account the performance and the current popular
frameworks and has a good extension interface for developers to use.

ZendVM [23]. The virtual machine of a programming language is a program that can
run an intermediate language. The intermediate language is an abstract set of instructions
compiled from the native language and is the input of the virtual machine during its
execution. The virtual machine of the PHP language is called the Zend Virtual Machine
(ZendVM). The ZendVM will perform lexical analysis and syntactic analysis on the target
PHP file to generate the AST, then compile the AST into Opcodes, and finally, execute
the Opcodes and output the results. The workflow diagram of the ZendVM is shown in
Figure 1.

Figure 1. The workflow of the ZendVM.

Opline and Opcode [24]. The ZendVM’s instruction is called the Opline, and each
instruction corresponds to an Opcode. Oplines are generated after the compilation of the
PHP codes. The ZendVM executes PHP codes according to different Oplines. The Opline
consists of operation instructions and operands and returns the value, which is similar to
a machine instruction. The corresponding structure of the Opline is zend_op. The basic
information of the zend_op structure is shown in Listing 1.

PHP extensions [25]. As mentioned above, one of the main reasons for the popularity
of PHP is that a large number of extensions are available. Whatever the needs of web
developers are, they are likely to find them addressed by the releases of PHP. The releases



Appl. Sci. 2021, 11, 7763 4 of 21

of PHP include many extensions that support a variety of databases, graphical file formats,
compression, and XML technology. Web developers can be involved in the PHP compilation
phase and redefine the PHP compilation functions for deeper operations by writing PHP
extensions.

Listing 1. Basic information of the structure zend_op.

s t r u c t _zend_op {
const void * handler ; / / The h a n d l e r c a l l e d when

Opcodes a r e e x e c u t e d
znode_op op1 ; / / Operand1
znode_op op2 ; / / Operand2
znode_op r e s u l t ; / / Used t o h o l d t h e r e s u l t a f t e r

t h e e x e c u t i o n
u i n t 3 2 _ t extended_value ; / / Saves some a d d i t i o n a l

i n f o r m a t i o n
u i n t 3 2 _ t l ineno ; / / Saves t h e l i n e o f t h e s o u r c e

c o d e
zend_uchar opcode ; / / The Opcode i s used
zend_uchar op1_type ;
zend_uchar op2_type ;
zend_uchar r e s u l t _ t y p e ;

} ;

Vulcan Logic Dumper (VLD) [26]. VLD is a PHP extension that outputs Oplines by
hook. By using the VLD, developers can view the Oplines of the target PHP codes, allowing
them to gain a deeper understanding of the PHP codes.

3. Motivation

The lack of the ability to perform interprocedural analysis and detect unknown
webshells is the main challenge in the field of webshell detection. We present two examples
to illustrate the significance of interprocedural analysis and the difficulty of unknown
webshell detection.

Interprocedural analysis [27]. There are two types of webshells that require inter-
procedural analysis. The first is include-type webshells, and the second is user-defined
function-type webshells. Include-type webshells refer to an attacker who puts the body
of the webshell into a text file, image file, or any file in other formats. For example, the
attacker puts the body of the webshell into hello.txt, while the webshell file (attack.php)
has one “include” statement used to include the file hello.txt. Therefore, if the webshell
detection tool only scans the file attack.php, without an in-depth analysis of the contents of
the file hello.txt contained in attack.php, the webshell can bypass the detection.

Listing 2 shows two include-type webshell examples called include-webshell-1 and
include-webshell-2. Listing 3 shows the file hello.txt included in an include-type webshell.
In fact, include-webshell-1 and include-webshell-2 have the same function: they all
include the webshell body hello.txt. However, detecting the two files using the popular
tool D-Shield [15] obtains different results. The detection results indicate that include-
webshell-1 is a webshell of Level 3, and the reason is “suspicious include”. D-Shield
considers include-webshell-2 not to be a webshell. From this experiment, we can see that
the tool D-Shield simply uses include ’filename’ as a matching pattern and considers the
file to be a webshell once the match is found, while include-webshell-2 bypasses detection
by replacing spaces with parentheses. This also indicates that the tool does not detect the
contents of the include file and cannot detect the include-type webshells, which will be
further explained in Experiment 1 of Section 6.



Appl. Sci. 2021, 11, 7763 5 of 21

Listing 2. Include-type webshells.

<?php
include ’ h e l l o . t x t ’ ;
?>
( a ) include −webshell −1

<?php
include ( ’ h e l l o . t x t ’ ) ;
?>
( b ) include −webshell −2

Listing 3. hello.txt.

<?php
i f (md5( $_GET [ ’ pass ’ ] ) == ’ 21232 f297a57a5a743894a0e4a801fc3 ’ )
{

eval ( $_POST [ console ] ) ;
}
e lse
{

die ( ’ e x i t ’ ) ;
}
?>

User-defined function-type webshells refer to the way that attackers bypass the scan-
ning of known dangerous functions by creating user-defined functions and executing
system commands in the user-defined functions.

Listing 4 shows a user-defined function webshell. Two user-defined functions, dy-
namic and newassert, are included in the sample to obtain the taint source and to call the
dangerous function assert(). The sample is tested by D-Shield [15], and the test results
show that the sample is a webshell of Danger Level 1 (a webshell of Danger Level 1 can be
considered as a normal file). The reason is that the variable $c is used in this file. Therefore,
D-Shield cannot actually detect user-defined function webshells, which will be further
explained in Experiment 1 in Section 6.

Listing 4. User-defined function-type webshell.

<?php
funct ion dynamic ( ) {

$a = "%7U!/4U0‘ ‘ " ;
$a = convert_uudecode ( $a ) ;
re turn $a ;

}
func t ion newassert ( ) {

$c = "&87−S97 ) T ‘ " ;
$c = convert_uudecode ( $c ) ;
re turn $c ;

}
$a = dynamic ( ) ;
$b = $$a ;
$c = newassert ( ) ;
$c ( $b [ ’ x ’ ] ) ; $

Unknown webshell [28]. An unknown webshell is a webshell that has not yet been
discovered. Since such webshells are not captured, current webshell detection tools and an-
tivirus software do not have corresponding sample signatures and cannot detect unknown
webshells. Most of the latest methods are based on malicious pattern matching, such as
the tool D-Shield, in which keywords are usually defined by domain experts. Therefore,
the detection effect depends on the experts, and new webshells are difficult to detect. In
addition, there are many research works on webshell detection methods based on machine
learning and neural networks, such as cnn-webshell [9] and Yong e al.’s work [10], whose
essence is to extract the features of known webshells for analysis. Therefore, it the features



Appl. Sci. 2021, 11, 7763 6 of 21

of unknown webshells differ greatly from those of known webshells, it will be difficult
to detect the unknown webshells, which will be further explained in Experiment 2 in
Section 6.

4. Overview

In order to solve the above limitations of the existing methods, we propose a web-
shell static detection method based on taint analysis. This method aims to improve the
ability of the static detection of unknown webshells and provide the capability to perform
interprocedural analysis.

The method proposed in this paper includes the following seven steps, as shown in
Figure 2.

Figure 2. The overview of our method.

Compiler hook (1) obtains the intermediate code Opline sequences through the PHP
Compiler function. The implementation of this module uses the codes of the VLD [26]
extension for reference.

Initialization (2) completes the preparation work before the taint analysis. The prepa-
ration work is to initialize the data structures of Taint import functions list (b), Taint variable
list (c), and Dangerous functions list (e). Then, Taint source rules (a), Taint import functions
list (b), and Dangerous function list (e) also require the user to set the initial values. For
example, the user fills in Dangerous functions list (e) with functions that can be used as the
webshell dangerous functions from the PHP functions library [29], such as exec, shell_exec,
system, and so on.

After Initialization (2), the taint analysis framework starts to analyze the Opline
sequences in order, which are the outputs of (1). Taint source import (3) conducts the
detection according to the preset Taint source rules (a) and Taint import functions (b).
When the taint source is found to be imported, the variable used to store the taint source
will be stored in Taint variable list (c), and a new linked list will be created with this variable
as the header node. Then, the linked list will be saved in Taint propagation chain (d).

Taint propagation (4) analyzes the propagation path of the taint variable in the Opline
sequences, adds the tainted variable to Taint variable list (c), and adds the new taint
variables to the corresponding taint propagation chain according to the propagation path.

The interprocedural analysis of webshells is one of the contributions of this paper,
which consists of two modules: Include file recursive detection (5) and User-defined
functions detection (6).

Include file recursive detection (5) will start the taint analysis subprocess when it
meets the “include” expression, perform recursive detection on the included files, and
return the detection results to the main process through the message queue (IPC [30]).

User-defined functions detection (6) actually has the highest priority for execution.
Compiler hook (1) first obtains the Opline sequences, which come from the user-defined
functions in the target PHP codes, then it obtains the Opline sequences, which come from
the user-defined functions of the user-defined class, and finally, it obtains the Opline
sequences produced by the other parts. User-defined functions detection (6) performs



Appl. Sci. 2021, 11, 7763 7 of 21

taint analysis for user-defined functions and regards the parameters of functions as the
taint source. After taint propagation, the user-defined functions are defined as dangerous
functions/taint import functions and added into Dangerous functions list (e)/Taint import
functions list (b) once the parameters that include the taints are imported into the dangerous
functions.

Taint sink detect (7) judges whether a dangerous function is called by the function
call instruction according to Dangerous functions list (e).

When a dangerous function is called and the parameter of a dangerous function is a
taint variable, it will be added into Taint propagation chain (d), which is marked as the
webshell taint propagation chain. When the final result is output, the taint propagation
chain is detected. If there is a webshell taint propagation chain, it will be presented in
Result output (f).

There are several challenges that need to be solved to implement this architecture:
(1) The data structures of the taint variables list, taint import functions list, taint

propagation chain, dangerous functions list;
(2) Taint propagation rules [31] of the PHP Opline;
(3) Taint sink rules of the PHP Opline.
These difficulties will be addressed in the next section.

5. Methodology
5.1. Data Structures of Auxiliary Lists

The data structures of auxiliary lists refer to the taint variables list, taint import
functions list, taint propagation chain, and dangerous functions list in the initialization
module, while the taint source rules are hard coded in the corresponding functions, so they
do not need initialization and data structures.

The taint variables list, taint import functions list, and dangerous functions list are
built based on the Zend_Hash [32] API of the ZendVM. During the initialization, the
taint import functions list and dangerous functions list add the user-configured name
array of the taint import functions and dangerous functions to Zend_Hash, in order to
improve the retrieval speed of the taint import functions and dangerous functions. The
taint variables list in initialization module only finishes the initialization of the memory
space, and does not insert any data. Variables in the Opline sequences are displayed in
sequential Arabic numerals, and when a variable is marked as a taint variable, the Arabic
number representing that variable is inserted into the taint variables list.

The taint propagation chain is constructed by a common doubly linked list. In fact, the
taint propagation chain is an array storing the doubly linked list. Whenever a taint source
is imported, a new doubly linked list will be created, and the head node of the linked
list is the variable just imported by the taint source. When each taint variable (thisVar) is
propagated to the next taint variable (nextVar), it will determine whether there is thisVar in
the propagation chains according to the propagation relationship and insert nextVar into
the next node of thisVar (Situation I). If it is found that thisVar node is not the tail node of
the taint propagation chain, but the middle node (which means that the taint propagation
chain is divided into two or more paths), then it will copy a new taint propagation list with
thisVar as the tail node and insert nextVar into the next node of thisVar (Situation II). This
is shown in Figure 3.



Appl. Sci. 2021, 11, 7763 8 of 21

Figure 3. Taint propagation chain. Chain (a) consists of square triangles and circles, and the hexagon
(nextVar) is the newly inserted node. In Situation II, chain (b) is generated from chain (a)’s header to
thisVar, and then the new node (nextVar) is inserted into chain (b).

5.2. Taint Propagation Rules

The ZendVM has a unique instruction set of Oplines. Taint analysis based on Oplines
needs a user-defined data flow logic. This section first introduces three definitions:
Taint Attribute, Taint Map, and Predefined Taint. Next, it introduces the data flow logic
of the ZendVM.

Definition 1 (Taint Attribute). Taint Attribute is an accessoryattribute of a variable in the Opline
sequences and is a Boolean value. When a variable’s Taint Attribute is True, it is a taint variable,
and when its Taint Attribute is False, it is a normal variable.

Definition 2 (Taint Map T(·)). Regard v as a variable. T(v) will return the value of the variable
v’s Taint Attribute. The semantics of T(v) is related to the position of←. When T(v1) is on the
right of←, it represents the acquisition of v1’s Taint Attribute. When T(v1) is on the left of←, it
represents the reception of the Taint Attribute, which represents that v1’s Taint Attribute is set to a
Taint Attribute on the right. For example, T(v1)←T(v2) means v2’s Taint Attribute is passed to v1.

Definition 3 (Predefined Taint). Predefined Taint TAINT is a variable that has been pre-identified
as a taint due to the characteristics of the PHP language and the ZendVM. Predefined Taints in this
method specifically refer to super global variables [33] and the parameters of user-defined functions.

Table 1 details the taint propagation logic. We deeply study the ZendVM instruction
set, analyze the most probable taint propagation instructions, and finally, obtain this taint
propagation logic. This table shows the taint import rules and taint propagation rules
when our taint analysis system deals with the ZendVM instructions. The propagation
rule of FETCH_R vA, C is TAINT, because the Opline format only appears when super
global variables are used. The propagation rule of RECV also has TAINT, because the
ZendVM does not recompile PHP library functions, while RECV only occurs in function
definition. Therefore, the occurrence of RECV means that the function is a user-defined
function. Therefore, using the parameters of the user-defined function as TAINT is helpful
for the user-defined function’s taint analysis.



Appl. Sci. 2021, 11, 7763 9 of 21

Table 1. Taint propagation logic.

Opline Format Semantics Taint Propagation Description

ASSIGN vA, C vA ← C T(vA)← ∅ Clear vA taint
ASSIGN vA, vB vA ← vB T(vA)← T(vB) Taint vB propagate to vA

ASSIGN_CONCAT vA, vB vA ← Concat(vA, vB) T(vA)← T(vB) Taint vB propagate to vA
FAST_CONCAT vA, vB ret← Concat(vA, vB) T(ret)← T(vA) ∪ T(vB) Taint (vA ∪ vB) propagate to ret

CONCAT vA, vB ret← Concat(vA, vB) T(ret)← T(vA) ∪ T(vB) Taint (vA ∪ vB) propagate to ret
CAST vA ret← vA T(ret)← T(vA) Taint vA propagate to ret

FETCH_R vA, C vA ← C T(vA)← TAINT Taint superglobalsVar propagate
to vA

FETCH_R vA, vB vA ← vB T(vA)← T(vB) Taint vB propagate to vA
FETCH_DIM_R vA, C ret← vA[C] T(ret)← T(vA[C]) Taint vA[C] propagate to ret
FETCH_DIM_R vA, vB ret← vA[vB] T(ret)← T(vA[vB]) Taint vA[vB] propagate to ret
FETCH_OBJ_R vA, C ret← (vA → C) T(ret)← T(vA → C) Taint vA → C propagate to ret
FETCH_OBJ_R vA, vB ret← (vA → vB) T(ret)← T(vA → vB) Taint vA → vB propagate to ret

FETCH_FUNC_ARG vA ret← vA T(ret)← T(vA) Taint vA propagate to ret
FETCH_DIM_FUNC_ARG vA, C ret← vA[C] T(ret)← T(vA[C]) Taint vA[C] propagate to ret
FETCH_DIM_FUNC_ARG vA, vB ret← vA[vB] T(ret)← T(vA[vB]) Taint vA[vB] propagate to ret

INIT_ARRAY vA ret← vA T(ret)← T(vA) Taint vA propagate to ret
ADD_ARRAY_ELEMENT vA ret← vA T(ret)← T(vA) Taint vA propagate to ret

RECV ret← TAINT T(ret)← TAINT User-defined-func parameters

ASSIGN_DIM vA, C
OP_DATA vC

vA[C]← vC T(vA[C])← T(vC) Taint vC propagate to vA[C]

FETCH_DIM_W vA, vB
ASSIGN_DIM vC , vD
OP_DATA vE

tmp← vA[vB]
vC ← tmp
vE ← vC [vD ]

T(vE)← T(vA[vB][vC ]) Taint vA[vB][vC ] propagate to vE

ROPE_INIT vA
ROPE_ADD tmp, vB
ROPE_END tmp, vC

tmp← vA
tmp← vB
ret← Concat(tmp, vC)

T(ret)← T(vA) ∪ T(vB) ∪ T(vC)
Taint (vA ∪ vB ∪ vC) propagate to

ret

5.3. Taint Sink Rules

The taint sink needs to meet two conditions: first, the call of dangerous function is
detected; second, the called dangerous function uses the taint variable as the parameter.
Similarly, it also needs a set of unique taint sink rules to judge the taint sink.

Table 2 provides a detailed list of taint sink rules. Oplines related to the taint sink
mainly fall into three categories, namely function call initialization (INIT), passing parame-
ters to the function (Param), and function call execution (CALL), which correspond to the
three steps of function call execution in the ZendVM.

Table 2. Taint sink logic.

Opline Type SinkFuncFlag TaintVarFlag Sink

INIT_FCALL INIT • – –
INIT_FCALL_BY_NAME INIT • – –
INIT_METHOD_CALL INIT • – –

INIT_USER_CALL INIT • – –
INIT_DYNAMIC_CALL INIT • – –

SEND_VAL Param – • –
SEND_VAL_EX Param – • –

SEND_VAR Param – • –
SEND_VAR_EX Param – • –

SEND_USER Param – • –
SEND_ARRAY Param – • –

DO_ICALL CALL – – SinkFuncFlag&&TaintVarFlag
DO_FCALL CALL – – SinkFuncFlag&&TaintVarFlag

EVAL CALL – • TaintVarFlag
•means SinkFuncFlag or TaintVarFlag = 1, – means SinkFuncFlag or TaintVarFlag = 0.

In the phase of INIT, the corresponding operand of the Opline is detected. When the
function called is found in the dangerous functions list, the value of sinkFuncFlag is set to
one, indicating that the dangerous function is called.



Appl. Sci. 2021, 11, 7763 10 of 21

In the phase of Param, when the corresponding operand of the Opline is found to
be a taint variable, it is determined that the taint variable is imported by the function call,
and the value of TaintVarFlag is set to one, indicating that the taint variable is passed as a
parameter.

Finally, in the phase of CALL, when SinkFuncFlag = 1&&TaintVarFlag = 1 is found, it
is the taint sink, and the sample is determined to be a webshell.

It is worth noting that Opline Eval itself represents a dangerous function call, so it
only needs to meet TaintVarFlag = 1 to qualify as a webshell. In addition, SinkFuncFlag
and TaintVarFlag always appear in pairs, and both Flag values are reset to zero after the
judgment is completed.

5.4. Example Illustration

Reviewing the include-type webshell example named webshell-1.php in Section 3 and
analyzing it using the method proposed in this paper, the sample code is transformed into
Opline sequences, as shown in Figure 4. In this example, hello.txt is the file included in the
webshell-1.php. The Opline sequences of hello.txt are obtained by file inclusion recursion
detection, which is shown in Figure 5.

Figure 4. The Opline sequences of webshell1.php. Columns 5 (op) and 8 (return) represent op-
code and opline return values. Column 9 (operands) has three values, oprands1, oprands2, and
extended_value.

Figure 5. The Opline sequences of hello.txt.

In Figure 5, it is observed that Line 8 is in accordance with the taint propagation rule
of FETCH_R vA, C, and C is the super global variable _POST, so Variable 4 is added to the
taint variable list and a taint propagation chain is created at the same time, with Variable 4
as the head node of this chain. Then, the Opline in Line 9 conforms to the taint propagation
rule of FETCH_DIM_R vA, C, so the return value of Variable 6 is tainted, added to the taint
variable list, and inserted into the taint propagation chain with Variable 4 as the previous
node. On Line 10, the extended_value of Opline is EVAL, and op1 is Variable 6, which is a
taint variable. Therefore, it meets the taint sink rules, and the sample file is determined to
be a webshell file.

The method proposed in this paper can be used to easily determine that the sample
code is a webshell. We will further verify the advantages of our method in the next section.



Appl. Sci. 2021, 11, 7763 11 of 21

6. Evaluation

In order to evaluate the webshell static detection method based on taint analysis
proposed in this paper, a series of experiments is designed on the real program in this
section and compared with relevant technologies. The experiments are described below.

6.1. Evaluation Setup

We designed the experiments to answer the following research questions:

RQ1: Is the interprocedural analysis module based on taint analysis effective at the detec-
tion of user-defined function-type webshells and include-type webshells?

RQ2: Does the webshell detection method based on taint analysis have a better effect
against unknown webshells?

RQ3: Does WTA have better performance than well-known webshell detection tools?

The first two experiments were used to evaluate the two improved techniques pro-
posed in this paper, and the third experiment was used to evaluate the overall performance
of the method proposed in this paper.

Experimental infrastructure. All experiments were run on a machine with an Intel
Core i7-10875h processor, four 2.30 GHz logic cores, and 16 GB of RAM, and the operating
system was 64-bit Windows10 20H2 or 64-bit Linux Ubuntu 18.04. The PHP version was
7.1.24.

6.2. Evaluation Benchmarks

There are many publicly available webshell datasets on the Internet that can be
obtained through GitHub. Since the collection of these datasets is random, there are
problems such as sample duplication, sample execution failure, and incorrect sample
format. In addition, the research object of this paper is PHP webshells. After cleaning,
we collected a total of 1776 PHP webshells from 10 open-source datasets on GitHub. The
sources of the samples are shown in Table 3.

Table 3. The sources of the webshells (Accessed on 7 January 2021).

No Webshell Projects Source

1 tennc/webshell https://github.com/tennc/webshell
2 JohnTroony/php-webshells https://github.com/JohnTroony/php-webshells
3 ysrc/webshell-sample https://github.com/ysrc/webshell-sample
4 xl7dev/WebShell https://github.com/xl7dev/WebShell
5 BlackArch/webshells https://github.com/BlackArch/webshells
6 LandGrey/webshell-detect-bypass https://github.com/LandGrey/webshell-detect-bypass
7 backlion/webshell https://github.com/backlion/webshell
8 x-o-r-r-o/PHP-Webshells-Collection https://github.com/x-o-r-r-o/PHP-Webshells-Collection
9 tdifg/WebShell https://github.com/tdifg/WebShell
10 s0md3v/nano https://github.com/s0md3v/nano

These datasets from GitHub have different purposes for collecting webshells. Some
of them aim to collect the most comprehensive webshells, so in addition to the language
PHP, the languages of the samples also include ASP, Java, Python, and so on, such as
tennc/webshell. Some divide PHP webshells according to their families and only collect
webshells with typical family characteristics, such as S0MD3v/Nano. Some, such as
LandGrey/webshell-Detect-Bypass, collect webshells that can bypass current detection
methods for the purpose of network attack or security research. Therefore, we preprocessed
the collected samples for the above 10 projects: repeated samples were excluded based on
the SHA1 algorithm. In addition, PHPCLI was used to execute each PHP webshell and
excluded some webshells that cannot be executed. Finally, we obtained 1776 executable
PHP webshell samples.

Using the same method, we collected 6874 PHP web pages from six popular open-source
PHP Content Management Systems (CMSs), and Table 4 shows the CMS information.

https://github.com/tennc/webshell
https://github.com/JohnTroony/php-webshells
https://github.com/ysrc/webshell-sample
https://github.com/xl7dev/WebShell
https://github.com/BlackArch/webshells
https://github.com/LandGrey/webshell-detect-bypass
https://github.com/backlion/webshell
https://github.com/x-o-r-r-o/PHP-Webshells-Collection
https://github.com/tdifg/WebShell
https://github.com/s0md3v/nano


Appl. Sci. 2021, 11, 7763 12 of 21

Table 4. The sources of the CMSs (Accessed on 13 May 2021).

No CMS Source

1 joomla https://github.com/joomla/joomla-cms/releases/download/3.9.26/Joomla_3.9.26
-Stable-Full_Package.zip

2 laravel https://github.com/laravel/laravel/archive/refs/tags/v8.5.17.zip
3 phpBB https://github.com/phpbb/phpbb/archive/refs/tags/release-3.3.4.zip
4 typecho https://github.com/typecho/typecho/archive/refs/tags/v1.1-17.10.30-release.zip
5 thinkphp http://www.thinkphp.cn/download/1278.html
6 october https://github.com/octobercms/october/archive/refs/tags/v2.0.14.zip

Besides, we selected eight currently popular webshell detection systems for the con-
trolled experiment with WTA. They were D-Shield [15], ShellPub [34], WebshellKiller [35]
(precision mode), WebshellKiller [35] (recall mode), CloudWalker [36], ClamAV [37],
LoKi [38], and findbot.pl [39]. The basic information and basic detection principles of
these tools are shown in Table 5.

Table 5. Webshell detection tools.

Webshell
Detection Tool Version Description

D-shield V2.1.5.4 A webshell detection tool based on feature detection.
SHELLPUB V1.8.2 Antivirus technology using traditional features and dual-engine cloud big data.

WebshellKiller
(precision/re-

call
mode)

V3.3.0.2

A webshell detection tool adopting simulation execution, parameter dynamic analysis and monitoring
technology, and webshell semantic analysis technology. Precision mode and recall mode are the two
performance modes of the tool. Different parameter thresholds are set to improve precision and recall,
respectively.

CloudWalker V1.0.0 A comprehensive webshell detection tool combined with feature detection and machine learning.

ClamAV V0.103.3 ClamAV is an open-source antivirus engine for detecting Trojans, viruses, malware, and other malicious
threats.

LoKi V0.41.0 LOKI is a free and simple IOC and YARA scanner.
Findbot.pl V0.10 A script attempts to find malicious files/scripts on your machine.

6.3. Effectiveness Test of the Interprocedural Analysis Module Based on Taint Analysis (RQ1)

To evaluate the effectiveness of the interprocedural analysis module, we implemented
two versions of the webshell static detection tool: Webshell Taint Analysis (WTA) and No
Interprocedural Analysis Module (WTA-NO-IAM). The former uses the method proposed
in this paper, while the latter does not include the interprocedural analysis module. In this
experiment, there were two performance evaluation indicators. First, validating sample
code was set up to test the validity of two types, user-defined function-type webshell
and include-type webshell. Second, WTA and WTA-NO-IAM were applied to detect
our webshell dataset, and the effectiveness of the interprocedural analysis module was
evaluated by comparison of the number of webshells detected by the two tools.

The validating sample code for the webshell of the user-defined function-type webshell
(WebShell-1) and the include-type webshell (WebShell-2) is shown in Listing 5.

As shown in Listing (a), the sample webshell encapsulates the easy-to-detect keyword
“_POST” in the user-defined function “dynamic” and the easy-to-detect dangerous function
“assert” in the user-defined function newassert(), trying to bypass the detection of the
webshell detection tool. Finally, at Line 16, they are concatenated into a one-sentence
webshell: assert($_POST[’ x ’]).

The include-type webshell is shown in Lists (b) and (c), where List (b) is the body of the
webshell and List (c) is the content of the included file. The sample webshell uses “include”
to wrap the dangerous function “eval” into the user-defined function “HelloWorld” and
calls “HelloWorld” in the body of the webshell file. The webshell is finally achieved at Line
3 of the list (b): eval ($_POST[’hello’]).

WTA, WTA-NO-IAM, and famous webshell tools were used to detect the two web-
shells, and the test results are shown in Table 6.

https://github.com/joomla/joomla-cms/releases/download/3.9.26/Joomla_3.9.26-Stable-Full_Package.zip
https://github.com/joomla/joomla-cms/releases/download/3.9.26/Joomla_3.9.26-Stable-Full_Package.zip
https://github.com/laravel/laravel/archive/refs/tags/v8.5.17.zip
https://github.com/phpbb/phpbb/archive/refs/tags/release-3.3.4.zip
https://github.com/typecho/typecho/archive/refs/tags/v1.1-17.10.30-release.zip
http://www.thinkphp.cn/download/1278.html
https://github.com/octobercms/october/archive/refs/tags/v2.0.14.zip


Appl. Sci. 2021, 11, 7763 13 of 21

Listing 5. The validating sample code.

1. <?php
2 . funct ion dynamic ( ) {
3 . $a = "_POST" ;
4 . re turn $a ;
5 . }
6 .
7 . funct ion newassert ( ) {
8 . $e = " a### sse ### r t " ;
9 . $ f = chunk_split ( $e , 1 , " # " ) ;
1 0 . $g = s t r _ r e p l a c e ( " # " , " " , $ f ) ;
1 1 . re turn $g ;
1 2 . }
1 3 . $a = dynamic ( ) ;
1 4 . $b = $$a ;
1 5 . $c = newassert ( ) ;
1 6 . $c ( $b [ ’ x ’ ] ) ;
17.? >

( a ) User−defined funct ion −type ( Webshell −1)

1. <?php
2 . include ( " . . / eval . php" ) ;
3 . hel loworld ( $_POST [ ’ h e l l o ’ ] ) ;
4 .? >

( b ) Include −type ( Webshell −2)

1. <?php
2 . funct ion helloworld ( $a ) {
3 . eval ( $a ) ;
4 . }
5 .? >

( c ) eval . php included

For the detection of the sample webshells, it can be observed from the experimental
results that both samples could be detected by WTA, indicating that WTA can detect the
user-defined function-type webshells and include-type webshells. For the other tools, only
D-Shield could detect webshell-1 and report it as suspicious at Level 1 (D-Shield detects
webshells on a scale of five, with Level 1 being the least dangerous). D-Shield judged it as a
Level-1 webshell because it detected variable function [40] $c($b[′x′]). This shows that the
performance of the regular matching detection method adopted by the current detection
tools is weak at interprocedural analysis, especially for include-type webshells.

Table 6. Interprocedural analysis of the test code experiment effect.

Webshell Detection Tool Webshell-1 Webshell-2

WTA (Webshell Taint Analysis) X X
WTA-NO-IAM (No Interprocedural Analysis Module) × ×

D-Shield X(level 1) ×
SHELLPUB × ×

WebshellKiller × ×
WebshellKiller × ×
CloudWalker × ×

WTA and WTA-NO-IAM are used to detect the webshell dataset, and the test results
are shown in Table 7.



Appl. Sci. 2021, 11, 7763 14 of 21

Table 7. Performance comparison between WTA and WTA-NO-IAM.

Webshell Detection Tool TP FN Recall

WTA(Webshell Taint Analysis) 1713 63 0.964527027
WTA-NO-IAM(no interprocedural analysis module) 1325 451 0.746058558

For the controlled experiment of WTA and WTA-NO-IAM, the recall rate of WTA
was 96.4%, while the recall rate of WTA-NO-IAM was only 74.6%. Therefore, the in-
terprocedural analysis module of WTA plays a crucial role in the detection of webshell
samples.

To sum up, the answer to RQ1 is obvious. The interprocedural analysis module based
on taint analysis is effective at the detection of user-defined function-type webshells and
include-type webshells.

6.4. The Validity Test of the Webshell Detection Method Based on Taint Analysis against Unknown
Webshells (RQ2)

At present, the mainstream webshell detection tools mostly use the detection method
based on regular matching. By capturing the webshells in the wild, the corresponding
features are extracted and added into the feature library. Therefore, the webshells that
have been spread on the network for a period of time are easier to detect. Moreover, this
method of blacklist matching is easy to bypass. How to improve the detection ability
against unknown webshells is a goal pursued by various webshell detection tools.

To evaluate the effectiveness of this detection method against unknown webshells, we
found 5 generation tools that can generate antidetect PHP webshells randomly and used
each tool to generate 10 webshells, respectively. Therefore, there was a total of 50 samples.
The information on the 5 webshell generation tools is shown in Table 8.

Table 8. The sources of the antidetect webshell generation tools.

Tool Source Last Update

pureqh https://github.com/pureqh/webshell 12 February 2021
venom https://github.com/0x6b7966/webshell-venom 2 July 2019

weevely https://github.com/epinna/weevely3 8 August 2020
b374k https://github.com/b374k/b374k 13 December 2016
aqk https://www.anquanke.com/post/id/193042 21 November 2019

Listing 6 shows the code snippet of pureqh. There are many anchors for replacement
in the code, such as {1}, {6}, {7}. These anchor will be replaced with random strings when
pureqh runs. Therefore, the webshell was generated each time with different hash values.
It is difficult for current static detection tools to extract the features, resulting in detection
failure.

The popular webshell detection tools mentioned in Table 8 were used to detect the
50 samples, and the detection results are shown in Table 9.

From the experimental results, it can be observed that WTA had an excellent detection
effect for the randomly generated unknown webshells. All 50 samples could be detected,
and the recall rate reached 100%. Since WTA adopts the taint analysis method for detection,
there was no need to extract the corresponding features, and the detection effect was better
for unknown webshells. Among the well-known webshell detection tools, only D-Shield,
WebshellKiller (recall mode), and CloudWalker could find the webshells. D-Shield could
detect 40 webshells, but could not detect webshells generated by pureqh. WebshellKiller
(recall mode) could only detect the samples generated by weevely and b374k; other samples
could not be detected. CloudWalker could only find 10 webshells.

https://github.com/pureqh/webshell
https://github.com/0x6b7966/webshell-venom
https://github.com/epinna/weevely3
https://github.com/b374k/b374k
https://www.anquanke.com/post/id/193042


Appl. Sci. 2021, 11, 7763 15 of 21

Listing 6. The validating sample code.

1 . funct ion { 6 } ( $ { 7 } ) { 1 }
2 . $BASE32_ALPHABET = ’ abcdefghijklmnopqrstuvwxyz234567 ’ ;
3 . $ { 8 } = ’ ’ ;
4 . $v = 0 ;
5 . $ v b i t s = 0 ;
6 . for ( $ i = 0 , $ j = s t r l e n ( $ { 7 } ) ; $ i < $ j ; $ i ++) { 1 }
7 . $v <<= 8 ;
8 . $v += ord ( $ { 7 } [ $ i ] ) ;
9 . $ v b i t s += 8 ;
1 0 . while ( $ v b i t s >= 5) { 1 }
1 1 . $ v b i t s −= 5 ;
1 2 . $ { 8 } . = $BASE32_ALPHABET[ $v >> $ v b i t s ] ;
1 3 . $v &= ( ( 1 << $ v b i t s ) − 1) ; { 4 } { 4 }
1 4 . i f ( $ v b i t s > 0) { 1 }
1 5 . $v <<= (5 − $ v b i t s ) ;
1 6 . $ { 8 } . = $BASE32_ALPHABET[ $v ] ; { 4 }
1 7 . re turn $ { 8 } ; { 4 } $

Table 9. The detection effect for unknown webshells.

The Number
of Webshells D-Shield SHELLPUB WebshellKiller

(Precision)
WebshellKiller

(Recall) CloudWalker WTA

venom 10 10 0 0 0 0 10
weevely 10 10 0 0 10 0 10

b374k 10 10 0 0 10 10 10
aqk 10 10 0 0 0 0 10

ureqh 10 0 0 0 0 0 10
total 10 40 0 0 20 10 50

Recall – 80% 0% 0% 40% 20% 100%

It is worth mentioning that D-Shield’s detection report stated that the 40 samples were
“known webshells”, indicating that D-Shield only noticed the four generation tools and
added their features to their webshell feature library. The updated time of these tools is
also a good indication of this viewpoint. The detected webshells were all generated by
tools updated before 2021. The oldest tool, b374k, was last updated on 13 December 2016.
As for the webshells generated by the latest tool pureqh, D-Shield could not detect them,
while our WTA based on taint analysis could achieve a better detection effect for unknown
webshells.

To sum up, the answer to RQ2 is evident. The webshell detection method based on
taint analysis has a better effect against unknown webshells and can provide important
help for detecting webshells.

6.5. WTA and Well-Known Webshell Detection Tools for Performance Comparison (RQ3)

The above two experiments evaluated the effectiveness of the two key techniques in
this paper. The experiment in this section evaluated the overall performance of the system
and whether the method presented in this paper can improve the performance of webshell
detection.

In order to better evaluate the performance of webshell detection tools, the evaluation
indicators of this experiment are defined as follows:

We regarded webshells as positive samples and normal files as negative samples;
True Positive (TP). The webshell sample is correctly recognized as a webshell;
False positive (FP). The normal file is misidentified as a webshell;
True Negative (TN). The normal file is correctly recognized as a normal file;
False Negative (FN). The webshell sample is misidentified as a normal file;
Accuracy. The proportion of correctly predicted samples to all samples. The formula

is as follows:
Accuracy =

TP + TN
TP + FP + TN + FN

; (1)



Appl. Sci. 2021, 11, 7763 16 of 21

Recall. The proportion of correctly predicted webshell samples to the real webshell
samples; the higher the recall rate, the better the performance is for potential webshells’
detection. The formula is as follows:

Recall =
TP

TP + FN
; (2)

Precision. The proportion of correctly predicted webshell samples to the predicted
webshell samples; the higher the precision rate, the lower the false positive rate is. The
formula is as follows:

Precision =
TP

TP + FP
; (3)

F-measure. The F-measure is a comprehensive consideration of recall and precision.
Generally, a higher F1 indicates that the experimental method is more effective. The larger
β is, the more importance is attached to the recall. The β values used in our experiment
were 0.5, 1, and 1.5. The formula is as follows:

Fβ = (1 + β2)
Precision ∗ Recall

(β2 ∗ Precision) + Recall
. (4)

In the experiment, the method presented in this paper was compared with well-
known webshell detection tools, and a controlled experiment was conducted based on the
experimental dataset in Section 6.2. The experimental results are shown in Table 10.

Table 10. Comparison of the webshell detection tools.

WTA D-Shield SHELLPUB WebshellKiller
(P)

WebshellKiller
(R) CloudWalker LoKi ClamAV findbot.pl

TP 1713 1608 1165 897 1376 1580 1474 391 972
FN 63 168 611 879 400 196 302 1385 804
FP 40 3 75 2 53 30 10 1 132
TN 6834 6870 6798 6871 6820 6843 6863 6872 6741

Accuracy 0.9881 0.9802 0.9207 0.8981 0.9476 0.9739 0.9639 0.8398 0.8918
Recall 0.9645 0.9054 0.6560 0.5051 0.7748 0.8896 0.8300 0.2206 0.5473

Precision 0.9772 0.9981 0.9395 0.9978 0.9629 0.9814 0.9933 0.9974 0.8804
F0.5 0.9746 0.9781 0.8648 0.8349 0.9183 0.9615 0.9557 0.5846 0.7849
F1 0.9708 0.9495 0.7725 0.6707 0.8587 0.9332 0.9043 0.3607 0.6750

F1.5 0.9684 0.9320 0.7231 0.5956 0.8243 0.9159 0.8742 0.2896 0.6194

The experimental results showed that D-Shield had the best comprehensive perfor-
mance among the well-known webshell detection tools, whose recall was 90.54%, precision
99.81%, and F1 94.95%. However, our system WTA had better comprehensive performance
than D-Shield, with a recall of 96.45%, which was 5.91% higher than D-Shield, precision
97.71%, slightly lower than D-Shield, but also a high level of precision, and F1 97.08%,
which was 2.13% higher than D-Shield. Obviously, the performance of our method was at
the top of all webshell detection tools.

It is worth noting that the performance of the two modes in WebshellKiller was quite
different, with a precision of 99.77% in precision mode. While some precision was sacrificed
in recall mode, the recall was 26.97% higher than precision mode, but still only 77.47%,
which is an average performance. SHELLPUB’s detection speed was the fastest among all
the tools: the detection of webshell samples took less than 10 seconds; however, its recall
was too low. CloudWalker applies a number of detection techniques, such as statistical
feature detection, AST detection, regular matching, machine learning, etc. Therefore, its
detection speed was the slowest, and the average detection time was three-times that of
other tools.

6.6. Discussion

In this section, we discuss the limitations and future developments of static webshell
detection methods based on taint analysis to improve the integrity of WTA.



Appl. Sci. 2021, 11, 7763 17 of 21

Although our webshell static detection method based on taint analysis analysis had
a more complete interprocedural capability than traditional methods and could detect
more unknown webshells, it still could not guarantee that it could detect all new un-
known webshells. Many factors affect WTA’s detection of unknown webshells, such as
the propagation rules of the Opline in this paper not being totally comprehensive, some
webshells using new PHP features, and so on. In future work, we will further study the
taint propagation rules of the Opline, which are not involved at present, and expand the
current taint propagation logic. In addition, we will update the taint propagation logic of
the Opline in the new version of PHP by updating to it and continue to study the principles
and features of new webshells caused by the features of the new version of PHP.

In addition, our method is extensible. Specifically, we will further expand the detec-
tion objects, such as web application vulnerabilities, SQL injection vulnerabilities, XSS
vulnerabilities, and so on. For example, we can build the taint import rules of SQL injection,
improve the corresponding taint propagation logic, and find the dangerous functions list of
SQL injection separately, then finally realize the detection of SQL injection vulnerabilities.
In this paper, the effectiveness of our method in webshell detection was evaluated in
a preliminarily fashion. In the future, we will expand to web application vulnerability
detection, such as SQL injection vulnerability detection, XSS vulnerability detection, and
so on.

7. Related Works

In this section, some dynamic feature-based and static feature-based detection methods
are introduced, respectively.

7.1. Dynamic Methods

Tian et al. [9] proposed a malicious webshell detection method based on a Convo-
lutional Neural Network (CNN). This method first obtains the HTTP request and then
uses word2vec to represent each word as a vector. In this case, each HTTP request can be
transformed into a fixed-size matrix; finally, a model is trained to detect and classify a file
based on CNN. In fact, this detection method is based on network traffic, which uses a
convolutional neural network to monitor, model, and train the traffic at webshell runtime.
This method has better classification performance than the method based on malicious
keyword matching, but it also has some drawbacks: First, if attackers reduce the frequency
of communication, such as disguising the operations as normal behaviors and executing
the required command only once, it would easily bypass the detection based on network
traffic. Second, running the webshell in real time results in bad performance and consumes
many computing resources, which may lead to the destruction of key nodes in the system.

In addition, there are methods to detect abnormal behaviors of the webserver to
detect web attacks. The main detection idea is to extract the characteristics of abnormal
network behaviors, distinguish them from the normal network behavior, and construct
the abnormal network activity label for web attack detection. However, systems based on
anomaly detection often produce a large number of false positives, because it is difficult
to construct the algorithm for labeling normal and abnormal behaviors, and it is easy to
mark normal behaviors as suspicious operations or omit some real abnormal behaviors.
Robertson et al. [41] proposed a network attack detection method. This method uses excep-
tion generalization technology to convert suspicious web requests into abnormal signatures
and then uses these signatures to group similar abnormal samples. Kruegel et al. [42] pro-
posed an intrusion detection system that uses a variety of different anomaly detection
techniques to detect attacks against web servers and web applications. Almgren et al. [43]
took into account the characteristics of different types of host-based attacks and developed
a lightweight tool for online detection of webserver attacks that can run and track suspected
hosts in real-time.



Appl. Sci. 2021, 11, 7763 18 of 21

7.2. Static Methods

Tian et al. [9] and Tu et al. [3] used regular matching and keyword feature matching
to detect webshells. This method can be effective at identifying some webshells, but
webshells are usually written in high-level languages, which have abstract lexical and
syntactic features. These features cannot be fully reflected in regular expressions, so it is
difficult to extract abstract features in this method, and there may be missing problems in
the detection process.

Zhu et al. [44] considered the abstract lexical and syntactic features in high-level
languages (especially the PHP language) and proposed a detection method based on
multiview feature fusion. First, this method extracts the abstract features of the vocabulary
and syntax that represent the internal meaning of the webshell. Secondly, the Fisher score is
used to rank each feature according to its importance. Finally, a model is established based
on the optimized Support Vector Machine (SVM), and it could detect webshells effectively.

The text feature recognition method is also the main method in webshell static de-
tection, which often plays a role together with a neural network and deep learning. Tu
et al. [45] proposed a webshell detection system based on a scoring mechanism, which
determines whether suspicious files belong to a webshell by scoring. The factors of scoring
are the function type, the number of dangerous functions, the signature status, the longest
string length, and so on. Thresholds are then determined, and score accumulation is
performed when some factors exceed the threshold. This method mainly has the following
problems: first, because this method is mainly based on the feature library constructed
by experts to determine dangerous functions and other factors, the new webshell cannot
be detected; second, if the attacker encrypts or splits dangerous functions and sensitive
parameters, it cannot be detected directly.

Each programmer’s programming style results in different code syntax, and these
syntactic variations are difficult points in taint analysis. Kurniawan et al. [46] summarized
the possible syntax variants based on AST and reconstructed the PHP parser, which can
reduce the syntax objects to be visited in the process of taint analysis. In contrast, our
taint analysis method performs analysis on the PHP Opline. The Opline is a ZendVM
instruction, so our method performs taint analysis on the PHP Opline, which naturally can
resolve grammatical variants.

Le et al. [47,48] combined taint analysis and pattern matching to detect webshells.
Taint analysis is performed to divide the code into tokens during the lexical analysis phase.
Taint analysis is performed based on tokens, similar to RIPS [19], and pattern matching can
match a few one-sentence webshells.

The method of statistical characteristics summarizes the characteristics of an entire
webshell file according to the attribute values of certain aspects of the file. Due to the rapid
development of web services, developers tend to use encryption and obtrusion techniques
to avoid source code leakage, which leads to the statistical characteristics of normal files
being similar to that of the webshell files. Therefore, a webshell detection method based on
statistical characteristics loses its original advantages. Pan et al. [14] proposed a webshell
detection method based on executable data features in PHP code. This method combines
the characteristics of executable data from the PHP code with the characteristics of the
static text to detect webshells. Compared to the traditional static statistical method, this
method can improve the recognition ability.

Webshell detection systems will use different classification methods to determine
whether a suspicious file is a webshell. For example, the webshell detection method
proposed by Wang et al. [49] uses a multilayer neural network to detect and classify
suspicious files. Cui et al. [50] used the combination of a random forest classifier and a
GBDT classifier for classification. Fang et al. [21] used the fastText algorithm to train the
Opcode sequence model and predicted the corresponding features of the samples. Finally,
random forest was used to realize the binary classification. Each of these methods has its
advantages and disadvantages. Ai et al. [51] proposed a webshell detection method based
on ensemble learning, which constructed a differentiated ensemble detection model, WS-



Appl. Sci. 2021, 11, 7763 19 of 21

LSMR, composed of Logistic Regression (LR), Support Vector Machine (SVM), Multilayer
Perceptron (MLP), and Random Forest (RF). Given the four basic classifiers (LR, SVC, MLP,
RF), this model adaptively assigns weights to the four classifiers, and algorithms with high
accuracy will have high weights to better reflect the effect of good algorithms.

8. Conclusions

Webshells are an important threat to network security. Attackers using a webshell
can invade websites, control servers, steal sensitive files, and further invade the internal
network. How to improve the capability of interprocedural analysis and improve the
detection ability for unknown webshells are the main challenges of webshell detection.
This paper proposed a webshell static detection method based on taint analysis. For the first
time, we constructed a set of user-defined taint propagation rules and a set of user-defined
taint sink rules for the unique instruction set of the ZendVM. A PHP webshell detection
method was formed by the combination of the two sets of rules and the detection of the
Opline taint source. Based on this method, we implemented a static taint analysis prototype
system named WTA for the detection of PHP webshells.

Experimental results showed that WTA supports interprocedural analysis and has
the ability to detect unknown webshells. Compared with the current popular webshell
detection tools, WTA can detect more webshells. Its recall rate reached 96.45%, which was
5.91% higher than the best-performing tool among the other tools. The precision rate was
97.71%, and the F1 was 97.08%.

Author Contributions: Conceptualization, Y.L. and J.Z.; methodology, J.Z., X.W. and K.Z.; software,
J.Z. and L.Y.; validation, J.Z. and X.W.; investigation, J.Z.; resources, Y.L.; data curation, J.Z. and
X.W.; writing—original draft preparation, J.Z.; writing—review and editing, Y.L., K.Z., L.Y. and J.Z.;
supervision, Y.L.; project administration, Y.L. All authors read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Key Research and Development Project of
China (No. 2017YFB0802900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We would like to sincerely thank the reviewers for their insightful comments,
which helped us improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Fedaghi, S. Developing web applications. Int. J. Softw. Eng. Its Appl. 2011, 5, 57–68.
2. microsoft. Microsoft Defender Advanced Threat Protection. Available online: https://docs.microsoft.com/en-us/windows/

security/threat-protection/microsoft-defender-atp/microsoft-defender-advanced-threat-protection (accessed on 20 March 2021).
3. Tu, T.D.; Cheng, G.; Guo, X.; Pan, W. Webshell detection techniques in web applications. In Proceedings of the Fifth International

Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, China, 11–13 July 2014; pp. 1–7.
4. Xie, Y.; Aiken, A. Static Detection of Security Vulnerabilities in Scripting Languages. In Proceedings of the 15th USENIX Security

Symposium, Vancouver, BC, Canada, 31 July–4 August 2006; Volume 15, pp. 179–192.
5. Sommestad, T.; Holm, H.; Ekstedt, M. Estimates of success rates of remote arbitrary code execution attacks. Inf. Manag. Comput.

Secur. 2012, 20, 107–122. [CrossRef]
6. Hannousse, A.; Yahiouche, S. Handling webshell attacks: A systematic mapping and survey. Comput. Secur. 2021, 108, 102366.

[CrossRef]
7. Sun, X.; Lu, X.; Dai, H. A matrix decomposition based webshell detection method. In Proceedings of the 2017 International

Conference on Cryptography, Security and Privacy, Wuhan, China, 17–19 March 2017; pp. 66–70
8. Wei, Y.B.; Huang, J.Q.; Zhou, X. PHP Technology and It’s Application. Comput. Mod. 2000, 5, 86–89.
9. Tian, Y.; Wang, J.; Zhou, Z.; Zhou, S. CNN-webshell: Malicious web shell detection with convolutional neural network. In

Proceedings of the 2017 VI International Conference on Network, Communication and Computing, Kunming, China, 8–10
December 2017; pp. 75–79

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/microsoft-defender-advanced-threat-protection
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/microsoft-defender-advanced-threat-protection
http://doi.org/10.1108/09685221211235625
http://dx.doi.org/10.1016/j.cose.2021.102366


Appl. Sci. 2021, 11, 7763 20 of 21

10. Yong, B.; Liu, X.; Liu, Y.; Yin, H.; Huang, L.; Zhou, Q. Web behavior detection based on deep neural network. In Pro-
ceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 1911–1916.

11. Liuyang, S.; Yong, F. Webshell detection method research based on web log. J. Netw. New Media 2016, 2, 66–73.
12. Wu, Y.; Sun, Y.; Huang, C.; Jia, P.; Liu, L. Session-based webshell detection using machine learning in web logs. Secur. Commun.

Netw. 2019, 2019, 3093809. [CrossRef]
13. Thompson, K. Programming techniques: Regular expression search algorithm. Commun. ACM 1968, 11, 419–422. [CrossRef]
14. Pan, Z.; Chen, Y.; Chen, Y.; Shen, Y.; Guo, X. Webshell Detection Based on Executable Data Characteristics of PHP Code. Wirel.

Commun. Mob. Comput. 2021, 2021, 5533963. [CrossRef]
15. D-Shield. D-Shield. Available online: http://www.d99net.net/ (accessed on 14 February 2021).
16. Guo, Y.; Marco-Gisbert, H.; Keir, P. Mitigating webshell attacks through machine learning techniques. Future Internet 2020, 12, 12.

[CrossRef]
17. Newsome, J.; Song, D.X. Dynamic Taint Analysis for Automatic Detection, Analysis, and SignatureGeneration of Exploits on

Commodity Software. In Proceedings of the NDSS Symposium 2005, San Diego, CA, USA, 3 February 2005; Volume 5, pp. 3–4.
18. Yang, Z.; Yang, M. Leakminer: Detect information leakage on android with static taint analysis. In Proceedings of the 2012 Third

World Congress on Software Engineering, Wuhan, China, 6–8 November 2012; pp. 101–104.
19. Dahse, J.; Holz, T. Simulation of Built-in PHP Features for Precise Static Code Analysis In Proceedings of the NDSS Symposium

2014, San Diego, CA, USA, 23–26 February 2014; Volume 14, pp. 101–104.
20. Li, Y.; Huang, J.; Ikusan, A.; Mitchell, M.; Zhang, J.; Dai, R. ShellBreaker: Automatically detecting PHP-based malicious web

shells. Comput. Secur. 2019, 87, 101595. [CrossRef]
21. Fang, Y.; Qiu, Y.; Liu, L.; Huang, C. Detecting webshell based on random forest with fasttext. In Proceedings of the 2018

International Conference on Computing and Artificial Intelligence, Chengdu, China, 12–14 March 2018; pp. 52–56.
22. PHP. PHP: Hypertext Preprocessor. Available online: https://www.php.net/ (accessed on 20 April 2021).
23. Zend. Zend Engine. Available online: https://www.zend.com/ (accessed on 20 April 2021).
24. nikic. PHP 7 Virtual Machine. Available online: https://www.npopov.com/2017/04/14/PHP-7-Virtual-machine.html (accessed

on 14 January 2021).
25. Zend. How to Use PHP Extensions. Available online: https://www.zend.com/blog/php-development-using-php-extensions

(accessed on 14 February 2021).
26. Derickr. Vulcan Logic Dumper. Available online: https://derickrethans.nl/projects.html#vld (accessed on 14 January 2021).
27. Reps, T. Solving demand versions of interprocedural analysis problems. In Compiler Construction; Springer: Berlin/Heidelberg,

Germany, 1994; pp. 389–403.
28. Zhao, Z.; Liu, Q.; Song, T.; Wang, Z.; Wu, X. WSLD: Detecting Unknown Webshell Using Fuzzy Matching and Deep Learning.

In Proceedings of the International Conference on Information and Communications Security, Edinburgh, UK, 7–9 April 2019;
Springer: Cham, Switzerland, 2019; pp. 725–745.

29. PHP. Function Reference. Available online: https://www.php.net/manual/en/funcref.php (accessed on 12 January 2021).
30. Day, J.; Matta, I.; Mattar, K. Networking is IPC: A guiding principle to a better internet. In Proceedings of the 2008 ACM CoNEXT

Conference, Madrid, Spain, 9–12 December 2008; pp. 1–6.
31. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. Taintdroid: An information-

flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 2014, 32, 1–29.
[CrossRef]

32. Php Internals Book. PHP Internals Book HASHTABLE API. Available online: https://www.phpinternalsbook.com/php5
/hashtables/hashtable_api.html (accessed on 12 January 2021).

33. PHP. PHP Predefined Variables. Available online: https://www.php.net/manual/en/language.variables.superglobals.php
(accessed on 12 January 2021).

34. Shellpub. Shellpub. Available online: https://www.shellpub.com/ (accessed on 14 February 2021).
35. sangfor. WebShellkiller. Available online: http://edr.sangfor.com.cn/tool/WebShellKillerTool.zip (accessed on 14 February

2019).
36. chaitin. Cloudwalker. Available online: https://github.com/chaitin/cloudwalker/releases/download/webshell-detector-1.0.0/

webshell-detector-1.0.0-linux-amd64 (accessed on 14 February 2020).
37. Cisco-Talos. clamav. Available online: https://github.com/Cisco-Talos/clamav/archive/refs/tags/clamav-0.103.3.tar.gz

(accessed on 13 July 2021).
38. Neo23x0. loki. Available online: https://github.com/Neo23x0/LoKi/releases/download/0.41.0/loki_0.41.0.zip (accessed on 12

July 2021).
39. CBL. findbot.pl. Available online: https://www.abuseat.org/findbot.pl (accessed on 12 July 2021).
40. PHP Variable Functions. PHP. Available online: https://www.php.net/manual/en/functions.variable-functions.php (accessed

on 12 January 2021).
41. Robertson, W.; Vigna, G.; Kruegel, C.; Kemmerer, R.A. Using Generalization and Characterization Techniques in the Anomaly-

Based Detection of Web Attacks. In Proceedings of the NDSS Symposium 2006, San Diego, CA, USA, 2 February 2006.

http://dx.doi.org/10.1155/2019/3093809
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1155/2021/5533963
http://www.d99net.net/
http://dx.doi.org/10.3390/fi12010012
http://dx.doi.org/10.1016/j.cose.2019.101595
https://www.php.net/
https://www.zend.com/
https://www.npopov.com/2017/04/14/PHP-7-Virtual-machine.html
https://www.zend.com/blog/php-development-using-php-extensions
https://derickrethans.nl/projects.html#vld
https://www.php.net/manual/en/funcref.php
http://dx.doi.org/10.1145/2619091
https://www.phpinternalsbook.com/php5/hashtables/hashtable_api.html
https://www.phpinternalsbook.com/php5/hashtables/hashtable_api.html
https://www.php.net/manual/en/language.variables.superglobals.php
https://www.shellpub.com/
http://edr.sangfor.com.cn/tool/WebShellKillerTool.zip
https://github.com/chaitin/cloudwalker/releases/download/webshell-detector-1.0.0/webshell-detector-1.0.0-linux-amd64
https://github.com/chaitin/cloudwalker/releases/download/webshell-detector-1.0.0/webshell-detector-1.0.0-linux-amd64
https://github.com/Cisco-Talos/clamav/archive/refs/tags/clamav-0.103.3.tar.gz
https://github.com/Neo23x0/LoKi/releases/download/0.41.0/loki_0.41.0.zip
https://www.abuseat.org/findbot.pl
https://www.php.net/manual/en/functions.variable-functions.php


Appl. Sci. 2021, 11, 7763 21 of 21

42. Kruegel, C.; Vigna, G. Anomaly detection of web-based attacks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, Washington, DC, USA, 27–30 October 2003; pp. 251–261.

43. Almgren, M.; Debar, H.; Dacier, M. A Lightweight Tool for Detecting Web Server Attacks. In Proceedings of the NDSS Symposium
2000, San Diego, CA, USA, 3–4 February 2000.

44. Zhu, T.; Weng, Z.; Fu, L.; Ruan, L. A Web Shell Detection Method Based on Multiview Feature Fusion. Appl. Sci. 2020, 10, 6274.
[CrossRef]

45. Tu, T.D.; Cheng, G.; Guo, X.; Pan, W. Evil-hunter: A novel web shell detection systembased on scoring scheme. J. Southeast Univ.
(Engl. Ed.) 2014, 30, 278–284.

46. Kurniawan, A.; Abbas, B.S.; Trisetyarso, A.; Isa, S.M. Static Taint Analysis Traversal with Object Oriented Component for Web
File Injection Vulnerability Pattern Detection. Procedia Comput. Sci. 2018, 135, 596–605. [CrossRef]

47. Le, V.G.; Nguyen, H.T.; Pham, D.P.; Phung, V.O.; Nguyen, N.H. GuruWS: A hybrid platform for detecting malicious web shells
and web application vulnerabilities. In Transactions on Computational Collective Intelligence XXXII; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 184–208.

48. Le, V.G.; Nguyen, H.T.; Lu, D.N.; Nguyen, N.H. A solution for automatically malicious web shell and web application
vulnerability detection. In Proceedings of the International Conference on Computational Collective Intelligence, Halkidiki,
Greece, 28–30 September 2016; Springer: Cham, Switzerland, 2016; pp. 367–378.

49. Wang, Z.; Yang, J.; Dai, M.; Xu, R.; Liang, X. A method of detecting Webshell based on multi-layer perception. Acad. J. Comput.
Inf. Sci. 2019, 2, 81–91.

50. Cui, H.; Huang, D.; Fang, Y.; Liu, L.; Huang, C. Webshell detection based on random forest–gradient boosting decision tree
algorithm. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Guangzhou,
China, 18–21 June 2018; pp. 153–160.

51. Ai, Z.; Luktarhan, N.; Zhao, Y.; Tang, C. WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning. IEEE
Access 2020, 8, 75785–75797. [CrossRef]

http://dx.doi.org/10.3390/app10186274
http://dx.doi.org/10.1016/j.procs.2018.08.227
http://dx.doi.org/10.1109/ACCESS.2020.2989304

	Introduction
	Background
	Motivation
	Overview
	Methodology
	Data Structures of Auxiliary Lists
	Taint Propagation Rules
	Taint Sink Rules
	Example Illustration

	Evaluation
	Evaluation Setup
	Evaluation Benchmarks
	Effectiveness Test of the Interprocedural Analysis Module Based on Taint Analysis (RQ1)
	The Validity Test of the Webshell Detection Method Based on Taint Analysis against Unknown Webshells (RQ2)
	WTA and Well-Known Webshell Detection Tools for Performance Comparison (RQ3)
	Discussion

	Related Works
	Dynamic Methods
	Static Methods

	Conclusions
	References

