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Featured Application: The methodology proposed in this paper allows to perform robust vari-
able ranking in statistical learning or machine learning models with highly correlated features.

Abstract: When building a predictive model for predicting a clinical outcome using machine learning
techniques, the model developers are often interested in ranking the features according to their
predictive ability. A commonly used approach to obtain a robust variable ranking is to apply
recursive feature elimination (RFE) on multiple resamplings of the training set and then to aggregate
the ranking results using the Borda count method. However, the presence of highly correlated
features in the training set can deteriorate the ranking performance. In this work, we propose a
variant of the method based on RFE and Borda count that takes into account the correlation between
variables during the ranking procedure in order to improve the ranking performance in the presence
of highly correlated features. The proposed algorithm is tested on simulated datasets in which
the true variable importance is known and compared to the standard RFE-Borda count method.
According to the root mean square error between the estimated rank and the true (i.e., simulated)
feature importance, the proposed algorithm overcomes the standard RFE-Borda count method.
Finally, the proposed algorithm is applied to a case study related to the development of a predictive
model of type 2 diabetes onset.

Keywords: variable ranking; feature selection; predictive models; machine learning; correlation; type
2 diabetes onset

1. Introduction

Machine learning (ML) techniques are increasingly being adopted in a variety of
medical applications for the development of clinical predictive models, i.e., models for the
prediction of outcomes of clinical interest, using a set of candidate variables or features.
When building a clinical predictive model with ML, two common problems are variable
ranking and variable selection.

Variable ranking, i.e., the ordering of features based on their importance for outcome
prediction [1], is useful both to provide an interpretation of the model, i.e., to compare
the predictive ability of different variables, and to perform a feature selection, or model
reduction, i.e., to identify the most important features and consequently remove the
unnecessary variables from the model. The feature selection is important for several reasons.
First, models with a large number of input variables can be more difficult to interpret: noisy
features, which are not related to the outcome, can have small and implausible effects in
the identified model [2]. Noisy features can also lead to an overfitting of the training set
data, with consequent poor generalization ability of the model on new previously unseen
datasets. Moreover, the models with many input variables are not easy to implement in
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the clinical practice because some variables may be difficult to collect in different clinical
contexts [3].

A simple and popular approach to perform variable ranking is recursive feature
elimination (RFE), an iterative algorithm that starts from the full model, i.e., the model
including all the variables, and then removes the variables one at the time, dropping at
each iteration the least important one. The order of feature removal determines the variable
ranking. Once the ranking is obtained, feature selection can be performed by selecting the
set of top ranked variables according to a certain criterion.

RFE was originally proposed to perform gene selection for cancer classification using
a support vector machine (SVM) model [4]. Then, the algorithm was used for a multitude
of applications. For example, RFE and SVM were recently used for classifying attention
deficit/hyperactivity disorder [5], multiple sclerosis relapses [6], the management of pa-
tients with chronic obstructive pulmonary disease [7], and for selection of heart variability
features for cumulative stress monitoring [8]. RFE was also used in combination with other
ML models, such as logistic regression (e.g., for Alzheimer’s disease classification [9]),
random forest (e.g., for breast cancer classification [10]), and extreme gradient boosting
(e.g., for predicting clinical outcomes in young patients with hypertension [11]). Indeed,
an advantage of RFE is that it can be applied with any ML model. However, a difficulty
of this approach is that the feature ranking can become unstable and sensitive to small
perturbations of the training set, potentially resulting in different selected feature sets [12].

In order to assess the stability of variable ranking and perform a robust variable
ranking, resampling techniques (with or without replacement) are commonly applied to
the original training set in order to produce B different versions of the training set. Then,
RFE is performed on each training set version, producing B ranked lists that are combined
in order to obtain a global ranked variable list. The most straightforward way to aggregate
the B different ranked lists is to use the Borda count method [13], an algorithm well known
in voting theory that assigns a score equal to the sum of the number of features with
higher position over the B lists to each variable. Then, the global ranked list is obtained by
ordering the features according to the Borda count. The Borda count method is equivalent
to ranking the features according to their average rank obtained over the B lists. The RFE-
Borda count method has been used in many applications [14,15].

Nevertheless, the RFE-Borda count approach can be affected by the presence of
correlated features. Indeed, if two highly correlated and highly predictive features, x1 and
x2, are present in the set of candidate variables, there is a risk that the rank of the two
correlated features, which carry a similar information, is underestimated. In fact, it may
happen that, in some of the training set resamplings, x1 gets a high importance score, while
x2, redundant with respect to x1, gets a low importance score, and the exact opposite might
occur (i.e., the importance score is high for x2 and low for x1) on other occasions. In such a
situation, the importance score would be underestimated for both x1 and x2, even if the
two features independently bring an important information.

The difficulty of performing variable ranking by RFE in presence of highly correlated
features was pointed out by the study of Darst et al. [16]. The authors tested in silico the
variable ranking obtained by random forest and RFE. They empirically observed that, when
highly correlated features were present in the dataset, the importance score of important
predictors was poorly estimated by the RFE algorithm.

One possible solution to this issue, often adopted in the literature, could be to consider
only one representative feature for each group of correlated variables in the candidate list
of predictors [17]. If there are no practical reasons on which feature to choose, a possibly
objective filtering criterion should be adopted. Commonly, the variable that best explains
the outcome in a univariate analysis is selected. However, the variable best performing in
the univariate analysis could not be the one best performing in the multivariate analysis.
In fact, an a priori choice without considering the joint contribution to outcome prediction
of all the candidate predictors can result in a suboptimal feature ranking and thus in
suboptimal feature selection and model performance. Moreover, even in the case the
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chosen feature performs optimally in a multivariate framework, it could poorly generalize
in a different dataset.

Another option could be to apply a technique for decorrelating the input features,
such as the principal component analysis [18]. However, such techniques are suitable to
perform dimensionality reduction, not to perform variable ranking or feature selection,
and they provide an output set of new features, each obtained from a combination of the
original features, whose interpretation is not straightforward.

A different approach was proposed in Yousef et al. for selecting significant genes
in gene expression studies [19]. To deal with highly correlated genes, the authors first
identified clusters of highly correlated genes and then applied RFE to rank the identified
clusters and select the most important ones for the final model. The classification accuracy
of the model obtained with the recursive cluster elimination was higher than that obtained
with standard RFE. This suggests that considering the highly correlated features as a group
while performing RFE might enhance the variable ranking accuracy.

The aim of this work is to propose a new variable ranking method that is able to deal
with the presence of highly correlated features and to preserve their interpretation. To offer
more detail, the proposed method is a modified version of the RFE-Borda count method that
takes into account the correlation between numerical features while performing the ranking,
by grouping highly correlated features, as carried out in [19]. The proposed approach
is validated on simulated datasets, in which the true variable ranking is known, and
compared to the standard RFE-Borda count method that does not consider the correlation
between features. After the in-silico validation, the proposed raking method is applied
to a case study with real data concerning the development of a predictive model of type
2 diabetes (T2D) onset. This is a problem widely studied in the literature, because the
increasing incidence of T2D, especially in the young population, could be lowered by early
lifestyle changes in at-risk individuals [20,21]. For this reason, several predictive models
of T2D onset have been developed, whose objective is the identification of subjects at risk
of developing T2D in the next 5–10 years [3,22]. In particular, ML models were shown to
achieve promising results in the prediction of T2D based on multiple risk factors [23–25].
A ranking of these risk factors, according to their predictive ability, is crucial to identify the
most important predictors that need to be targeted by prevention plans. In this context,
highly correlated features are often considered for T2D model development (e.g., body
mass index and waist circumference [26]). As it will be shown later in this paper, taking
into account the correlation between these features is very important to obtain a reliable
variable ranking.

2. Materials and Methods
2.1. The Proposed Variable Ranking Algorithm

Let us define as xi, i = 1, . . . , Nfeat the set of Nfeat candidate variables, y the outcome
of the predictive model and Xtrain the set of training data of cardinality ntrain. The proposed
algorithm works in four steps:

1. Identify the groups of highly correlated numerical features. This can be achieved by
computing the correlation coefficient (e.g., Spearman) between each pair of numerical
features and then grouping the features with pairwise correlation higher than a
threshold th (e.g., th = 0.70). Let us define as Cj, j = 1, ..., Ncorr the resulting groups of
highly correlated features. Then, we will call Nuncorr the total number of uncorrelated
features, i.e., all the features not included in any group Cj.

2. Resampling the training set Xtrain to generate B different versions of the training data.
This can be achieved, for example, by bootstrap resampling, i.e., randomly sampling
with replacement ntrain elements from the training set, or by subset selection, i.e., by
randomly sampling without replacement a fraction of elements of the training set
(e.g., 80%).

3. Perform RFE on each of the B training set variants. In this step, each group of
correlated features is considered as a single variable; any time a variable from the
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group Cj is removed from the model, all the other variables in the same group Cj are
also removed from the model and given the same rank. The obtained ranking has a
number of positions equal to the number of uncorrelated features, Nuncorr, plus the
number of groups of highly correlated features, Ncorr. Indeed, the highly correlated
features in group Cj count in the ranking as a single variable. The ranks are assigned
as follows: the variable (or group of variables) that is (are) removed first is assigned a
rank equal to Nuncorr + Ncorr; the variable (or group of variables) that is (are) removed
at the second RFE’s step is assigned a rank equal to Nuncorr + Ncorr − 1; and so on,
until the last variable (or group of variables) remaining in the model is assigned rank
1. The ordered feature list obtained from each of the B training set variants is called
Lb, b = 1, . . . , B.

4. Aggregate the B ordered variable lists, Lb, b = 1, . . . , B, by the Borda method. This can
be achieved by: (i) computing for each variable (or group of variables) the average
rank across the B lists; and (ii) defining a new global rank by ordering the variables
(or group of variables) according to the average rank. In this final global ranking, the
most important feature (or group of features) will have the lowest rank, while the less
important feature (or group of features) will have the highest rank.

Note that if no group of highly correlated features is identified (Ncorr = 0), the proposed
algorithm becomes identical to the standard RFE-Borda count method. Like the standard
RFE-Borda count method, the proposed algorithm is general and it can be applied to
perform variable ranking with any statistical learning or ML base model. The parameters
of the proposed ranking algorithm are the type of correlation to be considered (e.g., Pearson
or Spearman), the threshold th to identify the highly correlated features, the number B of
training set variants, and the method used to create these variants (e.g., subset selection or
bootstrap sampling).

2.2. Generation of In-Silico Data for Algorithm Validation

The proposed algorithm is validated on in-silico data and compared to the standard
RFE-Borda count method. As a base model, we consider the Cox proportional hazard
model, a semi-parametric model proposed by Cox in 1972 [27], to perform multivariate
survival analysis, i.e., to model the time of an event of interest based on a set of input
variables. In particular, the Cox model describes the relationship between a set of variables
describing the subject, x1, . . . , xn, and the hazard function, h(t), which denotes the proba-
bility that an individual who is under observation at a time t has an event at that time. The
characteristic equation of the Cox model is the following:

h(t)= h0(t)e
β1x1+···+βnxn (1)

where β1, . . . , βn are the coefficients related to the input variables x1, . . . , xn, and h0(t) is
the baseline hazard function, i.e., the hazard function for subjects with xi = 0, i = 1, . . . ,
n. The Cox model is called semi-parametric because it does not make any assumption
on the shape of the baseline hazard function h0(t). Indeed, Cox demonstrated that it is
possible to estimate the values of β1, . . . , βn without knowing h0(t) by maximizing the
partial log-likelihood. For more details about the Cox model, we refer the reader to [28].

Note that we could have chosen a regression or a classification model, such as multiple
linear regression or logistic regression, to run the in-silico experiment, but we preferred to
use a survival model because survival analysis is the most natural approach to address the
problem presented in the case study of Section 2.3. In the subsections below, we describe in
detail how the in-silico data were generated.

2.2.1. Method for Generating Simulated Datasets

In this simulation, we assume that the training set, on which the model is built, in-
cludes the observations of ntrain subjects, each described by Nfeat variables, or candidate
predictors. In addition, we assume that the Nfeat candidate predictors are normally dis-
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tributed and that the true model to be identified is a Cox model including a subset of the
candidate predictors consisting of the first Npred variables. The equation of the model
is then:

h(t)= h0(t)e
β1x1+···+βNpred

xNpred (2)

where x1, . . . ,xNpred are the true predictors and β1, . . . , βNpred are the related coefficients.
The absolute value of the coefficients, |βi|, defines the predictors’ importance. For sim-
plicity, we assume that |β1|> . . . >|βNpred|, i.e., x1, is the most important predictor and
xNpred is the least important one.

Of the remaining Nfeat − Npred variables, we assume that Ncorr variables, i.e., xNpred+1, · · ·,
xNpred+Ncorr , present a high correlation with some of the Npred variables that contribute to
the true model. In particular, for sake of simplicity, we assume that each group of correlated
features in the simulated dataset is made of only two variables, one from the Npred variables
that define the outcome, the other from the Ncorr variables that are correlated with the
variables that define the outcome, but do not directly contribute to the computation of
the outcome. The remaining Nnoise = Nfeat − Npred − Ncorr variables are noise variables,
completely uncorrelated from all the other features.

The Nfeat candidate predictors of the training set are generated by extracting ntrain
random samples from a multivariate Gaussian distribution with dimension Nfeat and mean
vector M and covariance matrix S. S is diagonal and symmetric, with only Ncorr values greater
than 0 under and above the diagonal, corresponding to the pairs of correlated features.

The outcome of the model is defined by a vector of event/censoring times, T, and
a paired vector of death/censoring indicators, D, both with ntrain samples. We initially
suppose to know the event time for all the ntrain virtual subjects. The event times are
generated by multiplying the subjects’ true risk scores, i.e., β1x1 + · · ·+βNpred

xNpred , for a
suitable scaling factor and finally adding a random normally-distributed noise, with mean
equal to 0 and coefficient of variation CV. All the event times are greater than 0, which
represents the start of the hypothetical observation period. Then, a certain fraction, Fc,
of the virtual subjects is censored; we randomly select Fc*ntrain virtual subjects, set their
censoring/death indicator to 0, and assign a censoring time chosen at random between
0 and their hypothetical event time to them. For all the non-censored subjects, the event
time is supposed to be known, so their value of T is set to the event time and their
death/censoring indicator is set to 1.

The relevant parameters of the data simulation algorithm are: Nfeat, Npred, Ncorr,
Nnoise, ntrain, CV, Fc.

2.2.2. Generation of a Representative Simulated Dataset

A representative simulated dataset was generated with Nfeat = 20, Npred = 10, Ncorr = 5,
Nnoise = 5, ntrain = 1000, CV = 30%, and Fc = 0.1. The true model coefficients β1-β10,
corresponding to the true predictors x1-x10, are reported in Table 1. Note that the features
x1–x10 are ordered by their importance (i.e., by the absolute value of the coefficient in
the true Cox model). The features x11, x12, x13, x14, x15 were generated in a way to be
highly correlated with variables x1, x3, x5, x7, x9, respectively. Finally, the features x16–
x20 are uncorrelated from all the other features. The Pearson correlation matrix for this
representative simulated dataset is shown in Figure 1.
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Table 1. Coefficients of the true Cox model for the representative simulated dataset.

Variable Model Coefficient

x1 4.77
x2 −4.69
x3 −3.74
x4 2.93
x5 −2.74
x6 −2.29
x7 −1.52
x8 1.02
x9 −0.88
x10 0.70
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2.2.3. Generation of Different Simulated Scenarios

The parameters of the simulation algorithm were varied in order to test the ranking
algorithm in different data scenarios. In total, 12 different simulation scenarios were
considered, which are summarized in Table 2. The first 3 scenarios are characterized by
different CV values, for which we tested 3 values: 10%, 30%, and 50%. Scenarios 4–6 are
obtained by testing different values for Nnoise, i.e., 3, 9, 12, which correspond to the values
11, 7, 5 for Npred and 6, 4, 3 for Ncorr. In scenarios 7–9, we test different values of ntrain,
i.e., 250, 500, and 1500. Finally, the last 3 scenarios are characterized by different fractions
of censored subjects, i.e., 0.1, 0.3 and 0.7. For each scenario, N = 50 training sets were
simulated for a total of 600 simulated datasets.

Table 2. Summary of simulated scenarios.

Scenario CV Nnoise ntrain Fc Npred Ncorr Nfeat

1 10% 5 1000 0.5 10 5 20
2 30% 5 1000 0.5 10 5 20
3 50% 5 1000 0.5 10 5 20
4 30% 3 1000 0.5 11 6 20
5 30% 9 1000 0.5 7 4 20
6 30% 12 1000 0.5 5 3 20
7 30% 5 250 0.5 10 5 20
8 30% 5 500 0.5 10 5 20
9 30% 5 1500 0.5 10 5 20

10 30% 5 1000 0.1 10 5 20
11 30% 5 1000 0.3 10 5 20
12 30% 5 1000 0.7 10 5 20
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2.3. A Case Study with Real Data: Prediction of Type 2 Diabetes Onset

Besides the assessment with simulated data, the proposed algorithm was tested on a
case study with real data, focused on the prediction of T2D onset.

T2D commonly appears in people over 45 because of a combination of genetic and
lifestyle factors. The major risk factor for T2D onset is obesity [29]. An early prediction
of T2D onset is important because early interventions on modifiable risk factors can post-
pone or even prevent the incidence of the disease [20,21]. Predictive models of T2D onset
can help in identifying the high-risk subjects who may benefit from targeted prevention
measures. Many literature studies focused on the development of a predictive model of
T2D onset [3,22]. Some of them also performed variable ranking in order to identify the
most important predictors of T2D onset and perform feature selection [30]. The Cox model
is one of the most popular techniques for building predictive models of T2D onset, as well
as the onset of other chronic diseases [30–32].

The aim of this case study is to use the Cox model combined with the variable ranking
approach presented in Section 2.1 for ranking risk factors of T2D onset and building a
predictive model of T2D onset that takes into account the most important factors. The study
is conducted using the data collected in the English Longitudinal Study of Ageing (ELSA).

2.3.1. Dataset: The English Longitudinal Study of Ageing

The English Longitudinal Study of Ageing (ELSA) is an ongoing study of health,
social wellbeing, and economic circumstances in the English population aged 50 and older,
funded by the U.S. National Institute of Ageing and a consortium of UK Government
departments [33]. The ELSA sample mostly includes whites (about 98% of the sample).
Participants have a face-to-face interview every 2 years and a clinical examination every
4 years. Currently, the study includes 9 waves of data collection covering a period of
17 years (2002–2019). At waves 3, 4, 6, 7, and 9, new participants entered the study to
maintain the size of the sample.

2.3.2. Data Pre-Processing

Since the clinical examinations were performed only in even waves, we assigned to
each subject a baseline wave among waves 2, 4, and 6 (not wave 8 because the follow-up
would have been too short). Specifically, subjects that entered the study in wave 1 were
assigned baseline wave 2, subjects that entered in waves 3/4 were assigned baseline wave
4, and subjects recruited in waves 5/6 were assigned baseline wave 6.

We then selected the subjects who (i) were free of diabetes at the baseline wave;
(ii) had the clinical examination at the baseline wave; and (iii) had information on di-
abetes diagnosis in the follow-up period. A subject was defined as having diabetes at
baseline if they answered “Yes” to question Q1:“Has a doctor ever told you that you
have diabetes or high blood sugar?” or they presented a value of fasting plasma glucose
concentration ≥ 126 mg/dL or a value of glycated haemoglobin ≥ 6.5%. Diabetes onset
during follow-up was defined as a positive answer to Q1. The time of diabetes onset was
defined as the time passed between the baseline visit and the first follow-up wave at which
the subject answered “Yes” to Q1. Note that we did not use fasting plasma glucose or
glycated haemoglobin to define the outcome because these variables were not collected at
all the ELSA waves.

Potential predictive variables for diabetes development were selected from the set of
variables collected at the ELSA baseline visits. In total, 16 variables were selected which
are reported in Table 3. In particular, economic deprivation was measured by question Q2:
“How often you find you have too little money to spend on what you feel you and your
household’s needs are?”, whose possible answers (“never”, “rarely”, “sometimes”, “often”,
“most of the time”) were coded with integers between 1 and 5. Depression was measured
by a reduced version of the Center for Epidemiologic Studies Depression (CESD) scale that
includes 8 items. The derived score is an integer going from 1 to 8, with higher values
representing a major presence of depression symptoms. Life expectation was coded as a
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number between 0 and 100, representing the self-reported probability of living to 75 years
if the respondent is under 65 years, to 80 years if the respondent is aged 66 to 69 years, and
to 85 years if the respondent is aged 70 to 74 years, etc. Self-reported health status was
measured on a 5-level scale ranging between “excellent” and “poor”.

Table 3. Baseline variables selected as candidate predictors for T2D model development.

Variable Name Description Values

sex Sex 0 = females
1 = males

age Age Continuous [years]

mar_stat Marital status
0 = married, living as married

1 = separated, widowed
2 = never married

depriv Level of economic deprivation Integers, range 1–5

smoke Smoking status
0 = never smoked
1 = past smoker

2 = current smoker

phys_act Frequency of moderate or vigorous physical activity

0 = hardly ever or never
1 = 1–3 times per month

2 = once/week
3 = >once/week

bmi Body mass index Continuous [kg/m2]
waist Waist circumference Continuous [cm]

sys_bp Systolic blood pressure Continuous [mmHg]
depress CESD-8 depression score Integers, range 1–8
life_exp Life expectation Integers, range 1–100
phealth Self-reported poor health Integers, range 1–5

htn Ever had hypertension 0 = no, 1 = yes
hchol Ever had high cholesterol 0 = no, 1 = yes
hdl HDL cholesterol Continuous [mg/dL]

tot_chol Total cholesterol Continuous [mg/dL]

Subjects with missing values in any of the selected variables were removed from the
analysis. The final selected sample included 6201 subjects, 449 of whom developed diabetes
during the 15-year observation period after the baseline.

2.4. Application of the Ranking Algorithms on In-Silico and Real Data
2.4.1. Assessment of the Ranking Algorithms on In-Silico Data

The ability of the proposed algorithm to perform an accurate variable ranking was
assessed on the simulated data described in Section 2.2. On each simulated dataset, the
variables were ranked considering two approaches:

• Approach 1: standard RFE-Borda count method without considering the correlation
between features;

• Approach 2: the proposed algorithm that considers the correlation between features.

For both the approaches, we considered B = 100 bootstrap resamplings of the training
set. For the proposed algorithm, a threshold of 0.7 on the Pearson correlation coefficient
was used to identify the groups of highly correlated features.

For both the ranking methods, the accuracy of the ranking is assessed by calculating
the root mean square error (RMSE) between the estimated ranking and the true ranking.
This metric was chosen because it has a very intuitive interpretation and it quantifies the
average number of positions mistaken in the ranking, regardless of the direction of the
mistake (overestimation or underestimation) and the relative position in the ranked list.

For the simulated scenarios 1–12, in particular, we assessed the RMSE value for each
of the N = 50 training sets and then compared the distribution of RMSE between the two
ranking algorithms.
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2.4.2. Application of the Ranking Algorithms to Real Data

The data selected from the ELSA dataset, as detailed in Section 2.3.2, were randomly
split into a training set, containing 80% of selected subjects, and a test set, containing the
remaining 20% of subjects, stratifying by diabetes incidence. The training set was used
for model development, while the test set was used for final model assessment. Training
set variables were scaled in a range 0–1, subtracting to each variable its minimum value
and then dividing it for the difference between its maximum and its minimum value. The
same scaling was applied to test set data, using the minimum and maximum values of the
features in the training set. Categorical variables with more than two levels (i.e., mar_stat
and smoke) were re-coded using dummy variables. Physical activity (phys_act) was
considered as a numerical variable.

A Cox model for the prediction of T2D onset was trained on the training set by
applying the method based on RFE and Borda count to perform variable ranking and
feature selection. Before performing the ranking, we analysed the correlation between
features in the training set. This analysis revealed the presence of a pair of highly correlated
features: BMI and waist circumference have a Spearman correlation coefficient of 0.78.
All the other pairs of features present a Spearman correlation coefficient below 0.40. As
the presence of this pair of highly correlated features can affect the variable ranking, we
performed the ranking considering the two ranking approaches tested in simulation:

• Approach 1: The correlation between BMI and waist circumference is ignored and the
standard RFE-Borda count method is applied;

• Approach 2: The ranking is performed with the proposed algorithm that takes into
account the correlation between BMI and waist circumference.

To better understand the impact of highly correlated features on the ranking perfor-
mance of the standard RFE-Borda count method, we also tested two additional approaches
in which one correlated feature is removed a priori.

• Approach 3: Waist circumference is dropped from the analysis and the ranking is
performed with the standard RFE-Borda count method, considering only BMI in the
set of candidate predictors.

• Approach 4: BMI is dropped from the analysis and the ranking is performed with the
standard RFE-Borda count method, considering only waist circumference in the set of
candidate predictors.

For all the approaches, the training set was resampled with replacement B = 100 times.
At each iteration, the resampled training set was used to train the models with decreasing
number of features as per the RFE algorithm, while the subjects of the out-of-bag set
(i.e., those of the original training set not present in the resampled training set) were used to
assess the performance of the models. The performance was assessed by the concordance
index (C-index) [34], which measures the concordance between risk scores and event times
(0.5 no concordance at all, 1 perfect concordance). The output of the RFE-Borda count
method at the end of the B iterations includes:

• a table with the mean and the standard deviation (SD) of the rank obtained for each
feature across the B iterations;

• a table with the value of the C-index (mean and SD) for models with different number
of features.

Afterwards, the final feature selection is made by choosing the optimal number of
features, nopt, as the number of features that maximizes the mean of the C-index across the
B iterations, and then choosing from the rank table the nopt variables with highest mean
rank. The final step is to train the model with the selected features on the entire training
set, and to assess its performance in terms of C-index on the test set. To get a confidence
level for the C-index, we also performed a 5-fold cross-validation on the training set and
assessed the mean (SD) of C-index on the 5 testing folds.
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3. Results
3.1. In-Silico Assessment of the Proposed Variable Ranking Algorithm
3.1.1. Results on a Representative Simulated Dataset

The results of the variable ranking obtained for the representative dataset of Section 2.2.2
are reported in Table 4 for both the standard RFE-Borda count method and the proposed
algorithm, performed on B = 100 training set variants generated by bootstrap resampling.
We can observe that the standard RFE-Borda count approach, which ignores variable
correlation, commits some ranking mistakes: x2 is ranked below x3; x5 is ranked in the
6th position, below x6; x8 is ranked in the 9th position, after x15; x9 and x10 are ranked in
the 14th and the 18th position, respectively, and they are surpassed in the ranking even by
noise variables, such as x18, x19, and x20. Conversely, the ranking obtained by the proposed
approach, which considers the variable correlation, is almost completely correct; the only
ranking mistake is that, also in this case, x8 is ranked in the 9th position, after x9 and its
correlated feature x15. We can note that the proposed algorithm always assign the same
rank to the highly correlated variables. Overall, the RMSE obtained is 3.07 for the standard
RFE-Borda count method and 0.50 for the proposed approach.

Table 4. Results of variable ranking for the representative simulated dataset.

Global Rank Standard RFE-Borda Count Method
(without Correlation)

Proposed Algorithm
(with Correlation)

Variable Mean Rank Variable Mean Rank

1 x1 1.29 x1–x11 1.22
2 x3 2.37 x2 2.47
3 x2 2.76 x3–x12 2.47
4 x4 4.55 x4 4.69
5 x6 6.10 x5–x13 5.68
6 x5 6.16 x6 5.94
7 x7 9.53 x7–x14 8.59
8 x15 11.25 x9–x15 10.04
9 x8 11.76 x8 10.15

10 x19 12.73 x10 10.87
11 x18 13.44 x18 11.21
12 x14 13.48 x19 11.28
13 x12 13.61 x20 11.34
14 x9 13.88 x16 11.82
15 x13 13.89 x17 12.23
16 x11 14.08
17 x20 14.38
18 x10 14.47
19 x16 15.01
20 x17 15.26

RMSE = 3.07 RMSE = 0.50

3.1.2. Results on All the Simulated Scenarios

The results obtained on all the simulated scenarios of Section 2.2.3, in terms of ranking
performance, are reported in Figure 2 for scenarios 1–3, Figure 3 for scenarios 4-6, Figure 4
for scenarios 7–9, and Figure 5 for scenarios 10–12. In particular, the RMSE distribution
obtained for the standard RFE-Borda count method and the proposed algorithm are shown
in green and red, respectively. We can observe that, for all the scenarios, the RMSE
presents lower values for the proposed approach compared to the standard RFE-Borda
count method. The advantage of using the proposed algorithm is very limited for the
scenario with very little noise (scenario 1—CV = 10%) and the one with 12 noise variables
(scenario 6—Nnoise = 12). Indeed, in these scenarios, the standard RFE-Borda count method
already performs well with almost 75% of RMSE values below 1. However, for all the
other scenarios, the proposed algorithm clearly improves the ranking performance of the
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standard RFE-Borda count method, as shown by the boxplot of the RMSE that is distributed
at lower values for the proposed algorithm.
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3.2. Results on the Case Study with Real Data

In this section, we present the results obtained by applying the two variable ranking
algorithms, evaluated in-silico in Section 3.1, to the case study about T2D onset prediction,
presented in Section 2.3. In this case study, the dataset includes two highly correlated
features that represent the concept of obesity: BMI and waist circumference. Since obesity
is the leading risk factor for T2D development [29], we expect that the variable ranking
algorithms will rank these variables as the top predictors of T2D onset.

The results of variable ranking are shown in Table 5; for each scenario we report
the mean (SD) of the rank obtained for each feature across the B = 100 runs of the RFE
algorithm. Lower rank are assigned to the most relevant features. For each scenario, the
features were ordered by their mean rank value, which represents the variable importance.

Table 5. Results of variable ranking for the predictive model of T2D onset.

Approach 1 Approach 2 Approach 3 Approach 4

Variable Mean (SD)
of Rank Variable Mean (SD)

of Rank Variable Mean (SD)
of Rank Variable Mean (SD)

of Rank

hdl 2.91
(3.04) bmi-waist 1.01

(0.10) bmi 1.02
(0.14) waist 1.04

(0.24)

sys_bp 3.12
(3.42) hdl 2.83

(2.78) hdl 2.74
(3.06) sys_bp 2.76

(2.79)

bmi 4.47
(4.66) sys_bp 2.96

(2.98) sys_bp 2.86
(3.01) hdl 2.82

(2.48)

waist 4.51
(4.39) phealth 5.71

(5.00) phealth 5.44
(4.69) phealth 5.32

(5.11)

phealth 6.16
(5.42) depress 6.21

(3.29) age 6.53
(3.03) sex 5.48

(3.08)

depress 6.72
(3.41) age 6.70

(3.19) depress 6.64
(3.14) depress 6.65

(3.05)

age 7.23
(3.31) depriv 7.08

(3.82) depriv 7.08
(3.72) htn 7.40

(4.21)

depriv 7.23
(3.31) htn 7.32

(4.23) htn 7.59
(4.10) depriv 7.59

(3.50)

htn 7.95
(4.52) hchol 8.96

(3.29) sex 8.32
(3.55) age 7.98

(2.91)

sex 8.78
(3.74) tot_chol 8.99

(2.71) hchol 8.95
(3.10) hchol 9.22

(2.93)
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Table 5. Cont.

Approach 1 Approach 2 Approach 3 Approach 4

Variable Mean (SD)
of Rank Variable Mean (SD)

of Rank Variable Mean (SD)
of Rank Variable Mean (SD)

of Rank

hchol 9.63
(3.43) phys_act 9.10

(2.63) tot_chol 9.13
(2.71) tot_chol 9.37

(2.62)

tot_chol 9.74
(2.90) sex 9.27

(2.85) phys_act 9.42
(2.61) phys_act 9.52

(2.52)

phys_act 9.85
(2.73) life_exp 9.52

(2.63) life_exp 9.58
(2.72) life_exp 9.82

(2.63)

life_exp 10.17
(2.77) smoke 10.10

(2.77) smoke 10.33
(2.69) mar_stat 10.39

(3.10)

smoke 10.97
(2.79) mar_stat 10.24

(3.10) mar_stat 10.37
(2.85) smoke 10.64

(2.32)

mar_stat 11.06
(3.18)

By applying the standard RFE-Borda count algorithm, we can note that, in the ap-
proaches 3 and 4, in which only one obesity variable is considered in the set of candidate
predictors (the other is a priori excluded), the obesity variables are ranked in the top
position of the list, i.e., they are identified as most important predictors. This happens
with very high consistency across the 100 iterations, as the average rank is very close
to 1 and the SD of the rank is close to 0. However, when BMI and waist circumference
are both included in the set of candidate predictors, as in approach 1, and the ranking is
performed ignoring the correlation between these features, we can see that the obesity
variables are assigned lower importance values. In particular, they are ranked in the third
position, after HDL cholesterol and systolic blood pressure, and their rank is much more
unstable across the 100 iterations; the SD is around 4, the second-highest value among all
the candidate predictors. This means that the estimated rank obtained for these features
with the standard RFE-Borda count method is very uncertain. This example confirms what
we discussed in the introduction of this paper: the presence of highly correlated features, if
not properly managed, can affect the results of variable ranking.

The proposed algorithm is effective in solving this issue. Indeed, looking at the results
for approach 2 in Table 5, we can see that the proposed algorithm, which takes into account
the correlation between BMI and waist circumference, is able to identify the high predictive
ability of the obesity features, which are now ranked again in first position with high
confidence (the rank is 1.01 ± 0.1). This result confirms what was already observed in the
in-silico study: in presence of highly correlated features, the proposed algorithm allows
to perform a more robust variable ranking compared to the standard RFE-Borda count
method, without the need of pre-filtering the highly correlated features based on a priori
knowledge or assumptions. This aspect is important because an effective pre-filtering of
the features, as carried out in approach 3 and 4, could be difficult to perform using just
the a priori knowledge, especially when the dataset includes multiple groups of highly
correlated features. A bad a priori choice on important predictors could negatively affect
the model performance and generalization ability.

After performing the variable ranking, the optimal number of features was selected
by analyzing the curves of C-index vs. number of features in the out-of-bag samples. In
Figure 6, the C-index curve returned by the proposed algorithm (approach 2) is shown.
As expected, the average C-index value increases with the number of features, until a
certain plateau is reached. The resulting optimal number of features which maximizes
the average C-index value is 8. The same optimal number of features was obtained with
approaches 3 and 4, whereas, with approach 1, in which the two obesity variables are
treated independently, the optimal number of features is 9.
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Table 6 shows the final models obtained with the four ranking approaches, considering
the top 8 variables in Table 5 for approaches 2–4 and the top 9 variables in Table 5 for ap-
proach 1. For each approach, we report the estimate (standard error) of the coefficient in the
final model trained on the entire training set. Note that, for approach 2, the top predictive
variable is the pair of features describing obesity; however, for not introducing redundancy
in the model, only one of these two variables was included in the final model. We tested
the model with BMI (and the other 7 features) and the model with waist circumference
(and the other 7 features) in a 5-fold cross-validation performed on the training set; the
model with highest average C-index was the one with waist circumference. The results
for this model are then reported in Table 6. We can see that, in all the models, the obesity
variables have the highest, in absolute value, coefficient, although, in approach 1, the con-
tribution of obesity is divided between BMI and waist circumference, with resulting lower
coefficients for these variables compared to the other approaches. We can also observe that
the standard error of obesity variables’ coefficients is higher in approach 1 compared to the
other approaches.

Table 6. Coefficients and performance of the predictive model of T2D onset obtained in approach
1 (standard RFE-Borda method with both BMI and waist circumference), approach 2 (proposed
algorithm, the model with waist is shown), approach 3 (standard RFE-Borda method with BMI only),
approach 4 (standard RFE-Borda method with waist circumference only).

Variable
Estimated Coefficient (Standard Error)

Approach 1 Approach 2 Approach 3 Approach 4

bmi 2.00
(0.62) - 3.34

(0.38) -

waist 2.17
(0.75)

4.03
(0.48) - 4.14

(0.48)

hdl −1.75
(0.35)

−1.59
(0.34)

−2.11
(0.33)

−1.81
(0.39)

sys_bp 1.69
(0.40)

1.74
(0.40)

1.77
(0.39)

1.81
(0.39)

phealth 0.77
(0.23)

0.82
(0.23)

0.81
(0.23)

0.81
(0.23)

depress 0.22
(1.25)

0.26
(0.23)

0.17
(0.23)

0.20
(0.23)
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Table 6. Cont.

Variable
Estimated Coefficient (Standard Error)

Approach 1 Approach 2 Approach 3 Approach 4

age 0.40
(0.36)

0.23
(0.35)

0.43
(0.36) -

depriv 0.38
(0.20)

0.40
(0.20)

0.40
(0.20)

0.36
(0.20)

htn 0.26
(1.30)

0.29
(0.11)

0.26
(0.11)

0.28
(0.11)

sex - - - −0.21
(0.12)

C-index
5-fold CV

0.75
(0.02)

0.75
(0.03)

0.75
(0.02)

0.75
(0.02)

C-index test 0.74 0.74 0.74 0.75

Table 6 also reports the discrimination performance of the developed models. All the
models achieved similar C-index values, both on the 5-fold cross-validation and on the test
set. The C-index values obtained are in line with those of literature models using similar
feature sets [3]. Interestingly, in this case study, some variables related to the psychologic
and economic wellbeing, not present in most of existing T2D models, were selected by the
models. These variables are: the CESD depression scale, the perceived health status, and
the self-reported level of economic deprivation.

4. Discussion

As evidenced in a recent simulation study [16], the presence of highly correlated
features can negatively affect the performance of the RFE algorithm. A common approach
to deal with this issue is to exclude a priori the highly correlated features before the
development of the model, by choosing one representative feature for each group of
correlated variables. However, an a priori choice without considering the joint contribution
to outcome prediction of all the candidate predictors can result in a suboptimal feature
ranking and, thus, a suboptimal feature selection and model performance.

To solve the issues that an a priori feature filtering might bring, in this paper we
proposed a new ranking algorithm that handles the highly correlated features within the
ranking procedure. The algorithm is a modified version of the RFE-Borda count method in
which highly correlated features are grouped during the RFE procedure. This ensures that
all the features are considered for model development. Then, if a pair of highly correlated
features are selected for the final model, e.g., x1 and x2, the model developer can decide a
posteriori which feature to remove, by comparing the multivariate model with x1 vs. the
multivariate model with x2, in terms of prediction performance. This would be a better
choice than the one made a priori, because it takes into account the presence of all the other
variables relevant for the prediction. Moreover, it allows performing variable importance
ranking in an unbiased way.

The idea of grouping the correlated features while performing the RFE is not totally
new. A similar approach, called recursive cluster elimination, was indeed adopted by
Yousef et al. [19] for selecting significant genes in gene expression studies using the SVM
model. Youssef et al. showed that the clustering of highly correlated features allowed to
improve the final model performance, suggesting that a better feature ranking and feature
selection was obtained. However, to the best of our knowledge, the method by Yousef et al.
was never validated in terms of variable ranking performance. Moreover, an issue of the
method by Youssef et al. is that, after the ranking of clusters and the selection of the most
important ones, all the highly correlated features in the selected clusters are included in
the final model, thus maintaining a certain level of redundancy in the model.

In this paper, the proposed algorithm was validated on simulated datasets in which
the true variable ranking is known. Results showed that the proposed algorithm provides
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better ranking performance compared to the standard RFE-Borda count method that does
not consider the correlation between features. This result was confirmed on 12 different
simulation scenarios, in which we varied the noise level on the outcome, the proportion
of noise variables in the training set, the number of training set samples, and the fraction
of censored data. In all the tested scenarios, the proposed algorithm outperformed the
standard RFE-Borda count method, proving its good performance even in challenging
scenarios with high noise, small sample sizes, and high censoring fractions.

The proposed algorithm has also been assessed on a real case study, in which the aim
was to rank risk factors for T2D onset and to develop a predictive model of T2D onset that
takes into account the most important ones. The dataset included more than 6000 subjects,
monitored for up to 15 years within a longitudinal study of health conducted in U.K. To
test the ranking performance of the proposed algorithm, we included two highly correlated
features in the set of candidate predictors (BMI and waist circumference) related to obesity,
which is well recognized as the leading risk factor for T2D onset [29]. Nevertheless, the
standard RFE-Borda count method failed to estimate with high confidence the rank of these
obesity variables, because the high correlation between the two features altered the ranking
results. Conversely, the proposed algorithm assigned to the obesity variables the highest
importance level, and it was able to estimate their rank with high confidence. This proves
what was already verified with simulated data: the proposed algorithm is able to robustly
perform variable ranking in the presence of highly correlated features, outperforming the
standard RFE-Borda count method.

The developed T2D model included 8 variables: BMI or waist, HDL cholesterol,
systolic blood pressure, self-reported poor health level, depression scale, the level of
deprivation, history of hypertension, and sex or age. While variables related to obesity,
hypertension and hypercholesterolemia are commonly used by literature T2D models [22],
a few models considered socio-economic factors, such as deprivation [31] or income [35]. As
far as depression is concerned, this variable has never been used in literature T2D models.
Nevertheless, several studies found an association between depression symptoms and the
incidence of T2D [36]. Our results support this association, as depression was ranked in
fifth position by the variable ranking algorithm, immediately after three strong risk factors
(i.e., obesity, cholesterol, and hypertension) and the self-reported poor health level.

Regarding the discrimination ability, the developed T2D model achieved comparable
performance to that of other literature models assessed on the same dataset [3], e.g.,
the FINDRISC model [26], the basic model by Kahn et al. [37], and the Atherosclerosis
Risk in Communities simple model [38], with a C-index of around 0.75. Other literature
models were able to achieve a higher discrimination performance (e.g., C-index > 0.80) by
considering among the predictors variables related to dysglycemia, such as fasting plasma
glucose, results of the oral glucose tolerance test, and the homeostatic model assessment of
insulin resistance and beta cell indices [3,22,30,38].

Although promising results were achieved, the study conducted in this paper presents
some limitations that deserve future investigation. A limitation of the proposed algo-
rithm is that it can only deal with highly correlated numerical variables. In future works,
the algorithm needs to be extended to deal also with categorical variables. This can be
achieved by replacing the correlation coefficient with a suitable measure of the association
between categorical variables, such as the Cramer’s V, the phi coefficient, or the mutual
information [39].

Other limitations concern the validation procedure. In this paper, the proposed
variable ranking algorithm was assessed considering the Cox proportional hazard model as
a base model, which was the simplest and most natural approach to address the prediction
problem of the presented case study. However, the proposed algorithm is general and
can be applied in principle to any ML model. In future works, the proposed algorithm
could be tested with different models, including linear and non-linear regression and
classification models.
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Finally, we recognize that the in-silico assessment performed in this study makes
several assumptions. For example, we assumed that the input variables are normally
distributed, and that the groups of correlated features are made of only two variables,
linearly correlated to each other, of which only one contributes to the outcome. In future
works, we will perform a more comprehensive validation of the approach, for example
considering variables with different statistical distributions, different types of variable
correlation, and different values for the simulation parameters.

5. Conclusions

In this paper, we modified the variable ranking algorithm based on RFE and Borda
count to deal with highly correlated numerical features. The proposed algorithm was
validated on simulated datasets, showing better ranking performance than the standard
RFE-Borda count algorithm. These encouraging results were confirmed on a real case
study, conducted on the ELSA dataset, regarding the prediction of the T2D onset. In future
works, the algorithm will be extended to deal with categorical variables. Moreover, a more
comprehensive validation of the approach will be performed by considering different base
models and simulation scenarios.
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