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Abstract: Distantly supervised relation extraction is the most popular technique for identifying
semantic relation between two entities. Most prior models only focus on the supervision information
present in training sentences. In addition to training sentences, external lexical resource and knowl-
edge graphs often contain other relevant prior knowledge. However, relation extraction models
usually ignore such readily available information. Moreover, previous works only utilize a selective
attention mechanism over sentences to alleviate the impact of noise, they lack the consideration of
the implicit interaction between sentences with relation facts. In this paper, (1) a knowledge-guided
graph convolutional network is proposed based on the word-level attention mechanism to encode the
sentences. It can capture the key words and cue phrases to generate expressive sentence-level features
by attending to the relation indicators obtained from the external lexical resource. (2) A knowledge-
guided sentence selector is proposed, which explores the semantic and structural information of
triples from knowledge graph as sentence-level knowledge attention to distinguish the importance of
each individual sentence. Experimental results on two widely used datasets, NYT-FB and GDS, show
that our approach is able to efficiently use the prior knowledge from the external lexical resource and
knowledge graph to enhance the performance of distantly supervised relation extraction.

Keywords: relation extraction; knowledge graph embedding; graph convolutional network; attention
mechanism

1. Introduction

Relation extraction (RE) is a crucial task of natural language processing (NLP), which
aims to recognize predefined semantic relations between two marked nominals in texts.
Various relations extracted from texts are helpful for knowledge graph (KG) construction,
as well as facilitating down-stream tasks that require relational understanding of texts, such
as intelligent question–answer [1], biomedical knowledge discovery [2], and dialogue sys-
tems [3]. Accurate relation extraction results promote precise text interpretation, discourse
processing and higher-level NLP systems. Given a sentence “Bill Gates co-founded Microsoft
with his childhood friend Paul Allen”, the goal of relation extraction is to automatically identify
the relation “founder” between “Bill Gates” and “Microsoft” expressed in the sentence. In
recent years, words and entities distribution representation learning have made significant
progress. Thus, many works utilizing neural network models to deal with the relation
extraction task have been proposed [4–6]. The most representative progresses are recurrent
neural network (RNN), convolutional neural network (CNN), and other neural network
architectures [7–9]. Existing approaches have achieved a great success based on the neural
networks. However, most supervised relation extraction models require a large number of
training data, which is usually expensive to obtain. To overcome this weakness, distant
supervision is introduced to automatically construct large scale datasets [10]. It is under
the assumption that if a pair of entities have a relationship in a KG, then all sentence
mentioning these entities express this relation. For example, given a triple (e1, r, e2) in
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the KG, all sentences that mention both entities e1 and e2 are regarded as the training
instances of relation r. Despite distant supervision paradigm can automatically collect
training data for relation extractor, it often suffers from the wrong labeling problem [11].
A pair of entities that appear in a sentence may not express the relation which links them
in the KG, they are just related to a same topic. As a result, the distant supervision will
inevitably bring noise into the generated training dataset, which drops the performance
of relation extraction. Most existing methods alleviate the negative impact of noise by
utilizing multi-instance leaning. The multi-instance based relation extraction can be re-
garded as a bag-level classification task, which allows different sentences to have at most
one shared label.

Existing methods for distantly supervised relation extraction have made some progress.
Nevertheless, they are still confronted with two challenges. (1) How to design more effective
sentence encoders to generate more expressive sentence-level features. Previous works for relation
extraction considered that all words in a sentence have equal contributions for predicting
the relation between two marked entities. In fact, only a few words in a sentence are
relevant for determining the relation expressed. Take the aforementioned sentence as an
example, “Bill Gates co-founded Microsoft with his childhood friend Paul Allen”. Obviously, the
word “co-founded” is of great importance in predicting the relation founder between “Bill
Gates” and “Microsoft”. However, the words “childhood friend” have little relevance with
that relation. Thus, encoding all words equally in the sentence without any distinction will
confuse the feature extractor and degrade the performance of the relation extraction model.
(2) How to make full use of the informative sentences in a bag and integrate them to generate bag-
level features for predicting the given relations. The traditional multi-instance learning model
only selects one sentence which has the maximum probability to be a valid candidate for
representing the sentence bag [11]. This strategy does not make full use of the supervision
information of the sentences in the bag, which may exacerbate the inadequate issue of
training data. Calculating the average of all sentences in the bag to obtain the bag-level
features is an improved method, but this method will introduce noise due to the existence
of false positive instances. Moreover, previous methods for relation extraction only based
on the individual semantic features in the textual sentences of the entity mentions. In
fact, the human prior knowledge from external lexical resource is critical for reducing the
reliance on training data, and it can improve the relation extraction performance.

To address the first challenge, a knowledge-guided graph convolutional network (KG-
GCN) based on the word-level attention mechanism is proposed to encode the sentences,
which attends to relation indicators that are useful in predicting relations. This is motivated
by the fact that each word in a sentence has different importance for relation inference [12].
Specifically, the relation indicators are human prior knowledge obtained from the external
lexical resource, which represent the key words and cue phrases of relations in sentences.
The sentence encoder utilizes the knowledge attention to calculate the attention weight
of each individual word and capture the informative linguistic clues of relations. In this
way, the model increases the weights of critical words and cue phrases, while reduces the
weights of trivial words. As a result, the critical words and cue phrases will contribute
more to sentence encoding, which can form a purified representation for sentences and
generate more informative sentence-level features.

To address the second challenge, we propose a knowledge-guided sentence-level
attention model to select multiple valid sentences. For the distantly supervised relation
extraction, the entities and relations are derived from existing knowledge graph. Thus,
the knowledge about these entities and relations can be used as supervisory information
to guide the selection of valid sentences. In previous methods, the relations just act as
relation labels to specify the class of sentences in the training stage. The structural and
semantic information between the entity pair and the relation is completely ignored, which
can actually be used as additional knowledge for relation extraction. To this end, our work
explores the structural and semantic information of triples from knowledge graph to guide
the selection of valid sentences.
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Contributions

In this paper, we combine the human prior knowledge obtained from the external lexi-
cal resource and the information learned from the training data to improve the performance
of distant supervision based relation extraction model. Our main contributions in this
paper are: (1) We propose a novel knowledge-guided graph convolutional network based
on the word-level attention mechanism. It utilizes the relation indicators obtained from
the FrameNet [13] to effectively capture the informative linguistic clues to generate more
expressive sentence-level features; (2) We mine the semantic and structural information of
triples from the knowledge graph as external knowledge to build a sentence-level attention
model. This model can select multiple valid sentences in a bag and make full use of the
supervision information of training instances; (3) A triplet embedding model is introduced
to augment the interaction between entities and relations, which can help triplets to provide
stronger supervisory information.

The rest of the paper is organized as follows. Section 2 covers the related works. In
Sections 3 and 4, we formulate the problem formally, and provide our solution for relation
extraction. We report the promising experiment results on real-world datasets in Section 5.
Finally, we conclude the paper in Section 6.

2. Related Work

In recent years, relation extraction, like big data and cloud computing [14,15], has
attracted considerable interest from researchers. The early works mainly focused on the
handcrafted feature-based models [16–18] and kernel-based models [19,20]. These methods
rely on the NLP tools, which unavoidably leads to error propagation or accumulation.
With the development of neural network technology in recent years, a number of relation
extraction researches have been proposed to utilize the neural network models [21]. These
methods can alleviate the model’s dependence on accurate feature matching and have
achieved great progress for relation extraction. Liu et al. [22] utilized a simple CNN model
that does not even have a pooling layer to extract the features of sentences, which is the
first attempt that using a CNN model to extract relations of entity pairs. Zeng et al. [7]
incorporated word embedding and position embedding as the input of a CNN model to
generate the sentence features. Combining the word embedding and position embedding
can obtain more semantic information of the relation mentions. Many works focus on
improving the performances of the neural network methods. However, most of these
supervised methods require large-scale labeled training data which is expensive to obtain.

In order to address this problem, distant supervision is proposed to automatically
generate large-scale labeled training data [10]. The distant supervision is based on the
assumption that there is a relation between an entity pair in a knowledge graph, all
sentences in a corpus containing the entity pair express this relation. However, this
assumption is too strong in practice due to the wrong label problem. To alleviate the impact
of the wrong labeled instances in the distant supervision learning, some works have been
proposed to use the multi-instance learning method [23,24], which gathers the sentences
mentioning the same entity pair into a bag to share a label. The attention mechanism was
also introduced in distantly supervised relation extraction in recent years, which can let
the neural network models focus on the informative sentences. Guo et al. [25] proposed an
attention guided graph convolutional networks to selectively attend to the relevant sub-
structures of dependency trees useful for the relation extraction task. Lin et al. [26] proposed
the sentence-level attention over instances in a bag to select the important sentences. Some
works combine the word-level and sentence-level attention mechanism to further improve
the performance of distantly supervised relation extraction [27,28].

In addition to utilizing the semantic information from sentences, some methods also
introduce external information to augment existing relation extraction models. Such as
the text descriptions of entities, which can provide helpful supplementary information
for relation classification. Ren et al. [29] proposed a new neural relation classification
method to integrate the text descriptions of the entities into a deep CNN model for relation
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classification. Vashishth et al. [30] proposed to use the side information, such as entity
type and relation alias, to enhance the performance of relation extraction. Han et al. [31]
proposed a joint representation learning framework to generate the mutual attention
between knowledge graphs and texts. This reciprocal attention mechanism can highlight
the important features and perform better knowledge graph completion and relation
extraction. Zeng et al. [32] modeled the relation path between two entities in a knowledge
graph to encode the relational semantics from both direct sentences and inference chains.

Despite the previous works have achieved the state-of-the-art performances, most of
these methods consider only the textual information of entity mentions or surface lexical
features present in sentences. The semantic information present in external lexical resource
is ignored, such as relation indicators in FrameNet and relation facts in existing knowledge
graphs, which can provide additional auxiliary information for relation extraction. In this
paper, the semantic information is used as prior knowledge to improve the performance of
distantly supervised relation extraction.

3. Methodology

In this section, a novel framework is presented for distantly supervised relation
extraction, which uses the prior knowledge from FrameNet and knowledge graph to
provide hierarchical knowledge attention. We denote a KG as G = {(e1, r, e2)}, which
consists of many triples (e1, r, e2). Each triple indicates a relation r between entity pair e1
and e2.

Given an entity pair (e1, e2) in a KG and a training set of sentence bags
D = {B1, B2, ..., BN}, a relation r is defined as a semantic property between the entity
pair (e1, e2). For distantly supervised relation extraction, all sentences Si refer to the entity
pair (e1, e2) are regarded as instances of the relation r. They constitute a instance bag for
this entity pair and relation type, denoted as Bi = {S1, S2, ..., Sn}. The target of the distantly
supervised relation extraction is to predict the labels for unseen bags. To this end, we
need to learn a relation extractor to capture features of the valid sentences in the bag and
aggregate them to form the bag-level features. Then we use the bag-level features to train a
classifier to predict the relations for the given entity pairs.

Our framework consists of two modules: Sentence embedding module and multi-
instance selection module. The sentence embedding module utilizes the relation indicators
from lexical resources as prior knowledge to guide the embedding of sentences, which
consists of word-level knowledge attention layer and graph convolutional layer. The
multi-instance selection module explores the structural and semantic information from
KGs as prior knowledge to guide the selection of multiple valid sentences, which consists
of knowledge graph embedding and sentence-level knowledge attention layer. The model
leverages hierarchical knowledge attention to attend over instances to alleviate different
levels of noise, which can generate more expressive relation representations to enhance the
relation extraction.

3.1. Sentence Representation

In this paper, we employ a knowledge-guided GCN model to build the context encoder
and transform the sentences into low-dimension vectors. The relation indicators extracted
from lexical resource are prior knowledge for word-level attention, which guides the GCN
model attend to the key words and cue phrases in the sentence embedding procedure.

3.1.1. Generation of Relation Indicator

The relation indicators represent the key words and cue phrases that reference to
different relation types. They are prior knowledge for the GCN model to capture the
linguistic clues of certain relation in texts, which can be obtained from lexical resource.
In this paper, we collect the relation indicators from a large-scale lexical resource called
FrameNet. The FrameNet is a publicly available lexical resource, which categorizes words
and sentences into high level semantic frames to express different concepts. Each semantic
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frame describes a type of relation, event, or object in the form of a conceptual structure,
which consists of definition, frame elements, FE core sets, examples, lexical units (LUs),
and frame–frame relations. The corresponding semantic frame of the relation founder
is illustrated as Figure 1. There are over 1200 semantic frames and 13,000 LUs in the
FrameNet, most of them describe different semantic relations.

Definition:

Frame Elements

(FEs):

Lexical units 

(LUs):

Frame-frame 

relations:

Frame Name: Intentionally_Create

The Creator creates a created entity.

Place, Time, Purpose, Components, Participant, 

Created_entity ...

Found, Create, Creation, Establish, Set up, Generate, 

Produce, Develop ...

Inherits from: Creating, Intentionally_act

Is Inherited by: Building, Manufacturing, ...

Figure 1. Semantic frame of the relation founder. The relation indicators are extracted from the
Lexical units.

In addition to FrameNet, there are some other popular lexical resources, such as Prop-
Bank [33] and VerbNet [34], which can also be utilized to extract the linguistic knowledge
of entity relations. However, unlike FrameNet which is semantically motivated and con-
tains lexical units with various part of speeches, PropBank and VerbNet are verb-oriented
and focus more on syntactic level. Hence, many important linguistic clues of entity rela-
tions cannot be extracted, and many verbs with no relational meaning may be extracted
unexpectedly, producing more noises to the relation extraction system.

For each relation type in our relation extraction, we first obtain the corresponding
semantic frames by traversing the FrameNet. All the LUs involved in these semantic
frames are relation indicators, which are actually the keywords that often used to express
such relation. We eventually identify 62 semantic frames and 1136 LUs from the FrameNet.
Each LU is a discrete word or phrase. In order to leverage the relation indicators to provide
knowledge attention, we project each word and phrase of the corresponding LU into
low-dimensional vector ui ∈ Rdw by looking up the pre-trained word embedding matrix,
where dw is the size of the LU embeddings. If a LU consists of multiple words, such as
the LU ”set up” in Figure 1, we calculate the mean of the embeddings of these words to
form the corresponding relation indicator. We aggregate all the relation indicators to form
a indicator set U = {u1, u2, ..., un}, where n is the number of LUs. This relation indicator
set can be used as the prior knowledge for relation extraction.

3.1.2. Knowledge Attention over Words

Each sentence S in the sentence bag consists of a sequence of words, i.e., S =
{w1, w2, ..., wm}, where m is the length of the sentence. We first project the discrete words
to low-dimensional word vectors by looking up the pre-trained word embeddings. Thus,
these words can be processed and modeled by the knowledge attention layer and graph
convolutional layer. The same word embedding matrix used in the LUs embedding pro-
cedure is employed to embedding the words in sentences. The word embedding of the
i-th word in sentence S is denoted by ew

i ∈ R1×dw , where dw is the size of the word em-
beddings. The sentence can be expressed as the concatenation of the word embeddings,
S = {ew

1 , ew
2 , ..., ew

m} ∈ Rm×dw .
Not all words in a sentence are equally important for relation extraction. In order to

distinguish the importance of each word in a sentence, we adopt the recently-promoted
self-attention mechanism [35,36] to measure the contribution (importance) of each word
to the expression of a relevant relation. It helps in highlighting important relation words
with respect to each of the relation indicators present in the LUs set. The generation of the
word-level knowledge attention is illustrated in Figure 2.
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FrameNet

…
 

[Bill Gates] co-founded 
[Microsoft] with his 

childhood friend Paul Allen …
 

…
 

…
 

…
 

Hidden 

Representation

Word Position

Word-level Knowledge 

Attention

…
 

…
 

…
 … … 

GCN

ReLU

Max-

Pooling

S
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n

c
e V
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r

 Sentence

Figure 2. The framework of the sentence embedding module. The upper right part illustrates the
generation of the word-level knowledge attention. The lower right part is the knowledge attention
based graph convolutional network, which calculates the vector representation of input sentences.

Formally, the query(Q) is the word embeddings of a sentence, and the key(K)-value(V)
pairs are both the relation indicator embeddings, i.e., Q = S ∈ Rm×dw , K = V = U ∈ Rn×dw .
Thus, the hidden representation of the input sentence can be obtained from

H = Attention(Q, K, V) = so f tmax(
QKT
√

dw
)V . (1)

dw is a scaling factor, which is the dimension of word embeddings. Specifically, for each
word ew

i of the input sentence, the attention probability pi is expressed as

pi = so f tmax(
ew

i KT
√

dw
). (2)

Then, the hidden representation of each word can be calculated as a weighted sum of
the values

hi =
n

∑
j=1

pi
j � V j, (3)

where hi ∈ R1×dw is the hidden representation of the i-th word in the sentence, �means
the element-wise multiplication, and ∑ performs along sequential dimension.

Eventually, the result of the knowledge attention can be calculated as

αi =
exp(µi)

∑m
j=1 exp(µj)

, µi = hiW1r, (4)

where W1 ∈ Rdw×dw is a square matrix, and r ∈ Rdw×1 is a random query vector. αi is the
knowledge attention score of the i-th word in the sentence, which is calculated by attending
to the relation indicators. This attention score represents the importance of the word for
relation extraction.

3.1.3. Knowledge Attention Based GCN

In this paper, we employ a knowledge-guided GCN model to build the context encoder
and transform the sentences into low-dimension vectors, as shown in Figure 2. The GCN
model is an adaptation of the convolutional neural network for encoding graphs, which
encodes the dependency structure over the input sentence with efficient graph convolution
operation to generate the vector representation of the sentence. Given a graph (dependency
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tree of a input sentence) with k nodes, we can represent the graph with an k× k adjacency
matrix A. Ai,j = 1 if there is an edge between nodes i and j, otherwise Ai,j = 0. We denote

the input vector as h(l−1)
i and the output vector of node i at the l-th layer of the GCN model

as h(l)
i . The graph convolution operation is expressed as:

h(l)
i = ReLU(

k

∑
j=1

Ai,jW lh(l−1)
j + bl), (5)

where ReLU is an activation function, W l is the weight matrix at l-th layer, and bl is the
bias vector. The new hidden representation h(l)

i of node i is obtained by considering only its
immediate neighbors. Repeating this graph convolution operation L times forms a L layers
GCN model. All these operations are conducted with matrix multiplications, which is
suitable for batch computation over instances and running on GPUs. Since the information
propagation between nodes is performed in parallel, the efficiency of the model is not
affected by the depth of the dependency tree.

In order to adapt the GCN model to encode the sentences, we convert each dependency
tree of the sentences into its corresponding adjacency matrix A. If there is a dependency
edge between words wi and wj, Ai,j = 1. Motivated by Zeng et al. [7], the position features
of words are also considered in our work, which can express the structural features of a
sentence. Each word in a sentence has two relative distances PF1 and PF2 with entities e1
and e2. Take the sentence mentioned in the previous section as an example, the relative
distances of word ”co-founded” to ”Bill Gates” and ”Microsoft” are −1 and 1. The position
embedding of each word in the sentence S is denoted by ep

i,1 ∈ Rdp and ep
i,2 ∈ Rdp , where

dp is the size of the position embeddings. The i-th word in sentence S can then be projected
to a low-dimensional vector wi = [ew

i ; ep
i,1; ep

i,2] ∈ Rd by concatenating the word embedding
with two position embeddings, where d = dw + 2dp. The initial representation of the
sentence S can be expressed as S = {w1, w2, ..., wm} ∈ Rm×d. Then, each node of the
dependency tree can be represented by it’s corresponding word embedding, and the inputs
of the GCN h(0) = {h(0)

1 , h(0)
2 , ..., h(0)

m } = {w1, w2, ..., wm} are obtained.
Since words never connect to themselves in the original dependency tree, the in-

formation of hl−1
i can never be propagated to hl

i . To address this issue, we update the
dependency structure by adding a self-loop for each word. Thus, the updated adjacency
matrix is expressed as Ã = A + I, where I ∈ Rm×m is an identity matrix. Furthermore,
previous GCN-based methods for sentence encoding treat each node of the dependency
tree equally without distinguishing the importance of them. In this paper, we introduce
the prior knowledge obtained from FrameNet to highlight the key words and cue phrases
of a sentence for relation extraction. During the graph convolution operation, we assign
each word wi a knowledge attention score αi calculated by using the pseudo self-attention
mechanism described in previous section. Then, we modify the calculation of each layer,
and the knowledge attention guided graph convolution operation of node i at l-th layer is
expressed as

h(l)
i = ReLU(

k

∑
j=1

αj(Ãi,jW lh(l−1)
j + bl)), (6)

where αj is the knowledge attention score of node j. Using knowledge attention to selec-
tively obtain information from neighboring nodes can effectively alleviate the negative
impact of noisy nodes. As a result, the key words will contribute more to the sentence en-
coding in the graph convolution operation. After conducting a L layers knowledge-guided
GCN for the word vectors, we obtain the hidden representations of each word that directly
integrated information from neighbors no more than L edges apart in the dependency tree.
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For each sentence in a instance bag, all the original word embeddings of the sentence
are feed into the GCN model to obtain the representation of the whole sentence. The hidden
representation of the sentence is obtained as follows:

h(L) = GCN(h(0)) = GCN(S). (7)

Finally, a max-pooling layer is used to capture the most important and relevant
features from generated sequence and address the issue of variable sentence lengths.

s = Max(h(L)) = Max{h(L)
1 , h(L)

2 , ..., h(L)
m }. (8)

where s ∈ Rd is the final representation of the input sentence, Max() is the max-pooling
operation that maps m output vectors to the finial sentence vector.

3.2. Knowledge Supervised Sentences Selection

As mentioned in above sections, the latent semantic information contained in KGs
plays a vital role in distantly supervised relation extraction, since the training data are
obtained by aligning the textual corpus with the existing KGs. These semantic information
can provide additional supervision for selecting multiple valid sentences. Previous works
use only the textual information to train the relation extractor. Additionally, the distant
supervision simply incorporates the KG information as meaningless one-hot labels instead
of treating it as a graph, which ignores the rich structure and semantic information present
in KGs. In this paper, we extract the interactions between the entity pair and relations in
KGs as prior knowledge to guide the selection of valid sentence.

3.2.1. Knowledge Graph Embedding

Knowledge graph embedding is an independent work that maps the entities and
relations into low-dimensional vector space. In order to learn the vector representation
of entities and relations of triples in KGs, the TransE [37] model is the natural choice.
For each triple (e1, r, e2), the explicit relation r can be treated as the translation from e1
to e2, which is formalized as r = e2 − e1. We denote the relations in knowledge graphs
as KG-relations. For the encoding of each sentence bag, our model gives each sentence
in the bag a confidence score by measuring the semantic distance between the sentence
and the KG-relation. As a result, the model can selectively assign higher weights for valid
sentences and reduce the impact of noisy sentences by assigning low weights to them.

We also propose a interactive model to learn the representation of KGs and mine
the interactions between the entities and relations. We believe that the confidence of
a triple depends on the interaction of the entities and relationships it contains. If the
vector distribution of entities and relations in a triple are more similar in the semantic
space, the triple has higher confidence. For each triple (e1, r, e2) in a knowledge graph
G, we calculate the interactions between the entities and relation by using the following
interaction scoring function:

Sinter(e1, r, e2) = e1 · r + r · e2, (9)

where e1, r, e2 ∈ Rdw are low-dimensional vectors of the entities and relation in the triple,
e1 · r and r · e2 are considered as the interactions between e1 and e2 with r, respectively. The
interactive scoring function will assign higher scores to the fact triples than negative ones.
Based on the above scoring function, we train a margin-based ranking loss function over
all triples in G as follows,

Linter = ∑
G

∑
G′

max{0, Sinter(e′1, r, e′2)− Sinter(e1, r, e2)}, (10)

where
G′(e1,r,e2)

= {(e′1, r, e2)|e′1 ∈ E} ∪ {(e1, r, e′2)|e′2 ∈ E} (11)
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is the collection of negative triples. The negative triples is generated by using the random
entities in the knowledge graph to replace the head entity or tail entity in the fact triples.
We use stochastic gradient descent (SGD) as optimizer to optimize the loss function and we
use a L2 regularization that helps prevent over-fitting. The constraint on the L2-norm of
embeddings are defined as ∀(e1, r, e2), ‖ e1 ‖26 1, ‖ r ‖26 1, ‖ e2 ‖26 1. The model learns
an unique vector representation for each entity and relation in the knowledge graph G and
maps it into a low-dimensional semantic space.

Since the true relations in the test set are unknown, for each entity pair (e1, e2), we
simply define the KG relation embedding rkg ∈ Rdw as a translation from e1 to e2, which is
formalized as

rkg = e2 − e1. (12)

Eventually, the embeddings of the KG relations rkg can be used as prior knowledge
to guide the selection of valid sentences during the aggregation of multiple instances to
generate bag-level relation representation.

3.2.2. Knowledge Attention over Sentences

Given a sentence bag Bi = {S1, S2, ..., Sn} with n sentences, all the sentences refer
to a common entity pair. The embeddings of each sentence {s1, s2, ..., sn} in the bag can
be obtained by using the sentence representation module, as described in Section 3.1.
However, the sentence bag are obtained by using the distant supervision algorithm, which
contains some vague and wrong sematic components. Thus, we argue that some sentences
may contribute more to the final textual relation representation. In order to discriminately
aggregate sentence-level representations into bag-level representation, the multi-instance
learning that use a selective attention mechanism is an intuitive choice. The selective
attention algorithm generates a weight distribution over all sentences in the bag to alleviate
the noise problem. However, when there is only one sentence in the bag, even the only
sentence is a noise instance (wrong labeled instance), the selective attention mechanism
will be useless. It is worth noting that in the commonly used distant supervision relation
extraction corpus, almost 80% of the bags contain only one sentence, and many of the them
are even wrong labeled. To address this problem, we use the KG relation embedding rkg
as knowledge attention over sentences to augment the contribution of positive instances
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Instead of generating a weight probability distribution for all sentences in the bag, we
calculate a confidence score for each sentence based on the prior knowledge rkg. For the
i-th sentence in the bag, the scoring function is formally defined as

ui = sigmoid(vᵀa tanh(Wa[si; rt])),

rt = Wtrkg + bt,
(13)

where ui is the confidence score for the i-th sentence, and [; ] denotes the concatenation
operation. Wt ∈ Rdw×dw , Wa ∈ Rda×da , va ∈ Rda×1, andda = d + dw, are parameters
learned in the training stage. The mean aggregation operation is performed over sentence
in the bag to form the bag-level vector representation for further relation classification,
which is obtained by

rb =
1
n

n

∑
i

ui · si, (14)

where rb ∈ Rd is the final representation of the sentence bag.

3.3. Complexity Analysis

In our work, the time and space cost is mainly on the word-level knowledge attention
computation and knowledge graph embedding module.

For word-level knowledge attention computation, the time and space cost is mainly
on the self-attention operation. For the self-attention layer, the dimension of the input
representation is dw, and the length of the sentence is m. In Equation (1), the dot products
of the query with all keys are implemented. We can obtain that the time and space
complexities of each self-attention operation are O(dwm2) and O(dwm), respectively.

In the knowledge graph embedding module, the time and space cost mainly depends
on the calculation of the interaction between entity and relation in the triples, i.e., solving
the Equation (9). The time complexity of Equation (9) is O(dk), and the space complexity
is O(1), where dk = dw is the size of the entity embedding and relation embedding in the
knowledge graph embedding space. The computational complexity of the knowledge
graph embedding model is proportional to the dimension of the entity and relation em-
beddings. The time consumption in the training process is mainly determined by the
number of entities and relations in the training set. Due to the low complexity of the
knowledge graph embedding model, it can adapt well to the embedding of large-scale
knowledge graphs.

4. Implementation for Relation Classification

Our approach introduces the semantic and structure information from FrameNet and
knowledge graphs as prior knowledge to guide the distantly supervised relation extrac-
tion. In this section, we discuss how to train the knowledge guided relation extraction
model. First, the word embedding (words in sentences and in LUs) and KG embedding
are pre-trained by using the GloVe [38] tool and the knowledge graph embedding module,
respectively. Then, the sentence embedding model can be trained by using the word-level
attention mechanism based on the relation indicator of LUs. Finally, the bag-level represen-
tation of the sentence bag can be obtained by using the sentence-level attention mechanism.
We adopt a pairwise margin-based ranking loss function [39] as the optimization target of
our knowledge-guided graph convolutional network model.

Given a text corpus D and a knowledge graph with relation set R, the model aims to
predict a relation type for each sentence bag in the textual corpus, which assigns a semantic
matching score to each sentence bag as for how well the bag expresses a candidate relation.
The vector representation of each bag rb can be obtained by using the models proposed in
aforementioned section. During the training stage, we learn the vector representation [WR]r
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for each relation label r. To this end, we calculate the semantic matching score between
each bag-level representation rb with each relation type, which is formalized as follows,

S(x)r = rᵀb · [W
R]r, (15)

where WR ∈ Rd×|R| is a randomly initialized relation matrix whose columns represent
different relation labels, and |R| is the number of the predefined relation types. In order to
train the model, we define a loss function and optimize it over all instance in the training
set D,

L =log(1 + exp(γ(m+ − S(x)r+)))

+ log(1 + exp(γ(m− + S(x)r−))),
(16)

where γ is a scaling parameter, m+ and m− are hyper parameters. S(x)r+ and S(x)r−

represent the semantic matching score between rb with the corresponding actual relation
type r+ and false relation type r−, respectively. In the training stage, we choose r−

with the highest false score as the negative relation type. We employ SGD optimizer to
optimize the loss function and utilize L2-norm β‖θ‖2

2 to prevent over-fitting, where θ is the
parameter set.

5. Experimental Setup
5.1. Dataset and Evaluation Metrics

The datasets of our experiment contain two parts, knowledge graphs and text corpus.
We use FB60K as KG to learn the representation of entities and KG relations. The FB60K is
extracted from Freebase (FB) and extended from the dataset developed by Riedel et al. [24].
There are 1324 relations, 69,512 entities and 335,350 facts in this dataset. We adopt two
widely used datasets of distantly supervised relation extraction as text corpus to demon-
strate the effectiveness of our method and baselines. They are NYT-FB [24] and GDS [40]
datasets, where the statistical comparison of them are illustrated in Table 1.

NYT-FB: The NYT-FB dataset is developed by Riedel et al. [24], which is constructed
by aligning the New York Times (NYT) corpus with Freebase facts. The association between
the NYT and FB is built by performing a string match between entity mentions in NYT
and canonical names of entities in FB. The entity mentions are fined by using the Stanford
named entity recognizer. NYT-FB is a standard benchmark for distantly supervised relation
extraction in most of the previous works [26,40], which contains 52 predefined relation
types and a null class NA relation (no relation between two entities). The most common
relations in this dataset are location, nationality, capital, place_lived, and neighborhood_of. The
training instances are obtained by aligning the sentences from the NYT corpus of years
2005–2006. The test instances are obtained by aligning sentences from 2007. There are
570,088 sentences, 291,699 entity pairs in the training set, and 172,488 sentences, 96,678
entity pairs in the testing set. Since this dataset does not have a validation set, we split
the training set into 80% for training, and 20% for validation. This dataset is available
at: https://drive.google.com/file/d/1UD86c_6O_NSBn2DYirk6ygaHy_fTL-hN/view?
usp=sharing, accessed on 20 May 2021.

GDS: The Google distant supervision (GDS) dataset is developed by Jat et al. [40],
which is extended from the Google relation extraction corpus. There are 5 relation types,
including perGraduatedInstitution, perHasDegree, perPlaceOfBirth, perPlaceOfDeath, and a NA
relation. Each instance bag in this dataset is guaranteed to contain at least one sentence
which expresses the relation type assigned to that instance bag, which alleviates the noise
in distant supervision setting. This makes automatic evaluation more reliable. The dataset
is divided into three parts, 60% for training, 10% for validation, and 30% for testing. There
are 11,297 sentences and 6498 entity pairs in the training set, 1864 sentences and 1082 entity
pairs in the validation set, and 5663 sentences and 3247 entity pairs in the testing set. This
dataset is available at: https://drive.google.com/file/d/1UMS4EmWv5SWXfaSl_ZC4
DcT3dk3JyHeq/view?usp=sharing, accessed on 20 May 2021.

https://drive.google.com/file/d/1UD86c_6O_NSBn2DYirk6ygaHy_fTL-hN/view?usp=sharing
https://drive.google.com/file/d/1UD86c_6O_NSBn2DYirk6ygaHy_fTL-hN/view?usp=sharing
https://drive.google.com/file/d/1UMS4EmWv5SWXfaSl_ZC4DcT3dk3JyHeq/view?usp=sharing
https://drive.google.com/file/d/1UMS4EmWv5SWXfaSl_ZC4DcT3dk3JyHeq/view?usp=sharing
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Following previous works [26], we evaluate our model on the held-out test set from
the datasets. It evaluates our model by comparing the relation facts recognized from the
test sentences with those in Freebase. To show the performance of our model, we use
precision-recall (PR) curves and top-N precision (P@N) as metrics in our experiments. The
PR curves are constructed using the model predictions on all entity pairs in the test set for
all relation types sorted by the confidence scores from the highest to lowest.

Table 1. A statistical comparison of the used datasets.

Datasets Sentences Entity Pairs Relations

NYT-FB
Train 455,771 233,064

53Valid 114,317 58,635
Test 172,448 96,678

GDS
Train 11,297 6498

5Valid 1864 1082
Test 5663 3247

5.2. Baselines

We compare our proposed model with extensive previous works, including feature-based
methods and state-of-the-art neural-based methods. The baselines are listed in following.

5.2.1. Feature-Based

Distant supervision for relation extraction without labeled data (Mintz) [10]. The
original distantly supervised approach for relation extraction, which is a multi-class logistic
regression model.

Multi-instance learning with overlapping relations (MultiR) [23]. A probabilistic
graphical model for multi-instance learning, which is able to handle problems with over-
lapping relations.

5.2.2. Neural-Based

Piece-wise convolutional neural network (PCNN) [11]. A convolutional neural net-
work based distantly supervised relation extraction approach, which employs the piecewise
max-pooling operation to generate the vector representation of sentences.

Piece-wise convolutional neural network with sentence-level attention (PCNN-ATT) [26].
A improved approach based on the PCNN model, which employs a selective attention
over multiple instances to alleviate the wrongly labeled problem.

Bi-directional gated recurrent unit based word attention model (BGWA) [40]. A
Bi-GRU based method for relation extraction, which employs the word-level and sentence-
level attention mechanism to enhance the representation of instance bags.

Relation extraction with side information (RESIDE) [30]. A distantly supervised
neural relation extraction approach which uses relevant side information and employs
graph convolutional networks to encode the syntactic information of instances.

5.3. Parameter Settings

The initial word and entity embeddings in our experiment are pre-trained by using the
50 dimensional GloVe embeddings on a 6 billion corpus [38]. For multiple words nominal,
we average the embeddings of its subcomponents. For the out of vocabulary words, we
assign random vectors to them. The dimension of the position embedding dp is 5. In
our experiment, we use two layers GCN architecture to encode the sentences. The hyper-
parameters are determined on the development dataset. The scaling parameter γ = 2 and
margins m+ = 2.5, m− = 0.5 of the ranking loss function are set according to the parameter
settings reported in the works of Santos et al. [39]. We employ mini-batch mechanism
to train our model with 50 instances in each mini-batch to. The initial learning rate λ is
0.5, we gradually reduce the learning rate according to the training epoch. Additionally,
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we apply a dropout strategy with a dropout rate of 0.5 to all but the last GCN layer. The
hyper-parameter values of our model are shown in Table 2.

Table 2. Hyper-parameters used in our experiments.

Para Description Value

dw Word\entity\relation Embedding 50
dp Position Embedding 5
β Regularization Factor 0.001
λ Learning Rate 0.5
p Dropout probability 0.5
L GCN Layers 2

5.4. Comparison with Baselines

To verify the effectiveness of our model, we compare it against the baselines on the
NYT-FB and GDS datasets. Since GDS is a recently proposed dataset, we only compare our
model with neural-based methods on this dataset. Figure 4 summarizes the comparison
results in terms of PR curves on the datasets. From the comparison results illustrated in
Figure 4, we can observe that:

(1) The neural-based methods significantly outperform the feature based methods
Mintz and MultiR on the NYT-FB dataset. The results demonstrate that the human-
designed features are limited in relation extraction, and the use of NLP tools to generate
features often leads to the propagation and accumulation of errors. It also demonstrates
the robustness and effectiveness of the neural models for relation extraction;

(2) The BGWA and PCNN+ATT outperform the PCNN model over the entire range of
recall on both datasets, which indicates the attention mechanism is helpful for distantly
supervised relation extraction. The higher performance of the RESIDE model over BGWA
and PCNN+ATT demonstrates that the additional side information (relation alias and
entity types) from knowledge graphs helps in improving the performance of the model;
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Figure 4. Performance comparison for proposed model and previous baselines in terms of precision-
recall curves. (a) Comparison of precision-recall curves on NYT-FB dataset. (b) Comparison of
precision-recall curves on GDS dataset.

(3) Our proposed model KGGCN achieves the best performance compared with all
the baselines on both datasets. Especially in contrast to feature-based methods, our model
increases by more than 40% when the recall is larger than 0.25. Compared with other neural-
based methods, our model also has a significant improvement. All these demonstrate that
the prior knowledge from FrameNet and knowledge graphs can effectively guided the
encoding of the sentence-level and bag-level features;

(4) The overall performance of the neural-based models on GDS dataset is better than
that on NYT-FB dataset. This is because that the NYT-FB dataset contains many negative
instance bags. All sentences in these bags are wrongly labeled, which is very noisy for
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relation extraction. However, the GDS dataset is constructed based on the at-least-one
restriction, i.e., each bag contains at least one sentence that exactly expresses the relation of
the corresponding entity pair. Moreover, the GDS dataset only has 5 relation types, which
is easier for classification.

For the proposed model and the neural-based methods, we also evaluate the perfor-
mances of them in terms of P@N on the NYT-FB dataset. Following the experiment settings
in the previous works [26], we randomly select one, two, and all sentences for each entity
pair to form the instance bags. We evaluate the P@N of the models on each circumstance.
From Table 3, we can observe that:

(1) The models with attention mechanism (PCNN+ATT, BGWA, RESIDE, KGGCN)
achieve better performance than the PCNN (without attention mechanism) on each case.
The training sentences generated by using the distant supervision may be wrongly labeled,
because not all sentences contain the entity pair exactly express the corresponding textual
relations, and not each sentence contributes equally for the encoding of a bag. Thus, the
attention mechanism can effectively highlight the meaningful sentences and alleviate the
impact of the wrong label problem;

(2) The RESIDE performs much better than BGWA and PCNN+ATT, which demon-
strates that the side information (relation alias and entity type) extracted from external
corpus is beneficial for the improving of relation extraction;

(3) Our proposed model outperforms all the baselines, which demonstrates that the
traditional data-driven attention mechanism is limited for distantly supervised relation
extraction. The same relation may have subtle semantic differences between different entity
pairs, and a simple global attention can not distinguish these semantic differences. The
knowledge-based attention of our model is obtained by embedding the interaction between
the entity pairs and relations, which is more discriminative than the data-driven attention.

Table 3. Performances comparison of KGGCN with neural-based baseline models in terms of P@N using different number
of sentences in bags on NYT-FB dataset. One, two, All mean the number of sentences randomly selected from a instance bag.

Models
One Two All

P@100 P@200 P@300 Mean P@100 P@200 P@300 Mean P@100 P@200 P@300 Mean

PCNN 73.3 64.8 56.8 65.0 70.3 67.2 63.1 66.9 72.3 69.7 64.1 68.7
PCNN+ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
BGWA 78.0 71.0 63.3 70.8 81.0 73.0 64.0 72.7 82.0 75.0 72.0 76.3
RESIDE 80.0 75.5 69.3 74.9 83.0 73.5 70.6 75.7 84.0 78.5 75.6 79.4

KGGCN (ours) 87.6 78.3 72.8 79.6 85.1 76.2 73.8 78.4 86.7 81.4 76.3 81.5

It is worth noting that the RESIDE model also introduces information from knowledge
graphs. This information is generated by directly extracting the names of relations from
existing KGs, which does not model the interaction and structure information between
entities and relations in the KGs. However, the core of distantly supervised relation
extraction is to align the entity pairs and their relations of knowledge graph with these
mentioned in textual corpus. Thus, the interaction between the entity pairs and the
relations are important for distantly supervision relation extraction. The knowledge graph
embedding module of our model focuses on the interaction between the entity pairs and
relations, which can effectively extract the semantic and structure information of the KGs
as additional knowledge attention to provide supervision for valid sentences selection.
Thus, our proposed method achieves better performance.

5.5. Ablation Study

In order to analyze the effect of various components of the proposed KGGCN on
its performance, we conduct an ablation study on the NYT-FB validation set. We define
four variant models with cumulatively removed components, including KGGCN w/o KG,
KGGCN w/o LU, KGGCN w/o ALL and KGGCN w TransE.
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Specifically, KGGCN w/o KG denotes removing the knowledge attention from the
knowledge graph and generating the bag representation by calculating the mean of all
sentences in the bag. KGGCN w/o LU denotes removing the knowledge attention from
lexical units, and KGGCN w/o ALL denotes removing both the knowledge attention from
the knowledge graph and lexical units. KGGCN w TransE denotes replacing the knowledge
graph embedding module with the TransE. The experimental results in terms of P@N are
shown in Table 4. According to the results, we can observe that when removing different
components from KGGCN, the performance of the variant models drops drastically. Par-
ticularly, by removing the word-level knowledge attention (i.e., KGGCN w/o LU) and
sentence-level attention (i.e., KGGCN w/o KG), the performance decreases 2.5 and 7.2,
respectively, in terms of P@N mean for all sentences. When removing both modules above
(i.e., KGGCN w/o ALL), the performance of the variant model drops 13% in terms of P@N
mean for all sentences. These demonstrate the effectiveness of the prior knowledge from
knowledge graph and lexical units. In addition, in order to make an in-depth evaluation
of the knowledge graph embedding module of our proposed method, we replace it with
TransE to generate the representation of the entities and relations in the knowledge graph
(i.e., KGGCN w TransE). The results show 1.4 drops in terms of P@N mean for all sentences.
It demonstrates that our knowledge graph embedding module can effectively extract the
semantic and structure information, as well as the interaction between entities and relations
in the knowledge graph.

Table 4. Ablation study on the NYT-FB dataset.

Models p@100 p@200 p@300 Mean

KGGCN(ours) 86.7 81.4 76.3 81.5
KGGCN w TransE 85.1 80.2 74.9 80.1
KGGCN w/o LU 84.5 78.7 73.7 79.0
KGGCN w/o KG 78.2 75.4 69.3 74.3
KGGCN w/o ALL 73.2 69.5 62.9 68.5

Outperforming these variant models highlights our model’s ability to capture sentence-
level and bag-level features. All these experimental results demonstrate that the exter-
nal information from knowledge graph and FrameNet can be the prior knowledge to
guide the extraction of textual features, which helps to improve the distantly supervised
relation extraction.

6. Conclusions and Future Work

In this paper, we propose a novel method for distantly supervised relation extraction
task by using a knowledge attention guided graph convolutional network. We aim at
exploring the information from FrameNet and knowledge graphs as knowledge attention
to improve the performance of graph convolutional networks. Extensive experiments
are conducted to evaluate the proposed method. The experimental results show that our
method can efficiently use the prior knowledge from the FrameNet and knowledge graph
to enhance the performance of distantly supervised relation extraction, and it outperforms
all the compared baselines.

In future work, we will investigate the automatic selection of the relation indicator
for relation identification. We will try to apply the prior knowledge to enhance the word
representations, and explore potential methods to capture the semantic connection between
words and relation facts. Furthermore, we will try to apply the knowledge attention in
other domain-specific tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

RE Relation extraction
NLP Natural language processing
KG Knowledge graph
CNN Convolutional neural network
RNN Recurrent neural network
GCN Graph convolutional network
KGGCN Knowledge-guided graph convolutional network
LUs Lexical units
SGD Stochastic gradient descent
NYT-FB New York Times with freebase facts
GDS Google distant supervision
PR Precision-recall
P@N Top-N precision
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