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Abstract: Power-form nonlinear contact force models are widely adopted in relatively moving
parts of macro (e.g., rolling bearings considering Hertzian contact restoring force between rolling
elements and bearing raceways) or micro (e.g., the micro cantilever probe system of atomic force
microscopy) scale mechanical systems, and contact resonance could cause serious problems of wear,
contact fatigue, vibration, and noise, which has attracted widespread attention. In the present paper,
the softening/hardening stiffness characteristics of continuous and one-sided contact power-form
nonlinear spring models are addressed, respectively, by the analysis of the monotone features of
resonant frequency-response skeleton lines. Herein, the period-n solution branch and its stability
characteristics are obtained by the harmonic balance and alternating frequency/time domain (HB–
AFT) method and Floquet theory. Compared with previous studies, this paper will furtherly clarify
the influences of externally normal load, the power form exponent term, and excitation amplitude on
the softening/hardening stiffness characteristics of general power-form spring systems. In addition,
for a power-form system with a one-sided contact, the phenomena of primary and super/sub-
harmonic hysteretic resonances inducing period-doubling, folding bifurcation, the coexistence of
multiple solutions are demonstrated. Besides, it gives the evolution mechanism of two types of
intermittency chaos in a one-sided contact system. The overall results may have certain basic
theoretical significance and engineering values for the control of vibration and noise in contact
mechanical systems.

Keywords: power-form nonlinear spring; dynamic stiffness; hysteretic resonance; one-sided contact;
intermittency chaos

1. Introduction

The mass-spring model is one of the basic mechanical elements, which can be used
to describe the interaction of deformation, energy transfer, and motion control between
different bodies. At the macro, micro, and nano scales, linear spring models with a linear
relationship between force and displacement depicted by hook’s law F(x) = kx are widely
observed [1]. However, many interactions are not suitable for linearization. The classical
three-body problem mentioned by Newton in 1687 promotes the development of non-
linear science [2]. The nonlinear load-deformation relationship is generally expressed as
F(x) = an·xn + an−1·xn−1 + . . . + a2·x2 + a1·x + a0. In a contact system, however, the
power-form nonlinear restoring force FC(x) = KC·xα is more common, where the nonlinear
power-form exponent term α of the normal contact force between two elastic surfaces is in
the range of 1.5 to 3.5 [3], the nonlinear force in piano hammers is 2.2 < α < 3.5 [4], and even
the case of 2 < α < ∞ exists in the solitary wave propagation through particle chains [5].
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Contact interfaces are indispensable in machine systems including bolted joints, hinges,
rolling bearings, and so on, which can transmit coupling forces between structures [6].
Many publications have focused on the contact stiffness modelings and their static or
quasi-static stiffness characteristics for contact systems [7,8]. On the other hand, it should
be noted that in the fundamental mechanisms with relative motions (e.g., hinges, meshing
gears, rolling bearings, and probe detection system), the contact vibrations between relative
moving components are often inevitable, due to the external excitation or roughness and
waviness between contact surfaces [9]. Herein, the dynamic contact dynamic stiffness
has a significant effect on the dynamic behavior of the contact machine system, and the
static stiffness model is unable to describe the dynamic characteristics in contact vibra-
tions. For example, it is traditionally considered that the rolling bearings have hardening
stiffness characteristics due to the Hertzian contact force–deformation relationship [7,10],
but gradually researchers find that the dynamic supporting characteristics of the system
can soften [11,12]. In addition, recently contact resonances have been widely used in the
design of sensors [13] and atomic force microscopy [14], and obviously, contact dynamic
stiffness is closely correlative to the contact resonance, but this correlation needs to be
further clarified. Therefore, it is necessary to conduct a systematic study on the nonlinear
dynamic stiffness and resonance behaviors of a nonlinear power-form mass-spring system
especially considering contact factors.

Based on the works of Mickens [15] and Hu et al. [16], Cveticanin [17] and Kovacic
et al. [18] gave the approximate analytical solution of the general power-form continuous
system with the aid of special function method. Then, Kovacic [19], Rakaric et al. [20] and
Huang et al. [21] carried out many studies on the hysteretic characteristics of the primary
resonances for such a general power-form system. However, the above research has not
considered the effect of externally normal load on the dynamic stiffness and resonances. On
the other hand, most of the studies of contact vibrations are concentrated on the Hertzian
point contact case with the ideal 3/2 power-form exponent term. Carson and Johnson [22]
proposed the concepts of contact spring and contact resonance earlier, considering the
rolling contact between two disks. Through experiment, it is found that this Hertzian
point contact system has dynamic softening stiffness in small contact resonance, whose
characteristics are very different from the static hardening stiffness. It is also pointed out
that the case of loss contact can increase the softening spring characteristics. Soon afterward,
Nayak [23] verified the results of Carson and Johnson [22] by the analysis of a nonlinear
one-sided Hertzian point contact spring model under harmonic excitations, in which the
author provided an analytical study on the softening hysteresis characteristics of the system
in primary resonances. For Nayak’s contact spring model, Hess and Soom [9] found that
the dynamic load components can lead to a reduction in the mean area of contact and the
friction force. Rigaud and Perret-Liaudet [24] pointed out that loss of contact non-linearity
can bring a wide frequency range of softening resonance. Furtherly, Ma [25] discussed
the criterion for contact loss to occur. In a word, the Hertzian point contact system has
softening contact resonance characteristics in the case of small vibration, and the normal
constant load has a significant influence on the dynamic stiffness of the system, but the
influence law needs to be further developed. In addition, there are few studies on the
characteristics of contact resonances for a general power-form contact spring system.

The contact resonance and its hysteresis behaviors can aggravate the wear, contact
fatigue, vibration, and noise of a mechanical system, and as a consequence, affect the
working accuracy of the system. Therefore, it is of great theoretical and engineering value
to study contact resonance in depth. In this paper, the harmonic balance and alternating
frequency/time domain (HB–AFT) method [25,26] and Floquet theory are used to fur-
ther study the primary, super-harmonic and sub-harmonic resonances and their dynamic
stiffness (i.e., the resonant skeleton) characteristics in continuous and one-sided contact
power-form nonlinear spring models. For doing these, firstly, the influence of the normal
constant load on the dynamic softening/hardening stiffness characteristics will be dis-
cussed. Secondly, the inherent mechanism of hysteretic resonances will be studied. Finally,
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the evolution of complex responses even the intermittency chaos in a one-sided contact
system will be clarified.

2. Power-Form Nonlinear System Model

For a power-form nonlinear spring-mass system with an externally normal load W
and a harmonic excitation, its equation of motion is given as

d2x
dt2 + 2ζH(x)

dx
dt

+ H(x)sgn(x)|x|α = A cos ωt + W (1)

where ζ is the damping coefficient; A and ω are the amplitude and frequency of harmonic
excitation, respectively; sgn(x) is the sign function as,

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

. (2)

H(x) ∈ {1, Heaviside(x)}, herein H (x) takes 1 for the continuous system, and if W = 0,
the Equation (1) is consistent with the classical model of reference [19]. For a one-sided
contact system, H(x) takes as a Heaviside function of x,

Heaviside(x) =
{

1, x > 0
0, x ≤ 0

(3)

and in this case, the system loses contact when x < 0 (see Figure 1).
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3. Methodology

The AFT technique can avoid the analytical treatment of nonlinear terms through time-
domain discretization [26], and this makes the HB-AFT method very effective in solving
the strong nonlinear contact problem, which is different from the traditional harmonic
balance method. In this paper, the periodic solution is called the period-n solution if the
period of the response is n times the excited period. The solution process of the period-1
motion of Equation (1) is given below.

Let τ = ω·t, then Equation (1) can be expressed as

ω2 d2x(τ)
dτ2 + F(x(τ)) = A cos τ + W. (4)

where the nonlinear restoring force is

F(x(τ)) = 2ζωH(x(τ))
dx(τ)

dτ
+ H(x(τ))sgn(x(τ))|x(τ)|α. (5)

To find the periodic solution of Equation (4) with period 2π, x(τ) and F(τ) can be
expressed as

x(τ) = P(1) +
K

∑
k=1

[P(2k) cos(kτ)− P(2k + 1) sin(kτ)] (6)

F(τ) = Q(1) +
K

∑
k=1

[Q(2k) cos(kτ)−Q(2k + 1) sin(kτ)] (7)

According to the process of harmonic balance, insert Equations (6) and (7) into
Equation (4) and obtain the following 2K + 1 algebraic relationships:

g(P, Q, ω) = 0 (8)

Equation (8) consists of 2K + 1 algebraic equations but contains 4K + 2 unknown
harmonic coefficients denoted as P and Q in Equations (6) and (7). To obtain P from
Equation (8), the following AFT process is adopted.

The time-domain discrete information of x(τ) is given by the inverse discrete Fourier
transform as,

x(n) = Real

{
P0 +

K

∑
k=1

Pkei(2πkn/N)

}
(9)

and the discrete information of the restoring force in time domain is

F(n) = F(X(n), X′(n), ω) (10)

Then, by discrete Fourier transform, Q can be expressed as

Qk =
φ

N

N−1

∑
n=0

F(n) ei(−2πkn/N) (11)

Herein, φk = φ (2k)+ i φ (2k + 1); φ0 = φ (1), where φ takes P or Q in Equations (9) and
(11); N is the number of sampling points in a time domain period, and n = 0, . . . , N − 1;
φ = 1 when n = 0, otherwise φ = 2.

Taking P as an unknown variable and ω as a control parameter, the arc-length contin-
uation can be introduced to Equation (8) for automatically tracking P and the frequency-
response curve of system (4).

Finally, the stability characteristics of the frequency-response curve can be obtained
by Floquet theory [26].
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4. Results
4.1. Frequency-Response Characteristics of Continuous System (H(x) = 1, ζ = 0.01, A = 0.1)

For α = 1.5 and W = 0, the continuous system is power-form nonlinear without
externally normal load. Its primary resonance exhibits hardening spring characteristics
since the period-1 frequency-response curve bends to the right (see Figure 2a), and cyclic
folding bifurcations at turning points A1 and A4 can bring jumping phenomena to the
system. For α = 0.6 and W = 0, as shown in Figure 2b, the primary resonance of the
system exhibits softening spring characteristics, and the 2-order, 3-order, and 5-order
super-harmonic resonances are excited obviously. Herein, transcritical bifurcations at A5
and A6 lead period-1 solution unstable and 2-order superharmonic resonance emerging.
Overall, as α > 1 (or 0 < α < 1), the resonant skeleton line of the primary resonant frequency-
response curve has no inflection point, i.e., the system has a single monotonic softening
(or hardening) dynamic stiffness characteristic, respectively, but the hysteretic degree can
be adjusted by α. As shown in Figure 3, the resonant curves gradually slope more to
the right and the resonant amplitudes decreases as α increases, i.e., the hardening spring
characteristics get stronger. The above results agree well with the theoretical studies of the
literature [19].
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As shown in Figure 4, when a constant load is applied (i.e., W > 0), an inflection point
appears and the skeleton line of the primary resonant frequency-response curve bends from
left to right (for α > 1) or right to left (for 0 < α < 1), which changes the dynamic stiffness
characteristics of the continuous system. For example, when α= 1.5 and W = 5, the response
amplitude is lower than the inflection point of the skeleton line, which makes the system
have a softening spring (i.e., softening dynamic stiffness) characteristics (see Figure 4a).
However, if the response amplitude is higher than the inflection point of the skeleton line
(when α = 1.5 and W = 1), the system has a softening-to-hardening spring (i.e., softening-to-
hardening dynamic stiffness) characteristics (see Figure 4a), and in this case, cyclic folding
bifurcations occur at four turning points of the resonant frequency-response curve. On the
other hand, when 0 < α < 1, as shown in Figure 4b, the frequency-response skeleton lines of
the primary resonances have the hardening-to-softening characteristics, which makes the
system have a hardening dynamic stiffness characteristic when the response amplitude is
lower than the inflection point of the skeleton line (such as B3 point when W = 1). Besides,
for α > 1 (or 0 < α < 1), the locations of the primary resonances move to high frequency (or
low frequency) as the externally normal constant load W increases.
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4.2. Frequency-Response Characteristics of One-Sided Contact System (H(x) = Heaviside(x),
ζ = 0.032, A = 0.1, W = 1)

For α = 1, the continuous system is linear, so its dynamic stiffness is consistent with
the static stiffness of the system. There are no hardening/softening stiffness characteristics,
and the skeleton of the primary resonant frequency-response curve is a straight line ω = 1
(see Figure 5a). In contrast, for a power-form α = 1 one-sided contact system, an inflection
point appears at the boundary of loss contact and the skeleton line of the primary resonant
frequency-response curve bends to the left. Therefore, the system exhibits softening
dynamic stiffness characteristics in the loss contact case, which is caused by the average
contact time decreasing as the vibration amplitude increases [24]. Similarly, for α > 1 or
0 < α < 1, as shown in Figure 5b,c, dramatically softening dynamic stiffness characteristics
are exhibited in the loss contact case (compared with the continuous system). Especially, for
α > 1, the one-sided contact system can have monotonic softening stiffness characteristics
(see Figure 5b). This softening dynamic support has been found in the ball bearing-rotor
system, where the nonlinearity of Hertzian point contact exists between the balls and
raceways of the support ball bearings [27].
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As shown in Figures 6 and 7, with the increase in the externally normal constant load
W, the location of the primary resonance moves to a high frequency (α > 1) or low frequency
(0 < α < 1), which agrees with the rule of the continuous system in Section 4.1. In addition,
for the one-sided contact system, it is obvious that the amplitude boundary of loss contact
increases as normal load W increases, which means that there is less chance of losing contact.
Moreover, the damping coefficient ζ has a significant effect on the response amplitude of
a one-sided contact system in the case of loss contact (see Figures 6a and 7a). Therefore,
the identification and control of the damping coefficient are very important for the quality
control of the practical one-sided contact system with high accuracy requirement, such as
the micro-cantilever probe system in the atomic force microscope [28].
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4.3. Excitation Characteristics of One-Sided Contact System (ζ = 0.032, α = 1, W = 1)

Next, the excitation characteristics of the one-sided contact system will be considered
in detail. As shown in Figure 8a, for ω = 1, with the increase in the excitation amplitude A,
the stable response of period-1 solution branch undergoes period-doubling bifurcation at
A1, and the coming period-2 solution branch undergoes hysteresis and jumping at the cyclic
folding bifurcation points A2 and A3, which agrees well with the numerical bifurcation
diagrams shown in Figure 8b. The period-doubling bifurcation leads coexistence of the
stable period-1 solution and period-2 solution in the system. For example, the period-1
solution P1 and period-2 solution P2 coexist when A = 1. On the other hand, for ω = 1 and
A = 1, the corresponding period-1 solution P1 and period-2 solution P2 are located on the
primary resonance and 1/2-order sub-harmonic resonance (see Figure 9a), respectively. It
is indicated that the intrinsic triggering mechanism of period-doubling bifurcation at A1 is
the softening dynamic stiffness characteristics of the one-sided contact system, where the
loss of contact nonlinearity leads to the softening 1/2-order sub-harmonic resonance and
the corresponding period-2 motions excited. In addition, the system also has higher-order
stable solutions such as period-3, period-4, and period-5 solution branches coexisting
(see Figure 9b), and they are excited by softening 1/3-order, 1/4-order, and 1/5-order
sub-harmonic resonances, respectively. It is clear that the coexisting solution characteristics
of a one-sided contact system are complex due to the loss of contact nonlinearity. Besides,
as shown in Figure 9a, unlike primary resonance, the 1/2-order subharmonic and 2-
order super-harmonic resonances of the system can only be excited in the case of losing
contact, because the system belongs to a linear continuous system (α = 1) below the loss of
contact boundary.
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Moreover, as shown in Figure 8, the period-doubling bifurcations at points A4 and
A6 lead to the period-4 solution branches excited from the stable period-2 branch, and
then period-8 response also emerges through period-doubling of the period-4 solution
branch. The leading Floquet multiplier of the coming period-8 solution branch passes
out of the unit circle from the +1 axis at A7 point of A = 1.77983603 as A changes (see
Table 1), where the typical reverse tangent bifurcation [26,29] is clear (see Figure 8b), and
then the motion of type-I intermittency chaos is induced (see Figure 10a). As the excitation
amplitude A increases, the loses contact characteristics of the system become stronger, and
the typical crisis-induced [30] intermittency chaos (see Figure 10b) emerges in the interval
a-a of Figure 8b. At this time, the type-I intermittency chaos attractor merges with another
periodic orbit, and Figure 11 shows the process of the above involution.

Table 1. Period-8 motion Floquet multipliers λm around the turning point A8.

A 1.7798 1.77982 1.779835 1.77983603

λm
0.9920 0.9927 0.9991 1.0020
0.1857 0.1854 0.1839 0.1833
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Figure 11. Phase portraits and their Poincare mappings of one-sided contact system for ω = 1,
(a) A = 1.7798, (b) A = 1.78, (c) A = 1.785, and (d) the enlargement of (c), where the red dots denote
the Poincare mapping of unstable period-8 motion at A7 point (see Figure 8).

5. Conclusions

Contact vibrations between relative moving components in contact systems, such as
hinges, meshing gears, rolling bearings, and probe detection system, are often inevitable
due to the external excitations or roughness and waviness between contact surfaces, where
the power-form nonlinear load-deformation relationship FC(x) = KC·xα is commonly satis-
fied in the contact interfaces. With the aid of the HB–AFT method and Floquet theory, we
have investigated the dynamic characteristics of the hardening/softening nonlinear stiff-
ness and hysteretic resonances for the typical continuous and one-sided contact power-form
spring systems. First, it is found that the externally normal load can lead to hardening-to-
softening (0 < α < 1) or softening-to-hardening (α > 1 dynamic stiffness characteristics to the
continuous power-form system, unlike the purely softening (0 < α < 1) or hardening (α > 1)
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dynamic stiffness characteristics without an externally normal load. Second, it is shown
that the one-sided contact power-form spring model can exhibit remarkable softening
spring characteristics, and the resonant response amplitude is dramatically affected by
the damping coefficient in the case of loss of contact. Third, the location of the primary
resonance moves to a higher frequency (α > 1) or lower frequency (0 < α < 1) in either a con-
tinuous or one-sided system. Finally, it is indicated that multi-order super/sub-harmonic
softening resonances and abundant bifurcation behaviors can also be excited beyond the
loss of contact boundary, which can lead to multiple periodic solutions with different
periods co-existing and can even excite type-I and crisis-induced intermittency chaos to
the one-sided contact system. The results obtained in this paper could benefit to clarify the
inherent correlations between dynamic stiffness characteristics and complex resonances in
the vibrational contact systems.
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