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Abstract: The flow field is difficult to evaluate, and underwater robotics can only partly adapt to the
submarine environment. However, fish can sense the complex underwater environment by their
lateral line system. In order to reveal the fish flow sensing mechanism, a robust nonlinear signal
estimation method based on the Volterra series model with the Kautz kernel function is provided,
which is named KKF-VSM. The flow field signal around a square target is used as the original signal.
The sinusoidal noise and the signal around a triangular obstacle are considered undesired signals,
and the predicting performance of KKF-VSM is analyzed after introducing them locally in the original
signals. Compared to the radial basis function neural network model (RBF-NNM), the advantages of
KKF-VSM are not only its robustness but also its higher sensitivity to weak signals and its predicting
accuracy. It is confirmed that even for strong nonlinear signals, such as pressure responses in the flow
field, KKF-VSM is more efficient than the commonly used RBF-NNM. It can provide a reference for
the application of the artificial lateral line system on underwater robotics, improving its adaptability
in complex environments based on flow field information.

Keywords: underwater robotic; machine learning; signal estimation method; flow sensing; Volterra
series model; underwater targets recognition

1. Introduction

The autonomous underwater vehicle (AUV) is an important tool for marine environ-
ment exploration that is widely used. Since the underwater environment is complex, the
adaptability of AUV needs to be improved [1,2]. The main aim of the current study on
AUV environmental adaptability is to improve its control [3–7]. In practical applications,
it has been found that the poor environmental adaptability of AUV is due to its inability
to sense the surrounding environment [8–10]. At present, AUVs sense the surrounding
environment on the basis of a visual and an acoustic system. However, the sensing range
of the underwater visual system is limited because visual signals decay rapidly in the
water and are easily affected by the water quality. In the context of underwater target
detection, the acoustic signal also has many issues, such as high cost and high-power
consumption. In complex environments, the acoustic signal is affected and cannot be
properly applied [11–13]. In addition, the visual and acoustic signals detect targets through
reflection and are, thus, indirect signals. They are unable to capture information regarding
the flow field, such as the eddy and ocean currents.

In a study of marine organisms, bionics researchers found that fish have a sensing
organ that they called the lateral line system (LLS). The LLS can help fish acquire ex-
traordinary environmental adaptability [14–17]. The LLS contains two kinds of sensory
neuromasts: the superficial neuromast and the canal neuromast. The superficial neuromast
can sense the magnitude and direction of flow velocity, and the canal neuromast is usually
used to sense the acceleration of the flow field, such as fluctuations [18–22]. Fish can make
adjustments to the surrounding environment based on the information from the LLS. This
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method can sense the physical field directly, and the sensing signal is a direct signal. This
method has the advantage of being more accurate and comprehensive. However, in the
natural environment, the flow field is made complex by numerous uncertain factors, which
hinder the success of engineering applications [23–25].

Machine learning methods can be used to overcome the problem of underwater target
recognition based on flow field signals. Three kinds of statistical methods are used for
targets recognition, which are as follows:

1. Novelty recognition: one normal, known state signal is set first. Then, the test signal
is compared with the normal signal. Their difference can be used to evaluate an
environmental change. In this method, a statistical threshold value is set and used to
eliminate the interference [26];

2. Classification recognition: All states of the system are obtained first, and then they
are divided into several known types. The test signal characteristics are identified
and are used to evaluate an environment change [27];

3. Regression algorithms: The confidence limits of the variables are set to monitor some
dynamic processes. The mathematical model of the system evolution can be obtained
by a linear or nonlinear algorithm [28–30].

Novelty recognition and classification recognition are suitable for a steady system,
and the states are known. Therefore, in the flow field system, the method based on
regression algorithms is the main one and is used to build a mathematical model. Various
methods can be used with regression algorithms, such as nonlinear principal component
analysis [31], extreme value statistics [32], peaks over threshold [33], machine learning
algorithms [34], neural networks [35], Bayesian approaches [36], Mahalanobis distance [37],
and others. In all these applications, the nonlinear features of flow field changes can be
obtained. However, in the natural environment, there are often multiple influencing factors
superimposed on each other, causing the system to be highly nonlinear. Then some cracks,
delamination, or chaotic phenomena appear [38].

In nonlinear systems, time and frequency domains are commonly used to describe
nonlinear behaviors [39–41]. The VSM and the radial basis function neural network model
(RBF-NNM) are the two mainly used methods. The RBF-NNM is a three-layer neural
network model. With the help of a basis function in the hidden layer, the output layer
can produce a local response. As a result, it has a good local approximation capability.
Furthermore, in each study cycle, only a small number of weights has to be adjusted;
therefore, it has the ability of fast learning. It is mostly used for the prediction of underwater
acoustic signals and the tracking control for robots. For example, Zhou et al. used the
RBF-NNM to predict radiated noise data of a ship, and the prediction error was compared
with that of the BP neural network model. The results showed that the RBF-NNM has
higher predicting efficiency than the BP network model [42]. Yu et al. used the RBF-NNM
to provide a tracking control strategy for solving the uncertainties of robotic dynamics
and improving system robustness. By choosing proper parameters, the tracking error can
converge to a small neighborhood of zero [43]. The VSM is a generalization of the linear
convolution concept, allowing the separation of the system response in linear and nonlinear
components. Therefore, this methodology can describe the whole dynamic behavior. The
few available research reports on nonlinear analysis methods of flow field signals mainly
focused on the nonlinear behavior of waves. For example, Tiao provided a method that
combines the strip method with the third-order VSM to create a practical tool to simulate
the statistics of nonlinear pressure responses in irregular waves [44]. Yetkin and Kim et al.
proposed an integrated methodology using a nonlinear autoregressive with exogenous
input (NARX) technique and VSM to predict the top tension of a mooring line of the box-
type floating production storage and offloading. They extracted the frequency response
function of the system by applying the harmonic probing method to the dynamic response
of slender marine structures using the NARX-based truncated Volterra kernel [45,46].

However, these models have many limitations, and it is difficult to obtain a general
model that describes all the structures of interest. No study has been carried out so far
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on the nonlinear characteristics of the flow field. Therefore, there is no effective method
of signal processing for flow sensing. In this paper, the VSM is improved by optimizing
its kernel function, and a new robust KKF-VSM is provided. Then, the performance of
KKF-VSM is studied systematically. Moreover, its accuracy, robustness, and sensitivity are
compared with those of RBF-NNM, one of the methods commonly used. The final goal is
to obtain a more suitable pretreatment method for flow sensing.

The paper is organized as follows. In Section 2, the method for obtaining the signal and
the phase space reconstruction method is described. First, computational fluid mechanics
(CFD) and particle imaging velocimetry (PIV) are used to study the flow field around
different targets. The pressure signal series in the flow field is processed by the C-C
method, and a chaotic signal time series is obtained. In Section 3, the building of the new
KKF-VSM is described. The impact of Volterra kernels coefficients on the results is studied
in this section. Furthermore, one common RBF-NNM is built and compared with the new
model. Section 4 shows the results of the two methods obtained by processing regular
and irregular undesired signals. Finally, the main conclusions and some future research
directions are presented in Section 5.

2. Flow Field Signal Acquisition
2.1. Numerical Scheme

In this paper, the flow field signal around a square target was chosen as the original
signal, as shown in Figure 1. The side length of the square target was named H. The
computational domain was located in a Cartesian coordinate system, within a range of
30H × 10H. The virtual lateral line with the pressure sensors was under the center of
the targets at a distance of D. CFD was used to obtain the signal series, according to a
numerical method described in our previous work [47].
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Figure 1. Schematic diagram of the computational domain for a square target.

In the numerical scheme, the two-step Taylor characteristic-based Galerkin (TCBG)
method was used to solve the flow governing equation, which was presented by Bao et al. [48].
The progress of the TCBG scheme for the momentum equations is shown in flowing
equations. The accuracy of the numerical scheme was validated previously [49]. The
Strouhal numbers St of the square target with different postures θ was computed, as shown
in Figure 2. The results were in accord with previous reports, and the computational
algorithm was adequate to solve the flow field around the underwater target.
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where ui is the i-component velocity, ρ is the water density, p is the pressure, τij is the
deviatoric stresses, Re is the Reynolds number, n, n + 1/2, and n + 1 denote the time points
of tn, tn+1/2 and tn+1, respectively.
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2.2. Numerical Validation by a PIV Experiment

A two-dimension PIV experiment was carried out to validate the numerical scheme.
PIV is a method of visualizing the flow field based on an optical principle. Tracer particles
with reflective properties are placed in the flow field. A laser emits a light source, and a
high-speed camera is used to capture the motion path of the tracer particles along with the
fluid. The displacement of the particles is calculated by the Fourier algorithm based on two
successive frames of images, and the flow field structure is visualized. The experimental set
is shown in Figure 3; the length of the water tank was 5.0 m, and its width and height were
1.0 m and 0.8 m, respectively. The water tank was divided into three parts: the accelerating
part, the experiment part, and the decelerating part. The length of the experiment part was
3.0 m.

A sliding rail was used to make the target body move at a uniform speed, and the
maximum speed was set at 1 m/s. As shown in Figure 4, the diameter of the target was
0.1 m, and its length was 0.2 m. The support point was located in the middle, and the
distance between the center of the target and the bottom was 0.4 m. To ensure the original
flow field was at rest, the experiments were carried out one by one, and the time interval
between two adjacent experiments was 20 min.
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The two-dimension PIV system was provided by TSI. The model of the layer was
YAG200-NWL, with maximum output energy of 200 mJ, and its pulse width was 3–5 ns.
The 4MX-CCD camera was used to capture the image of the flow field at 2048× 2048 pixels.
The minimum span frame time of the CCD camera was 200 ns, and its frame rate was
15 frames per second. In this experiment, images were collected in double-frame and
double-exposure mode and processed by the mutual algorithm of the system. Some key
parameters used in the experiment are shown in Table 1.

Table 1. Some key parameters used in the PIV experiment.

Sampling
Frequency/Hz Sample Number Laser Energy/mJ Velocity Vector

Number

100 300 100 256

The virtual LLS was set at a distance of 200 mm from the bottom. When the target
moved to the middle of the experiment part, the axial velocity component vx,// of the
virtual LLS was captured. The comparison between the experimental and the numerical
results is shown in Figure 5. From it, we can see that the results of calculation and testing
were in good agreement.
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2.3. Phase Space Reconstruction

A virtual lateral line was set in the flow field, with 21 monitoring points. A weighting
fusion algorithm was used to couple the 21-series signal, as described in our previous
work [47] and shown in Equation (4).

Ki = Si + Ai

Si =
ε sin αi
N
∑

i=0
sin αi

Ai =
(1−ε)Am(si)

N
∑

i=0
Am(si)

cp(t) =
N
∑

i=0
KiSi(t)

(4)

where ε is the weight of position coefficient Si. Am(si) is the amplitude of signal collected
by sensor i. cp(t) is the coupling signal series at the time of t.

In phase space reconstruction of the signal time series, the selection of delay time and
embedding dimension was carried out by the C-C method, as shown in Equation (5). The
first local minimum value times of ∆S(m, t) was considered the optimal delay time τ. The
minimum value of Scor(t) can be seen as the delay time window Γ, which has a connection
with the embedding dimension m, as shown in Equation (5).

S(t) = 1
16

5
∑

m=2

4
∑

j=1
S(m, rj, t);

∆S(t) = 1
4

5
∑

m=2
∆S(m, t);

Scor(t) = ∆S(t) +
∣∣∆S(t)

∣∣;
S(m, rj, t) = 1

t

t
∑

s=1
[Cs(m, rj, t)− Cm

s (1, rj, t)];

∆S(m, t) = max
{

S(m, rj, t)
}
−min

{
S(m, rj, t)

}
;

Γ = (m− 1) · τ

(5)
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The final signal time series at high phase space Xn(ti) and the correlation integral
C(m, N, r, t) are shown in Equations (6) and (7). The pressure signal time series around a
square target was defined as the original signal, as shown in Figure 6.

Xn(ti) = [xn(ti), xn(ti + τ), xn(ti + 2τ), . . . , xn(ti + (m− 1)τ], i = 1, 2, . . . , N − (m− 1)τ (6)


C(m, N, r, t) = 2

M(M−1) ∑
1≤i≤j≤M

θ(r− dij), r > 0

dij =
∣∣Xn(ti)− Xn,(tj)

∣∣ (7)

where N is the length of the signal series, r is the radius of the time series, σ is the time-series
standard deviation, θ(x) is shown in Equation (8).

θ(x) =
{

0, x < 0
1, x > 0

(8)
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3. Description of the Pretreatment Method
3.1. Description of the KKF-VSM

The signal time series obtained in Section 2 was processed by phase space reconstruc-
tion, as shown in Equation (6). If the flow field can be seen as a nonlinear system with
a single input parameter n ∈ Z+ → x(n) , where n is the sample time, and x(n) is the
collected signal time series, the corresponding predicted signal n ∈ Z+ → y(n) is single
and can be expressed by the VSM, as shown in Equation (9). The output of the system can
be divided into linear and nonlinear parts [50], as shown in Equation (10).

If the length of the expanded series is too big, this method is not easy to converge. It
is necessary to minimize the length to ensure prediction accuracy. Therefore, the Kautz
function was used to expand the Volterra series, as shown in Equation (11). It can predict
the response of a nonlinear system and monitor the structure of interest [51,52].

y(n) =
∞

∑
p=1

N1−1

∑
m1

. . .
Np−1

∑
mp=0

hp(m1, . . . , mp)
p

∏
i=1

u(n−mi) (9)

y(n) = y1(n)︸ ︷︷ ︸
linear

+ y2(n) + y3(n) + . . . + yp(n)︸ ︷︷ ︸
nonlinear

(10)

hp(m1, . . . , mp) ≈
J1

∑
i1=1

. . .
Jp

∑
ip=1
<p(i1, . . . , ip)

p

∏
j=1

Ψp,ij(mj) (11)
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where hp(m1, . . . , mp) is the p-order Volterra kernel, J1,......, Jp is the number of Kautz func-
tions used in each orthonormal projections of the Volterra kernels, <p(i1, . . . , ip) is the
p-order Volterra kernel expanded in the orthonormal basis, Ψp,ij(mj)

is the i-th Kautz filter,
which is shown in Equation (12).

Ψp,2j(z) = Ψp,2j−1(z)
z−bp√
1−b2

p

Ψp,2j−1(z) =
z
√
(1−b2

p)(1−c2
p)

z2+bp(cp−1)z−cp
[
−cpz2+bp(cp−1)z+1

z2+bp(cp−1)z−cp
]
j−1

bp =
Γp+Γ̃p

1+Γp Γ̃p

cp = −ΓpΓ̃p

Γp = exp( Sp
Fs
)

Sp = −ξpωp ± jωp

√
1− ξ2

p

(12)

where ωp is the natural frequency of the system, ξp is the damping ratio of the flow field,
Fs is the sampling frequency, Sp is the continuous poles of the input signal series, Γ and Γ̃
are the Kautz poles and its complex conjugate in the discrete domain.

The steps for predicting the flow field signal based on the KKF-VSM were as follows:

1. Establish a reference system: the known signal series was used to train the KKF-VSM,
as the reference system;

2. Input the test series: the test signal series xn = [x(1), x(2), . . . , x(N)] was normalized
by Equation (13), and Equation (14) was used to establish the input signal matrix;

x∗(n) =
x(n)− 1

N

N
∑

i=1
x(i)

max(x(n))−min(x(n))
(13)

X(n) =


x∗(1) x∗(2) · · · x∗(N − (m− 1))
x∗(2) x∗(3) · · · x∗(N − (m− 2))

...
...

...
x∗(m) x∗(m + 1) · · · x∗(N)

 (14)

where x∗(n) is the processed data, x(n) is the original data, min(x(n)) and max(x(n))
respects the minimum and maximum values of the original signal.

3. Phase space reconstruction: the input signal matrix was reconstructed in higher phase
space, and the signal matrix U(n) to the input into the KKF-VSM was obtained;

4. Sample prediction test: the KKF-VSM was used to obtain the output of the sam-
ple series, consisting of the orthonormal kernels and the input signal, as shown in
Equation (15). The prediction error was expressed as the mean-square error (MSE), as
shown in Equation (16).

y(n) ≈
∞

∑
p=1

J1

∑
i1=1

. . .
Jp

∑
ip=1
<p(i1, . . . , ip)

p

∏
j=1

Jmax

∑
mi=0

Ψp,ij(mj)u(n−mi) (15)

MSE =

N
∑

n=1
[x(n)− y(n)]2

N
(16)

The maximum number of samples was set as to. During the training process, KKF-
VSM was trained with 2200 samples, and the other 800 samples were used in the test. When
the delay time τ was 27 and the embedding dimension was 7, one-order, two-order, and



Appl. Sci. 2021, 11, 7759 9 of 17

three-order KKF-VSM was used to predict the samples. The predicting steps corresponded
to the sample time n, and the results are shown in Figures 7–9.
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The MSE of the three models is shown in Figure 7. From it, it appears that the
MSE obviously changed from one-order KKF-VSM to two-order KKF-VSM. The change
was slower when comparing two-order to three-order KKF-VSM. This implies that the
contribution of the two-order component was the largest in this test sample. The third-
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order component could correct some specific values to fit the trend. As a result, three-order
KKF-VSM was chosen in this paper to ensure predicting accuracy.

3.2. Description of the RBF-NNM

The RBF-NNM was a three-layer forward network, as shown in Figure 10. Through
the radial basis function in each hidden layer, the input signal X(n) can find the optimal
fitting plane in multidimensional space. Therefore, the RBF-NNM provides a good fit in
the prediction of a chaotic signal time series.
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The Gaussian kernel function is normally used in the RBF-NNM, as shown in Equation (17);
the output y(n) is shown in Equation (18).

Gi(X) = exp

[
−‖X− Ci‖2

2σ2
i

]
, i = 1, 2, · · · , m (17)

y(n) =
m

∑
i=1

ωiGi(X) (18)

where X is the m-dimension input matrix, Ci is the center of the i-th basis function, σi is the
width of the i-th hidden node, m is the number of the perceivable unit, ωi is the connection
weight from the i-th hidden layer to the output.

The above parameters can be obtained by using the K-means clustering algorithm,
as follows:

1. Determine the cluster center: first, some clustering centers were determined randomly
and defined as ci(i = 1, 2, · · · , h). The training samples xj were allocated to each
cluster set vj(j = 1, 2, · · · , P), based on the principle of minimizing the Euclidean
distance between the training samples and the clustering center. The samples average
in each set was iterated, and the result was defined as the new cluster center ci. Repeat
the calculation cycle until the residual was less than the setting value and use the final
ci as the cluster center of the basis function;

2. Determine the width of the hidden node: the maximum ci,max was chosen from the
cluster center set, and the width of the hidden node can be solved by Equation (19);

σi =
ci,max√

2h
, (i = 1, 2, · · · , h) (19)

3. Determine the connection weights: the least-square method was used to calculate the
weight, as shown in Equation (20).
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ωi = exp(
h

c2
i,max
‖xj − ci‖2), (i = 1, 2, · · · , h; j = 1, 2, · · · , P) (20)

The training epoch Nq and the testing epoch Np in Section 2.1 were used to build the
RBF-NNM. The diffusion coefficient s of RBF was analyzed, and the optimum value was
chosen. Commonly, the fitting radial basis function is smoother when s is larger, but if it
is larger than a critical value, some numerical problem will appear. As seen in Figure 11,
s was optimized in the range from 50 to 500, and when it was 400, the MSE was at its
minimum. Therefore, in the following analysis, the diffusion coefficient was set to 400.
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The RBF-NNM was used to predict the trend of the signal sample, as shown in
Figure 12. From it, it appeared that the RBF-NNM can also predict the changing trend of
the flow field signal.
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4. Comparative Analysis Results
4.1. Analysis of Regular Undesired Signals

In the natural underwater environment, there are interference factors, such as ocean
currents, shock waves, and surrounding objects. An approximate mathematical model
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describing these factors was built, and the KKF-VSM and RBF-NNM were compared when
processing the signal time series.

First, the interference of a regular wave on the flow field signal was analyzed. From
the first to 400th value of the original test samples, one regular undesired signal series S(n)
with a sine wave was put in, as shown in Equation (21). The three-order KKF-VSM and
RBF-NNM were used to filter the undesired signal and predict the original test samples.
The variation curve of MSE with the amplitude of S(n) is shown in Figure 13.

S(n) = A sin(
nπ

4
), n = 1, 2, · · · , 500 (21)

where S(n) is the interfering signal series with the sine wave, and A is the amplitude.
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As seen in Figure 13, when the strength of undesired signals was the same, the MSE
of KKF-VSM was smaller than that of RBF-NNM. In addition, the gradient of the KKF-
VSM curve was also smaller than that of the RBF-NNM one. These results imply that the
robustness of RBF-NNM was poor when the undesired signals were strong. In comparison,
the KKF-VSM showed a more robust performance because KKF-VSM contained both the
linear and the nonlinear components at the same time.

When the order of KKF-VSM changed, the contribution of each part to the method’s
robustness was analyzed, as shown in Table 2. From it, we can see that MSE decreased when
KKF-VSM changed from one order to two orders. That implies the second component of
KKF-VSM could express the most nonlinear characteristic of the test sample. Furthermore,
when the KKF-VSM changed from two orders to three orders, the gradient of MSE obviously
decreased, implying that the three-order component provided a clear contribution to
the robustness.

Table 2. Influence of Volterra orders on the robustness.

Amplitude/A 0.1 0.2 0.3 0.4 0.5

MSE1−order × 10−3 1.94 2.43 3.17 4.29 5.87
MSE2−orders × 10−4 1.46 1.77 2.27 2.97 3.84
MSE3−orders × 10−4 0.97 1.09 1.28 1.55 1.83

The sensitivity of KKF-VSM and RBF-NNM to regular undesired signals was com-
pared. The results are shown in Figure 14. From it, it appears that when the amplitude of
undesired signals was small, the ∆MSE in KKF-VSM changed more obviously than that
in RBF-NNM, but the result was the opposite when the amplitude became larger. This
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phenomenon implies that KKF-VSM can capture weak interference signals more easily
than RBF-NNM; in other words, KKF-VSM has a greater ability to filter regular undesired
signals than RBF-NNM.
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4.2. Analysis of Irregular Undesired Signals

If there is an obstacle near the target in the flow field, it will have an impact on the
original signal, and the undesired signal is usually chaotic. In this paper, the flow field
around a triangle obstacle was used as an irregular undesired signal, as shown in Figure 15.
Noise was added in correspondence of the regular undesired signal by linear superposition
into the original test sample, as shown in Equation (22).

χ(n) =


x(n), 1 ≤ n ≤ 2200
x(n) + T(n), 2201 ≤ n ≤ 2400
x(n), 2401 ≤ n ≤ 3000

(22)

where x(n) is the original signal, T(n) is the undesired signal, χ(n) is the final testing
original signal series.
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The KKF-VSM and RBF-NNM were used to filter the irregular undesired signal and
predict the original test sample. The results are shown in Figures 16 and 17. The results
indicated that the irregular undesired signal could be filtered, and the change trend of the
original samples could be predicted very well by both models. Furthermore, the MSE of
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RBF-NNM was 1.625× 10−4, and that of three-order KKF-VSM was 1.374× 10−4. That
indicated that the robustness of the three-order KKF-VSM is higher than that of RBF-NNM.
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5. Conclusions

In order to estimate the flow field signal change based on the flow sensing mechanism
of a lateral line system, so to improve the environment adaptability of AUVs, a novel
KKF-VSM was provided, using the Kautz function as the kernel function. This is a novelty
compared to previous related works, which were mainly based on RBF-NNM, and VSM
with the frequency response function as the kernel function. The flow field around a square
target was studied, and its pressure signal time series was obtained by CFD and PIV. The
predicting accuracy, sensitivity, and robustness of KKF-VSM were analyzed in this work.
In addition, an RBF-NNM with a Gaussian kernel function was compared with KKF-VSM.
Some interesting conclusions were made. The pressure signal of the flow field around the
square target was chaotic, and KKF-VSM and RBF-NNM could predict its change trend
very well. However, in comparison with RBF-NNM, KKF-VSM showed higher accuracy in
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filtering regular and irregular noise. Furthermore, KKF-VSM appeared to capture weak
undesired signals more easily, and its filter ability was more robust than that of RBF-NNM.
In future work, the authors intend to apply this procedure considering an experimental
setup in a natural underwater environment.
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