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Abstract: Tracking a micro aerial vehicle (MAV) is challenging because of its small size and swift
motion. A new model was developed by combining compact and adaptive search region (SR). The
model can accurately and robustly track MAVs with a fast computation speed. A compact SR, which
is slightly larger than a target MAV, is less likely to include a distracting background than a large
SR; thus, it can accurately track the MAV. Moreover, the compact SR reduces the computation time
because tracking can be conducted with a relatively shallow network. An optimal SR to MAV size
ratio was obtained in this study. However, this optimal compact SR causes frequent tracking failures
in the presence of the dynamic MAV motion. An adaptive SR is proposed to address this problem; it
adaptively changes the location and size of the SR based on the size, location, and velocity of the
MAV in the SR. The compact SR without adaptive strategy tracks the MAV with an accuracy of 0.613
and a robustness of 0.086, whereas the compact and adaptive SR has an accuracy of 0.811 and a
robustness of 1.0. Moreover, online tracking is accomplished within approximately 400 frames per
second, which is significantly faster than the real-time speed.

Keywords: visual object tracker; fully convolutional neural network; adaptive search region; trunca-
tion prevention; path prediction

1. Introduction

Deep convolutional neural networks (CNNs) have significantly improved the accuracy
of object recognition from images [1]. However, deep networks require a relatively long
computation time, which can hinder real-time detection and tracking with the limited
computational resources of embedded systems, such as field robots, autonomous drone
controls, and wearable robots. Therefore, the computational costs of object recognition
algorithms need to be reduced. Object recognition algorithms can be classified into object
trackers and object detectors.

An object detector is used to estimate the location, size, and class of objects from a
single image. It requires both regression and classification. Regression is used to search the
location and size of objects in images, and classification determines the type of detected
object is. The most recent CNN-based models utilize bounding boxes to determine the
location and size of an object [2,3]. The deformable part model [4] involves a sliding
window approach for object detection. However, this requires a long computational
time for sliding the window throughout the entire image. Furthermore, several different
windows are needed to accurately determine the sizes of the bounding boxes for matching
individual objects. Region-based CNN (R-CNN) networks have also been proposed, which
use region proposals to acquire regions of interest for target objects [5–10]. An R-CNN
is a two-stage detector; the first stage detects regions of interest in images, whereas the
second stage determines the accurate location, size, and object class. This approach greatly
improved the mean average precision of detections, but still required a long computational
time. Subsequently, faster R-CNN [8] was introduced, which reduced the computation time
to approximately 5 FPS, which is still not sufficient for real-time detection. Single-stage
detectors (e.g., YOLO(you only look onces) [11–13] and SSD(single shot detection) [14])
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have been developed to address this issue. These detectors decrease the computational
time substantially and can be used for real-time detection. However, these models are
less accurate than a dual-stage detector, particularly when the size of the target objects
in the image is extremely large or extremely small. Most of the recent models deployed
pre-trained backbone networks such as VGG-net [15], GoogLeNet [16], and ResNet [3] for
feature extraction. In addition, an optimized anchor box was used to achieve robustness
against different target object shapes [17]. A feature pyramid network was also introduced
to accurately detect objects of different scales and sizes [18]. However, if these features are
added to the algorithm, the computational cost of the detectors increases. Furthermore, the
performance of most detectors is limited with respect to tracking a moving object because
they do not use temporal information.

Visual object tracking refers to the task of predicting the location of a target object in
subsequent images using current and past information [19]. Tracking algorithms can be
classified into correlation filter models, CNN trackers with partial online learning, and
CNN trackers without online learning [20,21]. Correlation filter models extract features
from search windows. Subsequently, filters are obtained such that the convolution of the
filters and the target region produces a Gaussian-shaped map centered on the midpoint of
the target. The filters are continuously updated online to adapt to changes in the rotation,
scale, and color across several frames. Various numerical filters were created based on
variance minimization [22], average minimization [23], squared error minimization [24,25],
and kernelized correlation filters [24,25]. CNN filters were applied in a previous study [26]
because CNNs exhibit high performance in terms of feature extraction. The online learning
speed of this model was improved by applying a factorized convolutional operator, a
compact generative model, and a sparse online updating scheme [27]. CNN trackers
with partial online learning consist of a CNN feature extractor and a decision network.
The decision network determines the location and size of the target. For the decision
network, a fully connected layer was used to score candidate samples [28]. A CNN was
also used to generate a Gaussian-shaped map for this decision network [29]. While a CNN
feature extractor is trained offline, the parameters of the decision network are determined
by online training. Finally, CNN trackers without online learning show a fast-tracking
performance because all training procedures are conducted offline. For example, a fully
convolutional Siamese network was adopted for similarity learning [30]. In the offline
learning phase, the Siamese network is trained to discriminate between positive and
negative samples. Subsequently, in the online tracking phase, the model generates a filter
using the target in the first frame. Then, it searches for similar features in subsequent
frames via a pre-trained Siamese network. In contrast to previous models, the filter is
not updated for subsequent frames. Thus, the computation is considerably faster than
that of previous models. However, this approach is vulnerable to variations in visual
aspects, deformations, and rotations of the target object owing to the absence of online
learning. A subnetwork posterior to the Siamese network has been developed to improve
the accuracy [31]. Specifically, the two subnetworks independently perform classification
and regression tasks. A classifier and a regressor without an anchor box were added ahead
of the Siamese network [32]. Because their algorithm did not use the anchor box, it is
robust with regards to the size and aspect ratio of target objects and outperforms other
Siamese-based trackers.

In this study, a new object tracker was developed considering the advantages and
limitations of previous models. The proposed model is a fully offline trained model for
fast computation in online tracking, and an anchor box is excluded from the algorithm for
robust tracking. A regression approach similar to R-CNN was adopted because it shows
highly accurate estimations for location and size. However, R-CNN-based detectors are
computationally slow because thousands of regions are investigated. Thus, only one search
region (SR) is considered in this model; the target object is tracked within a single SR with
a fully convolutional network (FCNN). An optimal SR for regression is selected because
the tracking performance relies heavily on the SR. The scale and location of the SR are
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determined based on the size and position of the target object and the motion of the object.
The proposed algorithm is verified by a tracking test using a micro aerial vehicle (MAV).

The remainder of this paper is organized as follows. Section 2 describes the procedure
for determining an adaptive SR, the structure of the FCNN for tracking, and the scale
and coordinate conversions needed for the SR-based tracking approach. The data used
in this study are introduced in Section 3. Section 4 presents the tracking results in terms
of accuracy, robustness, and computational speed of the proposed algorithm. Finally,
Section 5 summarizes the study and concludes the paper.

2. Model

The proposed tracking algorithm comprises four steps, as shown in Figure 1. First,
the location and size of the SR are obtained from the tracking results of previous frames.
Second, the size of the SR is adjusted to a constant size (100 × 100). Next, the location and
size of the object in the SR are estimated using FCNN. Finally, the tracking results of the SR
are transformed, and the full image is obtained.
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Figure 1. Procedure of tracking with search region (SR).

This SR-based tracker can accurately track objects with fast computation. First, the
variations in the size and location of the target objects (in images) can increase the tracking
error. The error is large if the object appears very small in the images. If the aspect ratio
is extremely large or extremely small, accurate tracking becomes challenging. Second,
tracking with full images requires a long computation time if the size of the image is large.
Thus, an SR-based tracking model was developed and used instead of considering the
full image.

The compact SR (CSR) tracker determines the current SR using the last tracking result
only. Specifically, the center of the current SR was determined as the center of the object
in the previous frame. The width and height of the current SR change depending on the
object size in the previous frame. If the size of a target object (in images) remains constant
over time, tracking can be very accurate and robust. In this study, the ratio of the SR width
to the object width remained constant across several frames. However, this approach does
not guarantee accurate and robust tracking. Thus, various strategies and methods have
been developed to improve the quality of the SR.

2.1. Adaptive SR

To improve the tracking accuracy and robustness, some functions were included
in the CSR model; these were shrink constraints (SC), size optimization (SO), and path
prediction (PP).
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Shrink constraints: If a portion of a target object is truncated in the SR, this truncation
can cause tracking failure. Then, the estimated size becomes smaller than the true size,
as depicted in Figure 2. In the CSR model, the SR size was controlled to be linearly
proportional to the object size. Thus, if the estimation result is smaller than the true size
owing to truncation, as shown in Figure 2b, the size of the SR decreases in the following
frame, as shown in Figure 2c. The SR continues to shrink in subsequent frames, which
results in tracking failure, as shown in Figure 2d.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15 
 

2.1. Adaptive SR 
To improve the tracking accuracy and robustness, some functions were included in 

the CSR model; these were shrink constraints (SC), size optimization (SO), and path pre-
diction (PP). 

Shrink constraints: If a portion of a target object is truncated in the SR, this truncation 
can cause tracking failure. Then, the estimated size becomes smaller than the true size, as 
depicted in Figure 2. In the CSR model, the SR size was controlled to be linearly propor-
tional to the object size. Thus, if the estimation result is smaller than the true size owing 
to truncation, as shown in Figure 2b, the size of the SR decreases in the following frame, 
as shown in Figure 2c. The SR continues to shrink in subsequent frames, which results in 
tracking failure, as shown in Figure 2d. 

 
Figure 2. SR shrinkage caused by truncation. The blue box represents the SR, and the yellow box 
represents the tracking result calculated with a fully convolutional neural network (FCNN). (a–d) 
show sequential frames. 

The SC of the SR was established to address this problem. First, the size of the SR is 
constrained to not be smaller than a threshold value. This constraint prevents the SR from 
shrinking beyond a certain size even if the object is truncated in the SR. Second, the size 
of the SR is constrained to not shrink if one or more edges of a bounding box are located 
on the edge of the SR in the previous frame. In the case of a moving object, when the image 
is cropped in the position of the previous frame, the object deviates from the center and is 
placed on the side. Finally, when the object is located near the edge of the SR, the shrink-
age of the SR is inhibited. These schemes contribute to the robustness of the tracking al-
gorithm. 

Size optimization: As previously mentioned, SR size is determined such that the ratio 
of SR width to object width remains constant across all frames. The accuracy of the FCNN 
and the failure rate depend on this ratio. Thus, SO was conducted considering the perfor-
mance of the tracking algorithm. 

Path prediction: For the tracking of mobile objects, the location of the SR can be more 
accurately estimated when the dynamics of the objects are considered. Whereas CSR only 
considers the previous position of the object for determining the location of the current 
SR, the location of a trajectory predictive SR is determined based on the previous velocity 
of the object as well as its previous position. The PP model can determine the current 
location 𝒓  of the SR as 𝒓 = 𝒓 ∆ + 𝑐(𝒓 ∆ − 𝒓 ∆ ), (1)

where ∆𝑡 is the time interval between adjacent frames. Position 𝒓 is a two-dimensional 
vector in the images, and 𝑐 is a correction coefficient that can be obtained by minimizing 
the tracking error. Because the position in the images is affected by the motions of the 
object as well as by the movements of the camera and distortion in the images, a correction 
coefficient has been included in Equation (1). 

2.2. Fully Convolutional Neural Network 
The proposed algorithm detects the object in the SR image, scaled to a 100 × 100 res-

olution. The FCNN is responsible for predicting a bounding box in the SR; the bounding 

Figure 2. SR shrinkage caused by truncation. The blue box represents the SR, and the yellow
box represents the tracking result calculated with a fully convolutional neural network (FCNN).
(a–d) show sequential frames.

The SC of the SR was established to address this problem. First, the size of the SR is
constrained to not be smaller than a threshold value. This constraint prevents the SR from
shrinking beyond a certain size even if the object is truncated in the SR. Second, the size of
the SR is constrained to not shrink if one or more edges of a bounding box are located on
the edge of the SR in the previous frame. In the case of a moving object, when the image is
cropped in the position of the previous frame, the object deviates from the center and is
placed on the side. Finally, when the object is located near the edge of the SR, the shrinkage
of the SR is inhibited. These schemes contribute to the robustness of the tracking algorithm.

Size optimization: As previously mentioned, SR size is determined such that the
ratio of SR width to object width remains constant across all frames. The accuracy of the
FCNN and the failure rate depend on this ratio. Thus, SO was conducted considering the
performance of the tracking algorithm.

Path prediction: For the tracking of mobile objects, the location of the SR can be more
accurately estimated when the dynamics of the objects are considered. Whereas CSR only
considers the previous position of the object for determining the location of the current SR,
the location of a trajectory predictive SR is determined based on the previous velocity of
the object as well as its previous position. The PP model can determine the current location
rt of the SR as

rt = rt−∆t + c(rt−∆t − rt−2∆t), (1)

where ∆t is the time interval between adjacent frames. Position r is a two-dimensional
vector in the images, and c is a correction coefficient that can be obtained by minimizing
the tracking error. Because the position in the images is affected by the motions of the
object as well as by the movements of the camera and distortion in the images, a correction
coefficient has been included in Equation (1).

2.2. Fully Convolutional Neural Network

The proposed algorithm detects the object in the SR image, scaled to a 100 × 100 resolution.
The FCNN is responsible for predicting a bounding box in the SR; the bounding box can
be characterized by four variables, xr, yr, wr, hr, where xr and yr are the offsets from the
top left in the scaled SR and wr and hr represent the width and height of the object in the
scaled SR, respectively. FCNN is composed of 15 convolutional layers and five max pooling
layers, as listed in Table 1. It utilizes 3 × 3 convolutional filters based on VGG [15] and
Darknet [11–13]. The number of convolutional filters is increased over the layers. Zero
paddings were applied to convolutional layers to enhance the tracking performance when
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the object was close to the SR edge. All layer blocks (except the final layer) include batch
normalization and LeakyReLu.

Table 1. Structure of FCNN.

Type Number of CNN Filters Size/Stride Output Size

Convolutional layer 16 3 × 3/1 100 × 100

Convolutional layer 32 3 × 3/1 100 × 100

Convolutional layer 16 3 × 3/1 100 × 100

Convolutional layer 32 3 × 3/1 100 × 100

Max pooling layer - 2 × 2/2 50 × 50

Convolutional layer 16 3 × 3/1 50 × 50

Convolutional layer 8 3 × 3/1 50 × 50

Convolutional layer 16 3 × 3/1 50 × 50

Max pooling layer 2 × 2/2 25 × 25

Convolutional layer 32 3 × 3/1 25 × 25

Convolutional layer 64 3 × 3/1 25 × 25

Max pooling layer - 2 × 2/2 12 × 12

Convolutional layer 128 3 × 3/1 12 × 12

Convolutional layer 64 3 × 3/1 12 × 12

Max pooling layer - 2 × 2/2 6 × 6

Convolutional layer 128 3 × 3/1 6 × 6

Convolutional layer 256 3 × 3/1 6 × 6

Convolutional layer 128 3 × 3/1 6 × 6

Max pooling layer - 2 × 2/2 3 × 3

Convolutional layer 4 3 × 3/3 1 × 1

The images used for training FCNN were prepared by cropping the SR from the full
image because FCNN tracks the object in the SR. The cropped regions for training the
FCNN were randomly selected to induce robustness to variations in the size and location
of the object in the image. Specifically, the ratio of the cropped region scale to the object
size was randomly selected from a value between 1.2 and 1.7. The location of the cropped
region is determined such that a 90% or higher portion of the target is contained in the
cropped region. In addition, image rotation and color variation were also conducted to
facilitate data augmentation.

The resulting model was trained using the following loss function.

L = (x − x̂)2 + (y − ŷ)2 + (w − ŵ)2 +
(

h − ĥ
)2

, (2)

where x, y, w, and h represent the estimated location and size, and x̂, ŷ, ŵ, and ĥ are the true
location and size. The Adam optimizer was used for training. The model was trained for
1000 epochs with a learning rate of 10−4. The model was implemented using the PyTorch
1.8.0 framework with Compute Unified Device Architecture (CUDA) 11.1. GeForce RTX
3090 GPU and Xeon Silver 4215R 3.20 GHz CPU were used for training and testing.
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2.3. Scale Restoration and Coordinate Transform

Because FCNN conducts tracking in the SR, the tracking results from the SR have to
be transformed to coordinates in the full image, as follows:

xt = x0 + xr
d f
dr

,

yt = y0 + yr
d f
dr

,

wt = wr
d f
dr

,

ht = hr
d f
dr

,

(3)

where xr, yr, wr, and hr are the tracking results in SR, and xt, yt, wt, and ht are the tracking
results in the full image. Furthermore, x0 and y0 denote the coordinates of the left top of
the SR in the full image, respectively; d f is the size of the scaled SR in the full image, and dr
is the size prior to restoration (i.e., 100 pixels).

3. Dataset Description

In this study, a MAV (DJI Tello) was selected as the target object because of the
difficulty in tracking a small object that moves in various background scenes. Images (with
1280 × 720 resolution) of the flying MAV were recorded for training and testing. Figure 3a
shows examples of the original dataset, and the bounding boxes of the MAV are shown in
Figure 3b. The detection of the MAV in these images is challenging because of its small
size and indistinguishable color from the background.
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For accurate and robust tracking, the MAV was captured under various circumstances.
For example, the background is complex and similar to the MAV in some images. In other
images, the MAV is not fully visible because of backlight, or the MAV is blurred due to
its rapid movement. The data are composed of three groups. Dataset1 is composed of
3585 images for training FCNN; Dataset2 comprises two sequences (451 and 499 frames)
used for SO. This dataset is also used to obtain the coefficients for the PP model. Dataset3
comprises five sequences captured in various environments, whereby individual sequences
are composed of 301–360 frames. This dataset is used to validate the performance of the
tracking algorithm.
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4. Results

The tracking performance was evaluated in terms of accuracy, robustness, and the
expected average overlap curve (EAOC) [33]. To calculate these performance indices, the
starting points are selected every 50 frames. The algorithm then starts to track a target from
each starting point to the final frame or initial frame, as shown in Figure 4. For example,
S1 and S2 are closer to the initial frame than to the final frame. For these starting points,
tracking is conducted in the forward direction. S3 and S4 are closer to the final frame; thus,
backward tracking is performed. The group of frames from the starting point to the final
(or initial) frame is called a sub-sequence.
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The tracking accuracy for the kth starting point can be calculated as follows:

Ak =
1

NF
k

NF
k

∑
i=1

IOU(i), (4)

where NF
k is the number of frames before tracking failure occurs and IOU is the ratio of

the intersected area to the union area of the estimated bounding box and the ground truth
bounding box. The robustness of the kth starting point can be calculated as

Rk =
NF

k
Nk

, (5)

where Nk is the number of frames in a subsequence. Then, the total accuracy Atot and robust-
ness Rtot can be calculated by averaging Ak and Rk over the starting points and sequences.

The EAO curve represents both accuracy and robustness with extended sub-sequences.
If tracking fails in the middle of a sub-sequence, the corresponding extended sub-sequence
is constructed with the original images of the sub-sequence and dummy frames. Dummy
frames are needed to calculate the EAOC, and tracking cannot be performed in dummy
frames; that is, the IOU is zero in dummy frames. The number of dummy frames is
determined such that the length of the extended sub-sequence is the same as that of the
original sequence. If tracking is completed in the final frame without failure in another
sub-sequence, the corresponding extended sub-sequence does not contain any dummy
frames. The EAOC value can then be calculated as:

EAOC(i) =
1

ne(i)

ne(i)

∑
k=1

IOU(k, i), (6)

where IOU(k, i) represents the IOU value for the ith frame of the kth extended sub-sequence
and ne(i) is the number of extended sub-sequences that contain the ith frame. The ith frame
can be either the original image or a dummy frame.



Appl. Sci. 2021, 11, 7741 8 of 15

In the following section, the performances of the four trackers are compared. The first
model is the CSR tracker; hereinafter, this model is referred to as CSR. The second model is
constructed by applying the SC to the CSR model and is referred to as CSR + SC. The third
model is created by adding the SO to the second model and is referred to as CSR + SP + SC.
The last model includes PP in addition to the third model and is referred to as CSR + SP +
SC + PP.

4.1. Effects of SC

The shrinkage of the SR was observed in the test using CSR. Figure 5a shows the SR
when the MAV begins to be truncated at the right edge of the SR. Then, owing to the MAV
motion, only half of the MAV is included in the SR, as shown in Figure 5b. Consequently,
the size of the SR decreases further, and the tracker almost loses the MAV, as shown in
Figure 5c. Tracking failure occurs in a few subsequent frames.
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The SC prevents tracking failures caused by undesirable SR shrinkage. Figure 6 shows
the SR and predicted bounding box in the absence and presence of SC in the same frame.
Although the over-shrink preventive SR considerably increased the IOU value, a small
truncation still remained. This limitation was resolved by SO and PP.
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4.2. Optimization of SR Size

The size of the SR must be optimized to improve the tracking performance of the
proposed method. If SR is extremely large compared to the size of the target object, other
distracting objects can also be contained in the SR. Subsequently, the tracker may track
other objects in the SR. If the SR is extremely small, the tracker is likely to lose moving
objects. A constant value is selected for the scale ratio of the object and SR. Then, the size of
the SR can be determined by multiplying the scale ratio by the object size of the previous
frame. Because the object size in the current frame can be estimated after the current SR is
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determined in the online tracking, the object size in the previous frame should be used to
determine the size of the current SR.

The effect of the scale ratio (of SR and target object) on the accuracy was investigated
to determine the optimal size, as shown in Figure 7. These results were measured when
truncation-preventive SR was applied. The tracking accuracy was at a maximum when
the scale ratio is 1.4, 1.5, and 1.6. When the scale ratio was larger than 1.7, the accuracy
considerably decreased because several other objects and large areas of the background
were within the SR. Although truncation-preventive SR is applied, it cannot prevent all
possibilities of truncation when the scale ratio is small. Thus, a rapidly moving object can
be truncated in the SR when a small-scale ratio (i.e., 1.2) is used. Owing to this truncation,
the accuracy decreases when the scale ratio is small. Inaccurate estimation of the target size
results in an inappropriate SR size because the size of the SR is determined by the target
size in the previous frame. Considering the accuracy, the optimal scale ratio is determined
to be 1.6, which can vary depending on the target object because the value depends on the
motion and shape features of the target object.
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4.3. Path Predictive SR

The PP model was generated by minimizing the location error of the SR in the se-
quences. To obtain the error, the distance (in pixels) between the center point of the SR and
the true center point of the MAV was calculated. Then, the location error was calculated
by dividing the distance by the size of the SR. The value of the correction coefficient c in
Equation (1) was determined to be 0.9836 by minimizing the constraint that c should be
greater than or equal to 0. The error in this minimization process is not a tracking error but
is a location error of the SR. SC and SO were also adopted during the minimization of PP.
The sequences used consisted of approximately 1000 frames (30 FPS).

The effects of PP were verified using test sequences. PP significantly reduced the SR
localization error in most frames, as shown in Figure 8. Furthermore, large errors were
observed frequently in the absence of PP; these large errors can cause tracking failure.
However, PP treatment reduced the risk of failure by a remarkable amount. Thus, PP
prevents the SR from losing the target object, and the robustness can be improved.
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The tracking performance of the models was compared with the IOU values of the test
sequences, as shown in Figure 9. CSR failed to track across 100 frames in each experiment.
Specifically, it failed within 50 frames, except for sequence 1. CSR + SC tracked the MAV
for longer than CSR did. However, it also failed at 100–150 frames, indicating the limitation
of SC. Although CSR + SC + SO provided robust tracking, its IOU value (i.e., accuracy)
fluctuated largely across the frames. PP resolves this unstable tracking. Except for some
sections, the IOU of CSR + SC + SO + PP was maintained at a high level (i.e., 0.8–1).

PP can prevent tracking failure caused by the fast motions of the MAV. While the
truncation from the SR can be prevented by SC for a slowly flying MAV, SC cannot prevent
tracking failure if the MAV flies at a high speed. Specifically, when an MAV is truncated
from the SR because of its fast motion, the CSR + SC model can prevent over-shrinkage.
However, the error in the bounding box caused by truncation remains, as shown in Figure 5.
The CSR + SC model determines the center of the SR in the following frame as the center of
the current bounding box. Thus, if the target is stationary or moves slowly, this truncation
can be removed. However, if the target moves fast, it is continuously truncated (or vanishes)
from the SR, which can lead to tracking failure, as shown in Figure 9d,e. In contrast, when
PP is applied, it moves the SR such that its center is close to the midpoint of the moving
target. Thus, truncation and subsequent failure are prevented by PP. For example, in
Figure 9d, failure did not occur even though the accuracy remained low for some frames.
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PP also provides opportunities for recovering high IOU values that decrease due
to misinterpretations of the background in previous frames. For example, as shown in
Figure 9d, the IOU started to significantly decrease for both the CSR + SC + SO and CSR +
SC + SO + MP models at the 114th frame. The background is very similar to the MAV in
this frame. While the CSR + SC + SO model suddenly fails after this frame, PP prevents
the tracker from failing. Although the IOU value remains low for a long interval owing to
the distracting background, PP enables the SR to follow the MAV. Afterward, when the
background is changed to be less similar to the MAV, the IOU value increases to a high level
(i.e., 0.8–1). A series of images and tracking results of the accuracy recovery function are
shown in Figure 10. While the CSR + SC + SO model failed to track from the 112th frame
onwards, PP maintained tracking and returned to a high estimation state after 73 frames.
A Supplementary Materials (movie file) shows the tracking performance of the CSR + SC +
SO + PP model.
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4.4. Performance Evaluation

The performance of the models was quantitatively compared in terms of accuracy,
robustness, and EAOC of the test sequences. The results of the accuracy and robustness
are listed in Table 2. CSR exhibited an accuracy of 0.613 and a robustness of 0.086. The
accuracy of CSR is satisfactory. However, this accuracy is valid only under easily trackable
conditions; in extreme conditions, CSR fails rapidly, and this failure is not considered in
the calculations of the accuracy. In contrast, the robustness is low because of frequent
truncations and subsequent failures. In the absence of SC and PP, SR can lose the MAV
even if it moves slowly.

Table 2. Tracking performance comparison.

Method Accuracy Robustness

CSR 0.613 0.086
CSR + SC 0.632 0.583

CSR + SC + SO 0.846 0.685
CSR + SC + SO + PP 0.811 1.0

Ocean 0.756 1.0

SC exhibits a significantly improved robustness of 0.583. In contrast, the increase in
accuracy by SC is negligible because the truncation of the target in SR cannot be corrected
by SC. The optimization of SR size improves both accuracy and robustness. Although PP
slightly reduces the accuracy, it significantly increases the robustness. This suggests that
PP is necessary for the reliable tracking of dynamically moving targets.

To verify the performance of the proposed model, tracking was also conducted with
another recent tracker (i.e., Ocean [34]). This tracker was used for benchmarking because
they achieved high scores in VOT 2018 and 2019. This model was fine-tuned using Dataset1,
which was used in this study. The dataset was resized to fit the original dataset, and the
trackers were trained for 500 epochs, which is sufficiently large considering the epoch
numbers used in previous studies. The proposed model achieved similar or higher accuracy
and robustness compared to this previous tracker, as shown in Table 2.

The effects of SC, SO, and PP can also be evaluated using EAOC. If the EAOC value is
high for a frame, accurate tracking is achieved, and failure does not occur in most frames
of that sequence. Owing to early failure, the EAOC of the CSR noticeably decreases across
the frames, as shown in Figure 11. Although SC and SO have an increased EAOC value,
the value is low after 300 frames. In contrast, the EAOC value remains high when PP is
applied, which suggests that PP is necessary for long tracking tasks.
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Among the four models used in this study, CSR + TP + SO + PP is the most accurate
and reliable model for tracking. Thus, the inference time of the model was measured. When
GeForce RTX 3090 GPU and Xeon Silver 4215R 3.20 GHz CPU were used for inference, the
computation time was approximately 24 ms per frame (i.e., 410 FPS). This computation
speed suggests that the model can be used for real-time tracking.

5. Conclusions

In this study, an SR-based MAV tracker was developed by integrating several methods
to improve tracking accuracy, robustness, and computation speed. First, SC reduces the
probability of losing the target from the SR. Second, SO optimizes the SR size by considering
the effects of the SR size on the tracking accuracy. Finally, PP estimates a more accurate
location of the SR by considering the target object motion. Although SC, SO, and PP were
conducted with simple and existing operations, the combination of these methods led
to significant tracking improvements (i.e., accuracy, robustness, and EAOC). Moreover,
the proposed tracker can be applied to real-time tracking because of its high computation
speed (410 FPS). Furthermore, the proposed tracker shows higher accuracy and robustness
than a tracker named Ocean, which is one of the high-end trackers in the test dataset used
in this study.

Although the proposed model exhibits satisfactory tracking performance, additional
work is required to address its limitations. First, the proposed tracker was verified using
only an MAV. For use in other applications, its performance must be tested with other
objects. Second, the proposed model must be updated to manage occlusion periods. When
the target size is reduced by occlusion, the SR size can also decrease, which can lead to
inaccurate tracking. Thus, an occlusion-detectable model should be developed. In the
worst case, the target can be fully covered by other objects. Object detection algorithms
can be modified to address this problem. In addition, the tracker should be updated using
multiple SRs for multiple-object tracking.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167741/s1, Video S1: MAV-tracker.
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