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Abstract: Ichnological analysis, particularly assessing bioturbation index, provides critical param-
eters for characterizing many oil and gas reservoirs. It provides information on reservoir quality,
paleodepositional conditions, redox conditions, and more. However, accurately characterizing ichno-
logical characteristics requires long hours of training and practice, and many marine or marginal
marine reservoirs require these specialized expertise. This adds more load to geoscientists and
may cause distraction, errors, and bias, particularly when continuously logging long sedimentary
successions. In order to alleviate this issue, we propose an automated technique to determine the
bioturbation index in cores and outcrops by harnessing the capabilities of deep convolutional neural
networks (DCNNs) as image classifiers. In order to find a fast and robust solution, we utilize ideas
from deep learning. We compiled and labeled a large data set (1303 images) composed of images
spanning the full range (BI 0–6) of bioturbation indices. We divided these images into groups based
on their bioturbation indices in order to prepare training data for the DCNN. Finally, we analyzed
the trained DCNN model on images and obtained high classification accuracies. This is a pioneering
work in the field of ichnological analysis, as the current practice is to perform classification tasks
manually by experts in the field.

Keywords: ichnology; deep learning; transfer learning; artificial intelligence; trace fossils

1. Introduction

Machine learning is a subfield of artificial intelligence that aims to learn structure in
data and fit those data into models that can be utilized for automating mundane tasks
and gaining intelligent insights. It has shown great potential in tackling long-standing
research problems across science and engineering disciplines. Most noticeable has been the
contributions of deep learning, a branch of machine learning that is founded on artificial
neural networks. It has made remarkable breakthroughs in a variety of fields, including
biology, natural language processing, and computer vision [1–5].

In recent years, deep learning has attracted growing attention from the geoscience
community, as it yields fast and accurate solutions for labor-intensive research in areas
such as petroleum exploration, heavy mineral analysis, facies analysis, and the monitoring
of volcanoes using complex algorithms e.g., [6–8]. For example, image classification using
convolution neural networks (CNNs) has recently shown remarkable levels of performance
in core-based facies analysis e.g., [9], where long hours of visual observation are essential.
Some of the advantages of using deep learning in core-based studies are: (1) reducing risks
of human error by shortening physical labor; and (2) highlighting critical or problematic
core intervals, and thereby focusing human attention more efficiently.
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Although facies analysis is crucial, ichnological analysis is equally important to geo-
scientists in determining paleodepositional environments. Unfortunately, it also requires
long hours of training, practice, and visual observation. Therefore, ichnological analysis
is predisposed to benefiting from deep learning algorithms. There are various ways of
applying ichnological analysis in core-based datasets, including identification of individual
trace fossils, assessing trace fossil assemblages, calculating bioturbation index, recording
the diversity of trace fossil suites, and evaluating burrow size distributions [10–17]. Among
these, bioturbation index, expressed as Bioturbation Index (BI), is perhaps one of the most
fundamental criteria for understanding paleodepositional conditions, particularly with
respect to recognizing the presence of physico-chemical stress factors that operate in the
paleoenvironments deposited in various hydrocarbon reservoir units.

There are six grades of bioturbation intensities encompassed by the original BI defini-
tion: BI 0–6. BI 0 characterizes facies with no visible bioturbation, whereas BI 6 indicates
complete biogenic homogenization of the media, wherein no preserved primary physical
sedimentary structures survive, and all sedimentary fabric is biologically induced. Al-
though BI is technically a quantitative index [18], determining precise values is challenging
in practice. Correspondingly, many studies tend to employ alternative techniques, such as
using rough percentage values and visually defining low/moderate/intense bioturbation
indices, instead of the six grades of bioturbation in the BI classification.

In order to find a more robust, fast, and consistent solution to the problem of bio-
turbation index classification, we employed the capabilities of DCNNs. We compiled
a large data set (n = 1303) composed of images with different bioturbation indices. We
first divided these images into two groups to test whether the proposed image classifi-
cation technique can aid in differentiating unbioturbated facies from bioturbated facies.
This approach can be critical in unconventional reservoirs, where unbioturbated units,
possibly suggesting anoxic conditions, tend to have higher total organic carbon preser-
vation compared to bioturbated units; however, not all unbioturbated muddy units are
indicative of oxygen-depleted conditions [19,20]. We then used the original bioturbation
index values and divided images into three classifications: unbioturbated (0%), moderately
bioturbated (1–30%), and intensely bioturbated (31–100%), corresponding to BI 0, BI 1–2,
and BI 3–6, respectively. To the best of our knowledge, this is the first study that uses deep
learning-based image classification in determining ichnological characterization of facies
from core-based (subsurface) datasets. Since DCNNs typically require large amounts of
labeled data and long training times for optimal performance, we instead used transfer
learning to speed up the training process. Transfer learning is a machine learning technique
that allows us to use information gained from solving one problem to solve the next. In
this case, we used the VGG-16 [4] network trained on the ImageNet dataset. Based on
tests comparing the performance of other popular DCNN architectures, we found VGG-16
to yield the best performance in terms of accuracy and computational efficiency for the
ichnology classification task.

Although image classification, at its current stage, cannot replace human interpreta-
tion, it promises tremendous advantages, including: (1) reducing the amount of time spent
in the logging of cores; (2) minimizing the risk of human error; and (3) reducing costs by
using direct human attention more efficiently.

The rest of the paper is organized as follows. We begin with a description of the
dataset and the DCNN architecture used. This is followed by a discussion of the results
and a brief note on potential future applications, before mentioning the conclusions and
implications of this study.

2. Materials and Methods
2.1. Data Set

The images used in our experiments were collected from a variety of subsurface cores
and outcrop exposures representing siliciclastic sedimentary facies from several Cretaceous-
aged stratigraphic formations in the Western Canada Sedimentary Basin, Alberta Canada.
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In our training data set, there was a large variation in individual trace fossils present
in the facies, including Asterosoma, Chondrites, Conichnus, Cylindrichnus, Diplocraterion,
Macaronichnus, Ophiomorpha, Palaeophycus, Planolites, Phycosiphon, Piscichnus, Rhizocorallium,
Rossellia, Schaubcylindrichnus, Siphonichnus, Skolithos, Teichichnus, and Thalassinoides, as well
as bio-deformation structures and escape structures.

The majority of the images were derived from sandstone and siltstone facies with
some mudstone intervals, as well as rare conglomerate beds and mud-clast breccia units.
All images were derived from facies recording relatively shallow-water settings, such as
estuaries, bays, shorefaces, offshore-shelf, delta fronts, and prodeltas. A wide range of
physical sedimentary structures was observed, including low-angle to horizontal parallel
lamination, high-angle cross-stratification, trough cross-stratification, hummocky cross-
stratification, current ripple lamination, oscillation ripple lamination, normally graded
bedding, fluid mud drapes, gravel lags, isolated clasts and rip-up clasts, loading and flame
structures, convolute bedding and other soft-sediment deformation structures, syneresis
cracks, and various types of concretions.

2.2. Network Architecture

Among popular computer vision tasks, such as object detection, image segmentation,
and image-resolution enhancement, image classification is one of the most addressed
application areas using deep convolutional neural networks (DCNNs) [1–5]. DCNN is
a class of deep networks formed by a series of interconnected neurons that has led to
great achievements on image classification problems. For example, Krizhevsky et al. [1]
proposed AlexNet, a DCNN designed to classify images from the ImageNet dataset,
which contains 1.2 million high-resolution human-annotated images with 1000 different
classes. Later, Simonyan and Zisserman [4] introduced a deeper architecture for better
classification accuracies for the ImageNet dataset. Their proposed architectures, namely
the VGG networks (e.g., VGG-16 and VGG-19), could also be applied to other image
recognition tasks.

For the bioturbation classification problem, we propose to train a DCNN using BI
data labeled by an experienced ichnologist. These deep networks contain a large number
of trainable parameters requiring a huge amount of labeled data. To avoid the need for
manually labeling a massive collection of training examples, we used transfer learning—a
deep learning technique that relies on storing knowledge gained while solving one problem
and then applying it to a different but related problem. Therefore, instead of training from
scratch, we rely on the VGG-16 convolutional neural network (CNN) model [4] and use part
of its learned parameters derived from the training on the ImageNet dataset. This approach
allows us to gain the same high classification performance with a minimal amount of
manual labeling required. Such an approach has been proven to be successful in prior
studies on a diverse set of applications [9,21–25].

Our DL approach belongs to the supervised learning class, which aims at learning a
function from known input and output pairs (training data). The learned function is then
used in the prediction stage to map an unseen input (image) to an output (bioturbation
index class). Teaching a DCNN to learn this mapping involves data preparation, model def-
inition, and training. We used a total of 1303 color images that were selected approximately
between 4 to 8 cm in size in order to make our algorithm applicable to core-based studies.
Our outcrop images were likewise cropped roughly in the size of core dimensions. As the
default input size for the pre-trained model, we used 224 × 224 pixels, and we resized our
images to the same size while visually preserving original sedimentary and ichnological
structures without distortion. We carefully identified and labeled bioturbation indices in 3
classes. Among the 1303 images, 530 of them belonged to BI 0, 360 of them represented BI
1–2, and 413 of them represented BI 3–6. From these images, 1041 were used for training
(79.9% of the overall images) and the remaining 262 (20.1% of the overall images) were
used as test data for the evaluation and prediction stages.
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Perhaps one of the most difficult tasks in such classifications is to identify images that
encompass more than one facies possessing different bioturbation indices (e.g., Figure 1). For
such cases, we took average BI values of each bed and their thicknesses into consideration,
particularly for the ones that were very close to the lower-end or upper-end cut-off values.
Between BI 1–2 and BI 3–6, 74 images revealed this issue, and their bioturbation indices
were calculated using the following formula:

BIavg =
(Ta × BIa) + (Tb × BIb)

∑ T

where BIavg is the average bioturbation index, Ta, b, is the thickness of the individual beds,
BIa, b, is the bioturbation index of each bed, and ∑T is total thickness.
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Figure 1. A representative core image showing various bioturbation indices expressed by bioturbation
index (BI) in different facies.

We carried out two main experiments in this study. First, we trained a DCNN to
differentiate between bioturbated and unbioturbated facies. Next, we extended this task
to a 3-class classification problem that sough to model map the input images to one of
the three classes of unbioturbated (BI 0), moderately bioturbated (BI 1–2), or intensely
bioturbated (BI 3–6) facies. For both experiments, we defined our models (Figure 2) based
on the VGG-16 architecture [4], which was a DCNN containing 16 layers composed of
3 × 3 convolution filters. The input of the network was a 224 × 224-pixel image with
3 color channels (red, green, and blue). From the given inputs, their low-level features
(lines, edges, or dots) were learned by the convolution filters in the shallow parts of the
network. In the deeper parts, high-level features such as objects were more detectable. This
is the reason why feature extraction is more problem-specific in the deeper levels of the
network. Therefore, we kept the parameters fixed for the first four blocks from the training
of the VGG-16 for ImageNet dataset, and only allowed the weights to be trained for the
last block and the classifier parts of our models. Thus, using transfer learning significantly
reduced the computation time needed to train the model, and reduced the need for a large
number of training examples, as only the last block and the fully connected layers had
trainable parameters.

It is worth noting that through tests involving popular DCNN architectures such as
VGG-16, VGG-19, and custom DCNN models, we found VGG-16 to yield the best classifi-
cation performance. Moreover, starting with pre-trained weights for the ImageNet dataset,
we tested different combinations of frozen and trainable blocks. We found that freezing the
first four blocks of VGG-16, while allowing the last block and the fully connected layers to
be trainable, resulted in efficient training and improved classification accuracy compared
to other configurations.
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classification problem outputs the class of the given image in terms of its bioturbation index.

Moreover, to expand the existing labeled data and to insert regularizing effects into
the classification problems, we also used data augmentation during the training stage.
Data augmentation is a commonly used technique in model training, wherein new samples
are artificially created from the training data by applying some basic operations (rotation,
cropping, flipping, scaling, shifting, etc.). This allows a network to detect complex internal
features more easily when training data are limited. In order to not distort the particular
characteristics of the images, we carefully chose the augmentation techniques and allowed
the algorithm to create new samples randomly, applying horizontal flip and 10% shifts in
the width and height to the training data.

3. Results and Discussion

In order to ascertain the applicability of deep learning to ichnological analysis, we
ran two main experiments. Following this, we then tested a few specific techniques to
eliminate misclassifications and increase the overall accuracy of the algorithm. The first
experiment was for determining the presence of bioturbation in images and the second
experiment was to classify images further based on three main bioturbation indices.

3.1. Experimental Results 1: Unbioturbated versus Bioturbated Facies

The first experiment (EXP#1) is for differentiating unbioturbated facies (BI 0) from
bioturbated facies (BI 1–6) (Figure 3). To achieve this, we train our algorithm using BI
0 images and BI 1–6 images (Table 1). The algorithm ran ten times on a test data set
comprising 106 BI 0 and 156 BI >0 test images (Table 1). Accuracy values range between
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93.8% and 97.7%, with an average accuracy value of 95.9%. The analysis below represents
the highest accuracy results.
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and outcrop images are labeled based on their bioturbation indices.

Table 1. Results of experiment #1.

Experiment #1

Total Number
of Images

Number of
Training Images

Number of
Test Images Accurate Misclassified

BI 0 530 424 106 104 (98.1%) 2 (1.9%)
BI 1–6 773 617 156 152 (97.4%) 4 (2.6%)
Total 1303 1041 262 256 (97.7%) 6 (2.3%)

Among BI 0 and BI 1–6 test images, 98.1% and 97.4% are correctly classified, respec-
tively. Complex primary structures (e.g., hummocky cross-stratification and amalgamated
current ripples) and several non-biogenic structures that resemble biogenic features (e.g.,
mudstone rip-up clasts, concretions, gravel lags, scattered coal fragments, flame structures,
fractures/cracks, and soft-sediment deformation) are correctly classified or did not cause
confusion for the network. The algorithm also successfully classified outcrop images
along with core images and facies characterized by various grain sizes (e.g., fine-grained
sand to gravel), and successfully ignored human-made features such as pen marks and
surface stains.

In order to better understand our results and improve our algorithm for future appli-
cations, we also analyzed the misclassified images and compared them with similar images
in the training data set. Only 1.9% of the BI 0 test images are misclassified as BI 1–6, and
2.6% of the BI 1–6 test images are misclassified as BI 0 (Table 1). These misclassified images
display either rare, deformed mud drapes resembling bioturbation (e.g., Figure 4A), extremely
diminutive trace fossils, individual ichnogenera for which there are a few or no examples
in the training data set (Figure 4B), or sediment-swimming structures for which there are
no images in the training data set.
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3.2. Experimental Results 2: BI 0 vs. BI 1–2 vs. BI 3–6

Our second experiment (EXP#2) is to test whether we can construct a 3-class bioturba-
tion index classification using the same deep learning model. In this experiment, all images
were grouped into three categories: (1) unbioturbated (BI 0), (2) moderately bioturbated
(BI 1–2), and (3) intensely bioturbated (BI 3–6). In other words, we divide BI 1–6 images
used in EXP#1 into two classes as BI 1–2 and BI 3–6 (Figure 3). We run the algorithm on
test data set of 106 BI 0, 73 BI 1–2, and 83 BI 3–6 images. Again, we train our algorithm ten
times, starting with different initializations for the trainable parts of the model, and test
them on the same test data. The lowest accuracy we obtain is 85.1%, whereas the highest
is 88.9%, with an average of 86.8% for the three-class classification problem (Table 2 and
Figure 5).

Table 2. Results of experiment #2.

Experiment #2

Total Number
of Images

Number of
Training Images

Number of
Test Images Accurate Misclassified

BI 0 530 424 106 100 (94.3%) 6 (5.7%)
BI 1–2 360 287 73 62 (84.9%) 11 (15.1%)
BI 3–6 413 330 83 71 (85.5%) 12 (14.5%)
Total 1303 1041 262 233 (88.9%) 29 (11.1%)

Based on the highest test accuracy results (88.9%), the majority of the BI 0 images are
correctly classified, similar to the results of EXP#1 (Tables 1 and 2). Given that the BI 0 data
set is identical in both experiments, correctly identified images are also similar . Therefore,
94.3% of the BI 0 images were correctly classified (Table 2 and Figure 5). However, EXP#2
showed slightly different accuracy results when the BI 1–6 class was divided into BI 1–2
and BI 3–6 classes. Among the 73 BI 1–2 test images, 84.9% are correctly classified. From
the 83 BI 3–6 test images, 85.5% are correctly classified.

Only 5.7% of the BI 0 images are misclassified in EXP#2, with most of these either
identical to or similar to the images that are misclassified in EXP#1. EXP#2 shows lower
precision in BI 1–2 images, with 15.1% misclassified. The vast majority of these misclas-
sified images are labeled as BI 0 in our original classification. These images show very
low bioturbation indices (the lower range of BI 1), large concretions, and single isolated
trace fossils. For example, two misclassified images display diminutive escape structures
expressed only by minor disruptions of laminae (Figure 6A), unlike the more pronounced
ones included in the training data set. One image shows a large-scale escape structure but
also includes some mineral formations or possible smeared burrows (e.g., Cylindrichnus)
(Figure 6B). Precision in predicting BI 3–6 images is slightly higher compared to BI 1–2
images, with only 14.5% misclassified. The majority of these misclassified images occur at
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the lower limits of BI 3 (e.g., approximately 31–45%) and are thus intergradational with the
upper limits of BI 2.
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It should be noted that after EXP#1, but before the final results of EXP#2 were obtained,
we used 877 training images for both experiments. Although initial EXP#1 results showed
high accuracies, initial EXP#2 results showed considerably lower accuracies than the final
EXP#2 results explained above. This issue was the lack of statistical diversity of the training
dataset after we divided BI 1–6 images into two subclasses in EXP#2. To eliminate this issue,
we added additional 82 images into the BI 1–2 class and 82 images into BI 3–6 class and ran
the algorithm 10 times with different seeds. The final results of our experiments (EXP#1
and EXP#2), which are presented herein (Tables 1 and 2), include these additional images.

4. Future Applications

Before and after compiling the EXP#1 and EXP#2 results, we tested two techniques to
improve algorithm accuracy. The first one was to test what could be achieved on specific
features that are routinely misclassified. One particular misclassified image in EXP#2
shows a well-defined Ophiomorpha (Figure 4B). Upon analyzing the training data set,
we realized that it did not contain any similar images. Thus, we specifically added two
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more images containing examples of Ophiomorpha into our training data set and ran the
experiment again. Results showed clear improvement, in that this specific trace fossil and
the image were then correctly classified. The second test was for the entire dataset accuracy,
and it was applied before the final results of EXP#2 were received. Initially, we received
low accuracy values for EXP#2, but then we added more images into the training data
set. This increased the overall accuracies considerably (around 4–5%), resulting in higher
accuracies (88.9%) and suggesting that adding more training data with statistical diversity
allows improved accuracies in our model.

It should be noted that pure mudstones, such as oil and gas shales associated with
unconventional hydrocarbon plays, display significantly different ichnological character-
istics [19]. Correspondingly, facies examples of such unconventional shale reservoirs are
not included in this study. Although we tested our algorithm using shale images (e.g., the
Horn River shales), owing to the diminutive nature of the trace fossils, we achieved low
accuracy results. Such settings should probably be treated separately.

5. Conclusions and Implications

Applications of deep learning to ichnological studies are documented here for the
first time. Our results clearly show high accuracies in predicting bioturbation indices in
various siliciclastic sedimentary rock formations. These applications can be vital in oil and
gas exploration through reducing uncertainty, lowering the cost and labor time of experts,
maximizing efficiency by directing the experts’ attention to more problematic intervals
(i.e., those yielding low accuracy results), and in academia by facilitating accurate, reliable,
comparable, and consistent paleoenvironmental interpretations.

Our algorithm can be applied to industry and academia as long as image dimensions
are roughly comparable to those observed in subsurface cores. Therefore, it can be used
by any geologist with limited or no ichnological training. One needs to ensure that the
image dimension is consistent with the input size of the network (224 × 224 pixels) and the
resolution of the image is consistent with that used in training the model. We used images
with approximately 6–8 cm width and height, resulting in a resolution of 28–37 pixels/cm.

The algorithm is also suitable for both core- and outcrop-based studies. With such an
application, ichnology can be utilized widely worldwide, and geoscientists can achieve
a better understanding of the ichnological characteristics of siliciclastic reservoir units.
Applications of automated ichnology in various formations can also provide more accurate
and correlatable results between different formations.

Perhaps one of the most interesting findings in our algorithm is that, even should
some features resemble trace fossils, such as rip-up clasts and concretions, they were
mostly correctly classified as non-trace fossils in our tests. This may be due to their shape,
internal structure, and the marked contrast between them and the surrounding media. For
non-ichnologists in particular, these features can be misleading; therefore, our algorithm
can yield superior results in these cases.

From a deep learning perspective, our experiments reveal that the number of expert-
labeled images in the training dataset plays an important role in achieving high accuracies.
In an earlier attempt, we used 1141 images and achieved 94.7% and 85.0% accuracies in
EXP#1 and EXP#2, respectively. Given that the EXP#2 accuracy was initially relatively
low, we introduced 162 more images, which led to a 3.0% and 3.9% increase in EXP#1
and EXP#2, respectively. With further additions to the training set, higher accuracies can
be expected.

Geosciences require significant numbers of visual observations in many different
sub-disciplines, such as mineralogy, volcanology, sedimentology, and petroleum geology.
Therefore, deep learning offers a wide range of geological applications. In the future,
individual trace fossil identifications and detailed facies identifications will be imple-
mented in our dataset, providing not only accurate assessments of bioturbation index but a
comprehensive core-based analysis.
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