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Abstract: The image generated by binary computer-generated holograms (CGHs) always suffers
from serious speckle noise. Thanks to the fast frame rate of the binary spatial light modulator, the
speckle can be significantly suppressed by intensity accumulation, i.e., the sequential display of
multiple CGHs of the same scene. If enough randomness is added to the CGHs, the speckle noise can
be mostly averaged out. Intuitively, the quality of the reconstructed image should be proportional to
the number of intensity accumulation. However, there is no simple method to predict the dependence
of the average noise and accumulation number, and we can only know the results after finishing the
full computation. In this paper, we propose an empirical formula of the average noise based on the
speckle phenomenon in a laser projector. Using this model, we have confirmed that the randomness
induced by random phase is equivalent to that induced by random down-sampling for the generation
of binary CGHs. In addition, if the computational efficiency is a concern, the CGH calculated with
iterations is not recommended for intensity accumulation display. Finally, there is an upper-quality
limit of the reconstructed image by intensity accumulation. Thus, a strategy for efficient intensity
accumulation is suggested.

Keywords: computer-generated hologram; CGH; binary holography; holographic display; speckle

1. Introduction

The use of a computer-generated hologram (CGH) is a promising technique for
naked-eye three-dimensional (3D) display without the issue of vergence-accommodation
conflict [1]. To realize the display, the CGHs are applied to address a spatial light modulator
(SLM), generating the light field of a 3D scene. Usually, the SLM is a phase-modulation (PM)
SLM for the high diffraction efficiency. Alternatively, the 3D display can also be realized by
using a binary SLM; i.e., the modulation is 0, π in phase or 0, 1 in amplitude [2–6]. The
display quality of a binary SLM is usually low because of the limited degrees of freedom.
Although optimization algorithms, such as binary search [7–9] or simulated annealing [10],
can be applied to improve the quality of binary CGH display, the quality of a single binary
CGH is still limited. Error diffusion [11–13] can generate a binary CGH with good quality
only when the object distance, the normalization factor, and the weighting factors are
optimized. Super-pixel display schemes [14–16] can achieve high-quality display by binary
CGHs. However, its optical filtering setup significantly increases the form factor, thereby
limiting its application potential. On the other hand, it is easier to drive a binary SLM, and
thus the display frame rate of a binary SLM can be ten to a thousand times faster than an
eight-bit PM SLM. Therefore, it is capable of quickly displaying different CGHs of the same
scene, which is called intensity accumulation (IA) [17–20]. In this way, the speckle noise
can be averaged out and thus the quality of a reconstructed image can be significantly
improved. However, there is no simple method to predict the dependence of average
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noise and accumulation number, and we can only know the results after finishing the full
computation. In this paper, our goal is to find a suitable model to describe the dependence
between the average noise and the accumulation number. This model is confirmed to fit
the properties of binary CGHs generated by the random phase (RP) method, the modified
iterative Fresnel algorithm (MIFA), and the localized random down-sampling (LRDS)
method. With the help of the noise model, we can optimize the design strategy for various
application circumstances.

2. Method
2.1. Binary Computer-Generated Holograms

Figure 1 illustrates the setup for calculating binary CGHs. First, the complex amplitude
of the object light at the hologram plane is calculated by

Eo(x, y) = F−1{F{O(x, y)}T( fx, fy; z0)
}

, (1)

where O(x, y) is the object function (the amplitude transmittance of object), which is
assumed to be two-dimensional (2D) for simplicity; T( fx, fy; z) is the free-space transfer
function, ( fx, fy) are spatial frequencies corresponding to spatial coordinates x and y;
z0 is the distance from the object to the hologram plane; and finally F{·} and F−1{·}
denote the 2D Fourier transform and 2D inverse Fourier transform, respectively. In the
digital calculation of free-space propagation, the workspace of both the object plane and
the hologram plane must be much larger than the object; otherwise, aliasing occurs [21].
Subsequently, the light field inside the window region of the hologram plane is cropped
and binarized by

Hb(x, y) = B{Eo(x, y)w(x, y)}, (2)

where w(x, y) is the window function, and B{·} is the binarization operator, defined by

B{A} = 1 f or Re{A} > 0
= 0 otherwise.

(3)
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Figure 1. Setup of CGH calculation.

In reconstruction, the binary hologram is backpropagated from the hologram plane to
the object plane. There are two problems in the calculation of binary CGHs. First, if the
object function is spatially smooth, the binary CGH will reconstruct a high-pass filtered
version of the image and the low spatial-frequency information is lost [22]. Therefore, the
object function should be pre-processed before the forward propagation. The processing
methods will be introduced in the next section. The second problem is that both the field
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truncation due to the window function and binarization will result in speckle noise. In
this paper, our focus is on speckle noise suppression by intensity accumulation. The image
reconstructed by intensity accumulation is expressed as

Ir(x, y) =
N

∑
n=1
|En

r (x, y)|2 =
N

∑
n=1

∣∣∣F−1{F{Hn
b (x, y)}T( fx, fy;−z0)

}∣∣∣2, (4)

where En
r (x, y) is the reconstructed field of the n-th binary hologram Hn

b (x, y), and N is the
total number of holograms for the same object. Finally, we use peak-signal-to-noise ratio
(PSNR) as the metric to estimate the quality of the reconstructed image. PSNR is defined as

PSNR = 20 log10
IMAX
IRMSE

, (5)

where IMAX and IRMSE are, respectively, the maximum signal and the root mean square
error of Ir(x, y) in comparison with |O(x, y)|2.

2.2. Processing of the Object Function

The typical method to process the object function is the random phase (RP) method, in
which a random phase function is multiplied to an object function, giving a new function,

On
RP(x, y) = O(x, y) exp[jφn

RP(x, y)], (6)

where φn
RP(x, y) is a random value in the range (−π, π). Because there will be numerous

distributions of the random phase, it is easy to generate N different random phase functions
for N binary CGHs. A variation of the RP method is the modified iterative Fresnel algorithm
(MIFA), in which the object field and the binary hologram are iteratively obtained with
each other [23,24]. The object-amplitude constraint and the binary-amplitude constraint
are applied on the retrieved object and the hologram, respectively. Therefore, each iteration
in MIFA needs one forward propagation and one backward propagation. After multiple
iterations, the object can be regarded as being modulated by an optimized phase mask, and
the phase distribution of the object still looks random.

The second method of object processing is localized random down-sampling (LRDS).
The down-sampled object function is expressed as

Om
LRDS(x, y) = O(x, y)Mm

LRDS(x, y), (7)

where Mm
LRDS(x, y) is a binary mask with the same size as the object function. The mask

Mm
LRDS(x, y) is segmented into many tiles with size k× k pixels. For each tile, one pixel is

randomly selected as unity (on), and the others are zero (off). Therefore, the down-sampling
rate of the mask is 1/k2, and many LRDS masks with different sampling positions can
be generated. Based on LRDS, there is an advanced method called adaptive intensity
accumulation (AIA) [18]. In the AIA method, the object will not only be down-sampled but
will also be modified by an adaptive binary mask. The n-th adaptive mask is determined
from the reconstruction of previous n CGHs to enhance the image quality. Therefore, every
CGH for the AIA method needs one forward propagation and one backward propagation.

2.3. Noise Model of Intensity Accumulation

Before comparing different methods of binary CGHs, we need to find a model to
quantitatively describe the dependence of the speckle noise on the number of intensity
accumulation. Because this is a statistical problem and needs complicated calculation, we
intend not to derive the exact solution. By contrast, we only build an empirical formula
according to the simulation data. The candidate formula comes from an analogous speckle
phenomenon, i.e., the summation of multiple speckled images in laser projection [25,26].
This postulation is reasonable because the holographic recording is similar to the step
of light from a micro displayer to the entrance pupil of the projector; the holographic



Appl. Sci. 2021, 11, 7729 4 of 10

reconstruction is comparable to the procedure of light from the exit pupil of the projector
to the screen. In short, the speckle contrast of the displayed image is expressed as

C =

√
N + K + 1

KN
, (8)

where N is the number of summation, and K is the ratio of imaging resolution (the min-
imum imaging spot size) over the speckle size. In our problem, i.e., the intensity accu-
mulation of CGHs, K depends on object distance, the pixel pitch, and the hologram size.
According to our simulation condition, K ranges from 15 to 25 normally. However, direct
calculation of K is difficult because it is also affected by the distribution of object function
and the processing method. Finally, by assuming that all the noise in reconstruction comes
from speckle, the PSNR in this model is expressed as

PSNRC = 20 log10
S
C

, (9)

where S is the peak signal, which depends on the distribution of the objective function and
the object processing method. It should be noted that Equation (8) is originally derived
under the assumption that the signal is uniform. In practice, the signal, i.e., the original
object, contains different brightness in various locations. Therefore, we can only find the
mean values of S and K from simulation or experimental data.

3. Simulation

We performed simulations to confirm the noise model. The simulation specifications
are as follows. The wavelength and the pixel pitch are 0.65 µm and 7.56 µm, respectively.
The computing workspace is 2000× 2000 pixels, while both the object size and the hologram
size are 512× 512 pixels. The object distance is 190 mm. First, we used the RP method
to generate 100 binary CGHs and calculated the PSNR of the reconstructed image with
different accumulation numbers. The ground truth image (object) applied in the simulation
is shown in Figure 2a. Figure 2b shows a typical reconstructed image, which is from the
intensity accumulation of images reconstructed by 100 RP binary CGHs. The resolution
of the reconstructed image is apparently less than the ground truth image because of the
natural lowpass filtering of the limited size of the hologram (Figure 1). The PSNR of the
reconstructed image is calculated in the region of interest (the same size as the object) at
every number of intensity accumulation. As we obtain the PSNR curve from simulations,
we can fit the simulation curve using Equations (8) and (9) to find the values of S and K.
Both the PSNR from simulations (in circle) and the fitting PSNRC (in solid line) are shown
in Figure 3. Apparently, the proposed noise formula matches the simulation very well. In
this case, the values of the parameters (S, K) are found to be 2.04 and 17.36, respectively.
The values can be also regarded as a reference of comparison. The same procedures for
MIFA CGHs (five iterations and ten iterations), the LRDS CGHS, and the LRDS+AIA CGHs
were repeated. The PSNR data, together with the fitting curves, are shown in Figures 4–7,
respectively. The model fit well most types of CGHs, except for the AIA method. These
simulation results are discussed in the next section.
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Figure 7. PSNR of the reconstructed image by LRDS binary CGHs (k = 4) together with AIA as a
function of accumulation number. The values of the parameters (S, K) of the fitting curve are (2.24, 42.4).

4. Discussions

The important parameters obtained from the empirical formula are listed in Table 1.
In particular, we consider the PSNR at different propagations (P) or different numbers of
intensity accumulation (N). The concern of different propagations is for the evaluation of
the computing-capacity-limited case, in which the binary CGHs must be generated using a
limited computing power (e.g., the real-time display). The concern of different numbers
of intensity accumulation is for the evaluation of the frame-rate-limited case, in which
the frame rate is limited but the computing power is not a constraint (i.e., non-real-time
applications). From Equations (8) and (9) and for N → ∞ , we can also define a maximum
achievable PSNR as 20 log10

(
S
√

K
)

. In other words, the image quality cannot be infinitely
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improved via intensity accumulation. This is very different from previous studies [19,20,27],
in which the noise was assumed to be proportional to 1/

√
N and thus the quality could be

continuously improved.

Table 1. Comparison of different binary CGH methods.

Method S K
PSNR (dB) at

P Propagations
PSNR (dB) at

N Accumulations

P = 10 P = 100 N = 10 N = 100 N = ∞

RP 2.04 17.36 14.04 17.86 14.04 17.86 18.59

MIFA
(5 iterations) 3.11 11.4 9.13 1 16.93 2 16.93 19.91 20.42

MIFA
(10 iterations) 3.27 9.55 NA 15.21 3 16.98 19.68 20.09

LRDS
(k = 4) 2.08 16.79 14.2 17.9 14.2 17.9 18.61

LRDS+AIA
(k = 4) 2.24 4 42.4 4 12.47 20.54 16.04 21.39 23.28 4

1 The PSNR at N = 1 because each iteration needs two propagations. 2 The PSNR at N = 10. 3 The PSNR at N = 5. 4 The applied model is
inapplicable, but the fitting result is still listed here for reference.

For the MIFA method (Figure 4), the S value raises to above 3, but K decreases, in com-
parison with the RP method. For MIFA with 10 iterations (Figure 5), the S value increases
further than that of MIFA, with five iterations. It is postulated that a greater iteration num-
ber can increase the maximum achievable PSNR. On the contrary, the maximum achievable
PSNR decreases slightly in the case of more iterations. This counterintuitive result can
be explained by the fact that the iteration in producing one hologram is a procedure of
signal enhancement. Meanwhile, the same procedure also increases the correlation be-
tween different holograms, which effectively reduces the value of K in the average process.
The significantly reduced K also results in another problem. The efficiency (PSNR at 100
propagations) of intensity accumulation by MIFA CGHs is the worst among all discussed
methods. Accordingly, MIFA is not recommended for the intensity accumulation, provided
the computing cost is the main concern. The characteristics of LRDS CGH (Figure 6) are
almost the same as those of RP CGH. This implies that the randomness generated by
random phase and by random down-sampling can be regarded to be identical in practice.
Therefore, for a pointwise CGH algorithm (e.g., [28]), the use of random down-sampling
can significantly reduce the computing load without degrading the display quality. The
fitting model is not applicable for the LRDS+AIA method (Figure 7). The reason is that
AIA is an adaptive method to improve the quality of reconstruction globally. Therefore,
the statistical randomness of each binary hologram has been broken in this method. Ac-
cording to the above discussion and Table 1, we can conclude that the RP method and the
LRDS method are better for the computing-capacity-limited case, while MIFA method can
provide a better PSNR for the frame-rate-limited case. The LRDS + AIA method always
exhibits the best PSNR, except for the case of a small number of propagations (P = 10).

Finally, we will consider the design strategy of intensity accumulation. Since there is a
maximum achievable PSNR, the display by using many numbers of intensity accumulation
is a waste of computing power. Our goal is to find a reasonable number of intensity
accumulation to achieve a PSNR only slightly lower than the maximum achievable PSNR.
The difference between the maximum achievable PSNR and PSNR at a specific number N∆
is calculated as

∆ = 20 log10 S
√

K− 20 log10
S√

N∆+K+1
KN∆

= 20 log10

[
S
√

K/
(

S/
√

N∆+K+1
KN∆

)]
= 20 log10

√
N∆+K+1

N∆
.

(10)
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It is noted that ∆ is independent of S. From Equation (10) and for a given ∆ and K, we
find N∆

N∆ =
K + 1

100.1∆ − 1
. (11)

The needed accumulation numbers for different K’s and ∆’s were calculated and are
listed in Table 2. Normally, we can set ∆ = 1 dB to achieve a balance between quality and
computing cost.

Table 2. Number of intensity accumulation for different K and ∆.

K

N∆
∆ = 0.3 dB ∆ = 0.5 dB ∆ = 0.7 dB ∆ = 1 dB

10 154 92 63 43
15 224 132 92 62
20 294 173 120 81
25 364 213 149 101

5. Conclusions

In this paper, we have proposed a model to estimate the dependence of PSNR on
the number of intensity accumulation by binary CGHs. The model is confirmed to fit the
properties of binary CGHs generated by the random phase (RP) method, the modified
iterative Fresnel algorithm (MIFA), and the localized random down-sampling (LRDS)
method. In summary, MIFA can achieve good quality but is worse in its computing
efficiency. The randomness characteristic of RP CGHs and LRDS CGHs is almost the same.
Therefore, for a pointwise CGH algorithm, the LRDS method is a better object processing
method because the computing load can be significantly reduced without degrading the
display quality. For any method, there is a maximum achievable PSNR for the reconstructed
image, and thus the number of accumulations must be accurately determined in order
to avoid the waste of computing power. In this paper, we only considered the speckle
due to wave truncation and quantization. In practice, the speckle due to scattered light
from optical elements cannot be suppressed by intensity accumulation, and thus the image
quality is usually worse than the simulation. On the other hand, the coherence of light
source is another important factor of image quality. If a low-coherence source is applied,
the speckle can be better suppressed. This aspect has not been considered in the present
paper, and it is worthy of further study.
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