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Abstract: This paper proposes a novel control strategy for six degrees-of-freedom active vibration
isolation tables. In these systems, the most challenging issue is to suppress the external vibrations
and isolate the internal interactions while still preserving the system’s robustness when facing
uncertainties. A noninteracting controller is designed to tackle these problems. The resulting control
system is completely decoupled in the sense that each system output is independently controlled to
follow the corresponding reference signal. In this paper, the model of an active vibration isolation
table is firstly derived. Conditions for system stability and decoupled performance are then discussed.
The control law is formulated using the linear matrix inequality approach, which results in optimal
control gains for the control objectives. With the proposed controller, complex system characteristics
can be handled more efficiently such that an effective system is designed to obtain good control
performance. Finally, simulations and comparison studies were conducted, and the results validate
the efficiency of the proposed scheme.

Keywords: active vibration isolation table; noninteracting control; robust control; linear matrix inequality

1. Introduction

In recent years, the performance requirements of high-precision machinery and mea-
suring instruments have increased at a rapid rate. Microscopes, 3D surface measurement
systems, and nano analysis instruments can be named among them. These systems are
very sensitive to ambient vibrations, such as ground vibration produced by other machines
in the same workspace. A slight vibration may lead to undesirable system movements and
the performance of the system deteriorates, which may result in product defects. Therefore,
there is a need for mechanisms that isolate these systems from six degrees-of-freedom
(DoF) vibrations on a wide range of frequencies. The vibration isolation capability deter-
mines the work performance in high-precision operations, which leads to a high level of
manufacturing and measurement yields.

In general, there are two methods for vibration isolation: passive and active. The
passive vibration isolation systems (PVIS), such as springs and dampers, are widely used
for their low cost, simple installation, wide load range, and no external energy usage. The
vibration isolation can be achieved with the appropriate dynamic structural design of a
PVIS, such as in [1]. Although the PVIS can effectively suppress high-frequency vibrations,
at low-frequency ranges, it is difficult to achieve satisfying vibration isolation performances.
Moreover, the vibrations are amplified whenever their frequencies are near the system
resonance frequency. In order to overcome the PVIS limitations, active actuators and
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advanced control techniques were introduced with the development of active vibration
isolation systems (AVIS).

A typical vibration isolation system consists of two plates: a bottom plate fixed on
the ground and a top plate carrying the machinery that needs isolating. Springs, dampers,
and/or active actuators are situated between the two plates such that the weight of the
machinery is supported, the vibration from the ground is suppressed, and the top plate is
stabilized. Several types of actuators were used in AVIS systems; for instance, pneumatic
actuators [2], hybrid actuators comprising pneumatic actuators and giant magneto-strictive
actuators [3], piezoelectric stack actuators [4], and voice coil motors (VCMs) [5]. Each
actuator has various advantages and disadvantages, as described in [6], which makes
them suitable for diverse applications. VCMs, especially, are widely used because of their
advantages, such as good linearity, low noise, and high acceleration and deceleration. In
AVISs, the number of actuators must be equal to or greater than the controlled DoFs. Hence,
vibrations in every direction can be suppressed; however, the resulting system is often
over-actuated. Moreover, motion sensors, such as accelerometers, velocity sensors, and
vibration sensors, are mounted directly to the top plate to sense the presence of movements
of the machinery and a controller regulates the actuators accordingly. Additional sensors
can also be mounted on the bottom plate and the ground vibration can be fed directly to
the control systems. Moreover, there is little difference in the mechanical structure and the
operating principle of vibration isolation systems. Therefore, recent studies have focused
on the design of the control schemes rather than the system structure.

One of the greatest difficulties in controlling an AVIS is the large number of DoFs as
well as the interactions between them. The presence of these interactions was clear in the
system dynamics of the 6-DoFs model in [5] or even the simplified 2-DoFs suggested in [7].
Many authors have tried to propose control methods so that a controller for each DoF can
be individually designed. For example, in [8], the author used the modal decomposition
technique to transform the system model into a diagonal structure, and then proposed a
proportional-integral-derivative (PID) to regulate the performance in each DoF. Vibration
attenuation performance was presented, but only for one direction, whereas the response
in other directions was not shown, hence, overall performance could not be concluded.
In [5], the authors proposed a sheet current model that considers the end effects of the
VCMs used in the design of a 6-DoF AVIS, and the parameters of the AVIS were identified
using the hybrid functions approach. And then, a composite nonlinear feedback (CNF)
controller was designed following the modal decomposition method. The CNF controller
was designed for each pair of input–output, so there were six individual controllers in
total. However, the identified model is incompatible with the dynamic characteristics and
the interaction isolation performance of this control system was not discussed. Generally,
the modal decomposition is well known to obtain the diagonal form of a system model,
but it is a rather analytic method than a decoupling control approach. Another method
treats the interactions as disturbances affecting the system. Kim et al. [7] proposed an H∞
control with a direct disturbance suppression technique and the effectiveness of the control
strategy was verified using a 2-DoF AVIS. Unfortunately, this approach is only effective for
the 2-DoF system and is difficult to implement for more complex systems.

Moreover, other decoupling techniques have been studied such that only one con-
troller is designed for the whole system and all the interactions are effectively isolated.
For instance, diagonal decoupling by static-state feedback [9], decoupling with dynamic
compensation [10], noninteracting constraints [11], robust noninteracting control [12],
input–output energy decoupling [13], row by row decoupling [14], and noninteracting
control based on the relaxed control [15], as well as other decoupling controllers [16–18],
have been applied in various applications. Nevertheless, the common issue with these
control system designs lies in the analytical methodology of deriving the proper control
matrices that not only decouple the interactions but also achieve the desired performance.

Therefore, in this paper, a new robust noninteracting control system design method
for a 6-DoF AVIS system is proposed. The key point of the approach is that the resulting
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system configuration affects the control input in a way that each reference signal controls
the corresponding control output without influencing the other ones. The proposed
controller is designed based on an integral-type servosystem, which consists of state
feedback and unity feedback. Conditions on the controller matrices are analyzed to obtain
noninteracting performances. Even though the stability of the closed-loop system is not
guaranteed, the system performance is not satisfied. Therefore, new methods to design
the feedback-matrix gain and unity-feedback matrix gains are introduced. With the use
of the linear matrix inequality (LMI) technique, the derived solutions provide optimal
control matrices to fulfill both decoupling and stability requirements. The efficiency of
the proposed control strategy was evaluated through two simulation scenarios: platform
positioning and vibration isolation.

This paper is structured as follows: Section 2 presents the system modeling of the
6-DoF AVIS. In Section 3, the noninteracting control design is described in detail. Then,
simulation results are presented in Section 4. Finally, the conclusions of this study are
summarized in Section 5.

2. System Modeling

Figure 1 shows the schematic drawing of a 6-DoF AVIS and the allocation of the actua-
tors and sensors is highlighted. The mechanical structure consists of a bottom plate fixed
to the ground and a top plate carrying the machine that needs isolating from vibrations.
There are four coil springs at the four corners connecting the two plates and supporting the
mass of the top parts. To start with, let the coordinate systems be defined as follows:

• The top plate fixed frame T is a right-handed coordinate system whose origin is at
the mass center of the plate; the Z-axis points upward, the X-axis points forward, the
counterclockwise is the positive rotation direction. This coordinate system is depicted
by red-colored vectors in Figure 1.

• The bottom plate fixed frame B has its origin at the centroid of the bottom plate.
Translation and rotation directions are similar to frame T.

For the active isolation operation, eight VCMs generate linear forces between the two
plates. Four of the VCMs generate translational movements perpendicular to the top plate,
i.e., along the Z-axis. Two VCMs generate motions along the X-axis direction and the others
along the Y-axis direction. Accordingly, eight vibration sensors have been arranged as
shown in Figure 1.

Assumption 1: The top plate is geometrically symmetric, and its mass is uniformly dis-
tributed.

Assumption 2: Along an i-axis direction, each of the springs acts as a linear spring
with the same stiffness ki and the same damping factor ci.

For convenience’s sake, nomenclatures used in the remainder of the paper are listed
as follows:

• x =
[

x y z
]T is the displacement of the origin O in the x-, y-, and z-directions;

• ϕ =
[

ϕx ϕy ϕz
]T is the rotation about x-, y-, and z-axes of the upper plate;

• xb =
[

xb yb zb
]T and ϕb =

[
ϕxb ϕyb ϕzb

]T are the displacement and the
angular position of the bottom plate, respectively;

• m is the mass of the sprung weight;

• J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 is the inertia tensor of the sprung mass;

• f ji is the force in the j-axis direction generated by the ith actuator in the same direction;
• fkj is the force in the j-axis direction generated by the four springs;
• Lij is the distance in the j-axis direction from the center of mass to the sensor measuring

the velocity in the i-axis direction (m);
• lij is the distance in the j-axis direction from the center of mass to the actuator that

generates the force in the i-axis direction (m).



Appl. Sci. 2021, 11, 7693 4 of 16
Appl. Sci. 2021, 11, 7693 4 of 18 
 

 

 

(a) 

 
 

(b) (c) 

Figure 1. Schematic drawing of the 6-DoFs AVIS and the allocation of actuators and sensors. (a) Schematics of the 6-DoFs AVIS; 
(b) The AVIS’s orthogonal projection and allocation of spring forces and actuator’s forces; (c) The AVIS’s orthogonal projection 
and allocation of the vibration sensors. 

Assumption 1: The top plate is geometrically symmetric, and its mass is uniformly 
distributed. 

Assumption 2: Along an i-axis direction, each of the springs acts as a linear spring 
with the same stiffness ik  and the same damping factor ic . 

For convenience’s sake, nomenclatures used in the remainder of the paper are listed 
as follows: 

• =   
T

x y zx  is the displacement of the origin O in the x-, y-, and z-directions; 
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T

x y zφ  is the rotation about x-, y-, and z-axes of the upper plate; 

Figure 1. Schematic drawing of the 6-DoFs AVIS and the allocation of actuators and sensors. (a) Schematics of the 6-DoFs
AVIS; (b) The AVIS’s orthogonal projection and allocation of spring forces and actuator’s forces; (c) The AVIS’s orthogonal
projection and allocation of the vibration sensors.

The dynamics of the system are obtained from the translational and rotational mo-
tion equations.

m
..
x = ∑

i
fi

J
..
ϕ = ∑

i
τi

(1)

where f i is the force vector. The total force includes the actuator’s forces and spring’s
forces. It is worth noting that the force of a spring is proportional to its displacement and
velocity by the spring stiffness and damping coefficient, respectively. Subsequently, τi is
the torque vector.

In addition, suppose there is a point at the top plate with the initial position given
by a vector P0 =

[
xp0 yp0 zp0 1

]T in T (1 is the scale factor). After a differential
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transformation by the translation vector x and the rotation vector ϕ, the new location of
P =

[
xp yp zp 1

]T is given by, [19]:

P = (T + ΛT)P0,T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, Λ =


0 −ϕz ϕy x
ϕz 0 −ϕx y
−ϕy ϕx 0 z

0 0 0 0

 (2)

where T is the matrix representing the frame T and Λ is the differential operator in respect
of x and ϕ.

Therefore: 
xp
yp
zp
1

 =


x + xp0 − yp0 ϕz + zp0 ϕy
y + yp0 + xp0 ϕz − zp0 ϕx
z + zp0 − xp0 ϕy + yp0 ϕx

1

 (3)

Accordingly, the dynamic model of the system is represented as follows:

.
X = AX + BAUa + Dx

Y = CX
(4)

In which:

• X =
[

xT ϕT .
xT .

ϕ
T
]T

, X ∈ Rn, n = 12 is the state vector;

• Y =
[

xT ϕT ]T , Y ∈ Rm, m = 6 is the system output vector;

• Ua =
[

fx1 fx2 fy1 fy2 fz1 fz2 fz3 fz4
]T , Ua ∈ R8 is the control signal vector;

• Dx is the disturbance vector from the bottom plate.

The model parameters and the disturbance vectors are given by Equation (5):

A =

 O6 I6

M−1A1 M−1A2

, BA =
[

O6×8
T Ba

T
]T

, C =
[

I6 O6

]
, Dx =

 O6 O6

M−1D1 M−1D2

Xb,

M = diag
{

m, m, m, Jxx , Jyy , Jzz
}

,

A1 =



−4kx 0 0 0 0 0

0 −4ky 0 0 0 0

0 0 −4kz 0 0 0

0 −4cky 0 −4b2kz 0 0

4ckx 0 0 0 −4a2kz 0

0 0 0 0 0 −4
(
b2kx + a2ky

)


, A2 =



−4cx 0 0 0 0 0

0 −4cy 0 0 0 0

0 0 −4cz 0 0 0

0 −4ccy 0 −4b2cz 0 0

4ccx 0 0 0 −4a2cz 0

0 0 0 0 0 −4
(
b2cx + a2cy

)


,

Ba =



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 c + lyz c + lyz −lzy lzy lzy −lzy

−c− lxz −c− lxz 0 0 −lzx −lzx lzx lzx

lxy −lxy lxz −lxz 0 0 0 0


,

Xb =
[

xb
T ϕb

T .
xb

T .
ϕb

T
]T

,

D1 =



4kx 0 0 0 0 0

0 4ky 0 0 0 0

0 0 4kz 0 0 0

0 4cky 0 4b2kz 0 0

−4ckx 0 0 0 4a2kz 0

0 0 0 0 0 4
(
b2kx + a2ky

)


, D2 =



4cx 0 0 0 0 0

0 4cy 0 0 0 0

0 0 4cz 0 0 0

0 4ccy 0 4b2cz 0 0

−4ccx 0 0 0 4a2cz 0

0 0 0 0 0 4
(
b2cx + a2cy

)



(5)

where I6 is a 6-by-6 identity matrix and O is a matrix of zeros. The mathematical model
shows the presence of mutual interference within the system caused by the allocation of
the actuators and the interaction between states. For example, in the first column of Ba, the
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motion of the first actuator generates a translation along the x-axis, and at the same time,
rotations about the y- and z-axes. The translation along the y-direction is coupled with the
rotation about the x-axis, as seen in the second columns of A1 and A2.

Additionally, the system output obtained from sensors’ measurements is as follows:

Y=R+Ym, R+ = (RTR)−1RT ,
Ym =

[
x1 x2 y1 y2 z1 z2 z4 z4

]T ,

R =



1 0 0 0 −Lxz Lxy
1 0 0 0 −Lxz −Lxy
0 1 0 Lxz 0 Lzx
0 1 0 Lxz 0 −Lzx
0 0 1 −Lzy −Lzx 0
0 0 1 Lzy −Lzx 0
0 0 1 Lzy Lzx 0
0 0 1 −Lzy Lzx 0


(6)

The elements of Ym are the measurements of two horizontal sensors along the x-axis,
two horizontal sensors along the y-axis, and four vertical sensors along the z-axis, respec-
tively. The subscript of each measurement corresponds to the nearest actuator.

Proofs for Equations (4)–(6) are given in Appendix A.
Moreover, let an alternative input vector consisting of six elements be as follows:

U =
[

fx fy fz τx τy τz
]T ∈ R6 (7)

where each element of U is the total force/torque in the corresponding direction. Conse-
quently, the control inputs to the eight actuators are computed according to their location
and are given by:

Ua = Ba
+U,

Ba
+ = Ba

T(BaBa
T)−1 (8)

The system dynamics with the new input are given by:

.
X = AX + BU + Dx

Y = CX
(9)

with B =
[

O6 I6
]T. The noninteracting control system is then designed so that the

interactions between the system states are isolated and the reference in each direction
controls the corresponding output.

3. Noninteracting Control Design
3.1. Conditions for a Decoupled Performance

The decoupling process consists of compensating a given system so that each system
input independently controls a corresponding system output [9]. The system inputs refer
to the references fed to the system. The proposed controller is designed based on a typical
integral-type servosystem given by the block diagram illustrated in Figure 2 [20]. The
feedback control law is in the following form:

U = −FX + Gv
(
F ∈ Rm×n, G ∈ Rm) (10)

with v a pseudo-state vector defined by the integration of the control error. F and G are
controller gains to be designed.
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The system dynamics with the feedback control input is represented by:

.
X = (A− BF)X + BGv + Dx

Y = CX
(11)

Let Ci denote the ith row of the matrix C, and let

xi =

{
min

{
j
∣∣∣CiAj−1B 6= 0

}
(j = 1, 2, . . . , n)

n if CiAj−1B = 0 for all j
(12)

The above denotations are characterized by the following:

Ci(A− BF)k = CiAk k = 0, 1, . . . , xi − 1
Ci(A− BF)k = CiAxi−1(A− BF)k−xi+1 k = xi, xi + 1, . . . , n

(13)

Consider the ith row of the output vector, denoted by Yi, then the following relations
between its time-derivatives and the states are obtained as follows:

Yi = CiX.
Yi = Ci

.
X = CiAX + CiBGv

..
Yi = CiA

.
X + CiBG

.
v

= CiA2X + CiBG
.
v

...
Y(xi)

i = CiAxi−1
.

X + CiBGv(xi−1)

=
(
CiAxi − CiAxi−1BF

)
X + CiAxi−1BGv + CiBGv(xi−1)

(14)

Furthermore, let the following expressions be used:

Y* =
[

Y(x1)
1 Y(x2)

2 · · · Y(xm)
m

]T
,

A* =


C1Ax1

C2Ax2

...
CmAxm

, ∆ =


C1Ax1−1B
C2Ax2−1B

...
CmAxm−1B

, g =


C1BGv(x1−1)

C2BGv(x2−1)

...
CmBGv(xm−1)


(15)

Then, from Equations (14) and (15), one can obtain the following:

Y* =
(

A* − ∆F
)

X + ∆Gv + g (16)

If the higher-order term g is neglected, with ∆G resulting in a diagonal matrix and(
A* − ∆F

)
= O, then the decoupling can be achieved. That is, xi-order time-derivation
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of Yi depends only on the ith output error vi at every system state. Hence, a necessary
condition is that the matrix ∆ should be invertible. Then, a pair of matrices (F, G), which
decouples the system, is given by [9,10,16,17]:

F = ∆−1A*, G = ∆−1 (17)

The feedback gain in Equation (17) satisfies the condition of the noninteracting con-
trol. However, the stability of the closed-loop system is not guaranteed, and the system
performance cannot be satisfied.

3.2. Design of the State Feedback Matrix F

The modified feedback gains such that the system is both decoupled and stable is
considered as follows [12]:

F = ∆−1
(

A* +
¯
FSa

)
(18)

where
¯
F is a feedback matrix to be tuned such that the closed-loop system is asymptotically

stable, and Sa is given by the following nonsingular matrix:

Sa =



C1
...

C1Ax1−1

C2
...

C2Ax2−1

...
CmAxm−1

W


∈ Rn×n, with



C1
...

C1Ax1−1

C2
...

C2Ax2−1

...
CmAxm−1


∈ R

(m+
m
∑

i=1
(xi−1))×n

and WB = O (19)

Substituting Equation (18) into Equation (16) and neglecting the higher-order term
yields the following:

Y* = −
(

¯
FSa

)
X + v (20)

Therefore, the ith row of Y∗ is given by the following:

Y(xi)
i = −

(
¯
FiSa

)
X + vi (21)

where
¯
Fi is the corresponding ith row of

¯
F.

¯
Fi can be represented as in Equation (22):

¯
Fi =

 f10 · · · f1(x1−1)︸ ︷︷ ︸
¯
F i1

f20 · · · f2(x2−1)︸ ︷︷ ︸
¯
F i2

· · · · · · fm(xm−1)︸ ︷︷ ︸
¯
F im

fw

 (22)

Then, substituting Equations (19) and (22) into Equation (21) yields:

−Y(xi)
i =

¯
Fi1C1

 I
...

Ax1−1

X +
¯
Fi2C2

 I
...

Ax2−1

X + · · ·+
¯
FimCm

 I
...

Axm−1

X + fwWX + vi

=
¯
Fi1


 Y1

...
Y1

(x1−1)

+

 0
...

C1BGv(x1−2)


+

¯
Fi2


 Y2

...
Y2

(x2−1)

+

 0
...

C2BGv(x2−2)


+ · · ·+ fwWX + vi

(23)
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If the matrix
¯
F satisfies the following conditions, it can be considered a solution for

the decoupling problem: 
¯
Fij = 0 if j 6= i
¯
Fij 6= 0 if j = i

(24)

The value of
¯
Fii can be designed using classical approaches, such as the pole placement

technique. Note that the number of the closed-loop poles (p) can be specified while
decoupling the control system, and the number of free parameters (f ) in a decoupling
matrix F is given by [21]:

m +
m
∑
1
(xi − 1) ≤ p ≤ n

m +
m
∑
1
(xi − 1) ≤ f

(25)

3.3. The LMI-Based Design of the Feedback Matrix G

Since several elements of the state feedback matrix are neglected in order to identify
the decoupled control law, the system performance may be affected. The matrix G from
Equation (17) should be modified to achieve the desired performances and its modified
expression is given by:

G = ∆−1G (26)

with G, a diagonal matrix, chosen so that the decoupling characteristics are preserved.
Substituting F (Equation (18)) and G (Equation (26)) into the system model (Equation (11)),
the closed-loop system is obtained as follows:

.
~
X =

[ .
X
.
v

]
=

 A− B
(

∆−1A* +
¯
FSa

)
O6

−C O6


︸ ︷︷ ︸

~
A

~
X +

[
B∆−1

O6

]
︸ ︷︷ ︸

~
B

[
O12×6

¯
G
]

︸ ︷︷ ︸
~
K

~
X +

[
Dx
r

]
︸ ︷︷ ︸

d

~
Y =

[
O6×12 I6

]︸ ︷︷ ︸
~
C

~
X

(27)

If there exists a Z ∈ R6×18 and a Q ∈ R18×18(> 0) that follow, respectively, the
following forms:

Z =
[

O6×12 Z3
]

Q =

 Q11 Q12 Q13
Q21 Q22 Q23
O6 O6 Q33

, Qij ∈ R6×6,

Z3 and Q33 are diagonal matrices.

(28)

If there exist γ > 0 such that the following LMI is feasible: ~
AQ + Q

~
A

T
+

~
BZ + ZT

~
B

T
+ I Q

~
C

T

~
CQ −γ2I

 ≤ 0 (29)

Then, the state feedback gain, given by:

K̃ = ZQ−1 (30)

ensures that the L2 gain of the system described by sup
‖d‖2 6=0

(‖
~
Y‖2/‖d‖2) is less than γ [22].

Minimizing γ over the variables Z and Q results in the smallest upper bound on the L2
gain of the system.
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Moreover, from Equations (27) and (30), the following is deduced:

Z = K̃Q =
[

O6×12
¯
GQ33

]
⇒

¯
G = Z3Q−1

33

(31)

and since both Z3 and Q33 are diagonal matrices, G is also diagonal. Thus, the decoupled
characteristics are guaranteed.

4. Simulation Studies
4.1. Implementation

The specifications of the AVIS are listed in Table 1, and the matrix gains of the system
model were obtained accordingly. With these values, the matrix ∆ was computed and
confirmed to be nonsingular. Thus, the noninteracting controller was designed. The
state feedback matrix F, given in Equation (18), was identified. Using the Robust Control
Toolbox in Matlab, the LMI given by Equation (29) with the predefined conditions from
Equation (28) was solved for the AVIS with a minimal value of γ of 0.08. G was identified
afterward from Equation (31), and subsequently, G was obtained from Equation (26). The
two control matrices are presented in Equation (32).

Table 1. Specifications of the controlled AVIS.

Parameter Value Parameter Value Parameter Value

a [m] 0.4 m [kg] 288 lzy [m] 0.53
b [m] 0.6 Jxx [kg.m2] 34.8 lxz [m] 0.015
c [m] 0.2 Jyy [kg.m2] 15.6 lzx [m] 0.37

kx, ky, kz [N/m] 14,180 Jzz [kg.m2] 49.92 lxy [m] 0.53
cx, cy, cz [Ns/m] 100 lxx [m] 0.29 lyz [m] 0.015

F =



44984006.525 0 0 0 0 0
0 44988623.006 0 0 0 0
0 0 44981212.885 0 0 0
0 −2836 0 5680686.115 0 0

2836 0 0 0 2547779.731 0
0 0 0 0 0 8151470.398

· · ·

285212.077 0 0 0 0 0
0 285243.371 0 0 0 0
0 0 285186.983 0 0 0
0 0 0 30735.931 0 0
4 0 0 0 13697.327 0
0 0 0 0 0 44134.904



G =



644291218.410 0 0 0 0 0
0 644343230.526 0 0 0 0
0 0 644258432.699 0 0 0
0 0 0 81818216.496 0 0
0 0 0 0 36687353.269 0
0 0 0 0 0 117422614.479



(32)

Moreover, another state feedback controller was designed to provide a fair assessment
of the control system proposed in this paper. This controller was also designed based on
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the integral-type servo system, illustrated in Figure 2. The state-space representation of the
closed-loop system is given in Equation (33).

.
~
X =

[ .
X
.
v

]
=

[
A O6
−C O6

]
︸ ︷︷ ︸

A
_

~
X +

[
B

O6

]
︸ ︷︷ ︸

B
_

U +

[
Dx
r

]
︸ ︷︷ ︸

d
~
Y =

~
C

~
X

U = −F
_
X + G

_
v

(33)

Accordingly, the following LMIs were considered: A
_

Q
_
+ Q

_
A
_

T + B
_

Z
_
+

¯
Z

T

B
_

T + I Q
_

C
_

T

C
_

Q
_

−γ2I

 ≤ 0

Z
_
> 0, Z

_
∈ R6×18

Q
_
> 0, Q

_
∈ R18

(34)

The feedback control gains were obtained such as
[

F
_

G
_

]
= Z

_
Q
_

−1. Their values

are presented in Equation (35).

F
_
=



23055996.125 0 0 0 −451615.356 0
0 23037296.982 0 343167.966 0 0
0 0 23020562.484 0 0 0
0 −48722.485 0 331246.305 0 0

52733.158 0 0 0 226948.799 0
0 0 0 0 0 500955.474

· · ·

66660.618 0 0 0 −1121.874 0
0 66606.378 0 863.757 0 0
0 0 66560.178 0 0 0
0 −145.165 0 803.471 0 0

156.715 0 0 0 526.273 0
0 0 0 0 0 1231.046



G
_
=



242833691.013 0 0 0 −4787897.103 0
0 242637163.198 0 3633362.131 0 0
0 0 242461475.407 0 0 0
0 −508721.625 0 3530889.292 0 0

550890.757 0 0 0 2420898.234 0
0 0 0 0 0 5336827.751



(35)

4.2. Simulations

The performance of the proposed noninteracting controller was evaluated through
two simulation tasks: vibration isolation and platform positioning. The results of these
simulations were compared to those of the integral-type servo (ITS) control system. For
the former task, the top plate of the AVIS has to be isolated from any vibration source. In
practical applications, most of these vibrations are transmitted through the floor and are
mainly the result of machines operating in the same workspace. Thus, the control system
needs to suppress the ground vibrations in any direction and, while doing so, the actuators
should not generate any unwanted motions in the other directions. Meanwhile, in the
latter task, the top plate of the AVIS is expected to approach a set-point in any direction
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without affecting the motion of other directions. In other words, the matrix representing
the relationship between the reference and the output should be diagonal.

Figure 3 shows the vibration isolation frequency response against the vibration from
the bottom plate that is fixed to the ground. Each column of graphs represents the motion
of the top plate in respect to the vibration of the bottom plate in that specific direction.
As illustrated in this figure, the mass-spring-damper systems, in their nature, are capable
of suppressing vibrations, especially high-frequency vibrations. Unfortunately, the reso-
nance phenomenon is unavoidable with the passive systems—the peak in each frequency
response. Moreover, a vibration along the xb-axis of the ground results in a translation in
the same direction and an additional rotation about the y-axis of the top plate, as shown in
the first column of Figure 3. Similarly, vibrations along the yb-axis generate a translation
along the y-axis and a rotation along the ϕx direction.
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Figure 3. Frequency response of the vibration isolation performance.

Using both control strategies, the performance of the system at low-frequency ranges
had improved significantly. Unfortunately, the integral-type servo controller, similar to the
uncontrolled case, generated unwanted rotations while suppressing the translations from
the bottom plate along the x- and y-axes. Furthermore, undesired translations appeared
during the suppression of rotational vibrations, as shown in the fourth and fifth columns
of Figure 3. On the other hand, the proposed noninteracting controller provided good
isolation performance without creating any unwanted motions. Therefore, in Figure 3,
the response of the noninteracting control system appears only at the graphs on the main
diagonal line.

In Figure 4, the time response showcases further the efficiency of the proposed control
system. The bottom plate is supposed to perform step-type movements of 0.01 (m) or
0.01 (rad) in different directions at different times. The mutual interference between the
DoFs of the AVIS can be clearly seen in the bottom-left sub-figure of Figure 4a, with rotations
appearing along with the translational movements. Aside from using the ITS control
system, unwanted motions can be seen in the zoomed sub-figures in Figure 4b. On the
other hand, unwanted motions of any direction affected by other directions’ motions were
not or hardly generated when the noninteracting control was used. The differentiations
of these results were caused by the resulting system configuration decoupling the mutual
interference within the system with the noninteracting control law. In other words, the
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proposed controller isolated the vibrations and decoupled the interactions of the system
effectively and swiftly without generating any undesired motions.
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Figure 4. Position of the top plate in the presence of the bottom plate movement. (a) The uncontrolled case versus controlled
cases; (b) Noninteracting control versus ITS control.

Figure 5 shows the frequency response of the system for the positioning task. Each
column illustrates the Bode magnitude plots of the system response in every direction
in response to the corresponding reference. Accordingly, the ith entry of the graphs on
the main diagonal line depicts the complementary sensitivity from the reference ri and
the output Yi. All entries outside the diagonal line are unwanted motions resulting from
the interactions within the system. As illustrated in this figure, the proposed controller
decouples these interactions effectively while providing good positioning performances.
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On the other hand, the ITS control system controller generates undesirable motions, and
the vibration isolation has thus deteriorated.
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5. Conclusions

In this paper, the authors suggested an effective control strategy for 6-DoF AVIS. This
study focused on the configuration of the control system for this complex dynamic plant
based on the concept of the noninteracting control design. The resulting closed-loop system
was represented with a completely diagonal structure; that is, each output is independently
controlled by the corresponding reference signal. The analytical methodology of deriving
the noninteracting controller was proposed, and the optimal control law was obtained
using the LMI technique. In addition, an ITS control system was designed to compare its
performance with the proposed controller.

The efficiency of the proposed control system was evaluated through two sets of
simulations: vibration isolation and platform positioning. According to these simulation
tests, the vibration isolation performance of both control schemes at low-frequency ranges
improved significantly. However, the ITS control system generated additional and un-
wanted translations and rotations, whereas the proposed noninteracting controller isolated
the AVIS without creating any additional motions. Similar results were obtained in the
platform positioning simulation test. The analysis of the Bode magnitude plots revealed the
interaction between the DoFs of the AVIS, especially with the ITS control system. On the
other hand, the simulation results using the noninteracting controller proved the efficiency
of this controller in decoupling the mutual interferences effectively while providing good
positioning performances.

In future work, an experimental study will be conducted with the proposed control
system to evaluate the vibration isolation performances.

Author Contributions: Conceptualization, Y.-B.K.; methodology, T.H.; validation, T.H. and Y.-B.K.;
formal analysis, T.H.; investigation, T.H. and D.-H.L.; writing—original draft preparation, T.H. and
D.-H.L.; writing—review and editing, T.H., D.-H.L., S.C. and H.-C.P.; supervision and funding,
H.-C.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Appl. Sci. 2021, 11, 7693 15 of 16

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

From Equations (1) and (3), the motion equation of each of the 6-DoF AVIS is derived
as follows:

m
..
z =

4
∑

i=1
fkzi +

4
∑

i=1
fzi

m
..
x =

2
∑

i=1
fxi +

4
∑

i=1
fkxi

m
..
y =

2
∑

i=1
fyi +

4
∑

i=1
fkyi

Jzz
..
ϕz = lzx

(
fy1 − fy2

)
+ lxy( fx1 − fx2) + b( fkx1 + fkx4 − fkx2 − fkx3) + a

(
fky1 + fky2 − fky3 − fky4

)
Jxx

..
ϕx = b( fkz2 + fkz3 − fkz1 − fkz4) + lzy( fz2 + fz3 − fz1 − fz4) +

(
c + lyz

)(
fy1 + fy2

)
+ c
(

fky1 + fky2 + fky3 + fky4
)

Jyy
..
ϕy = a( fkz3 + fkz4 − fk1z − fkz2) + lzx( fz3 + fz4 − fz1 − fz2)− (c + lxz)( fx1 + fx2)− c( fkx1 + fkx2 + fkx3 + fkx4)

(A1)

where the spring forces of the first spring are given by: fkx1
fky1
fkz1

 = −

 kx 0 0
0 ky 0
0 0 kz

 xA1 − xbA1
yA1 − ybA1
zA1 − zbA1

−
 cx 0 0

0 cy 0
0 0 cz

 .
xA1 −

.
xbA1.

yA1 −
.
ybA1.

zA1 −
.
zbA1


=


−kx

[
(x− xb) + b(ϕz − ϕzb)− c

(
ϕy − ϕyb

)]
− cx

[( .
x− .

xb
)
+ b
( .

ϕz −
.
ϕzb
)
− c
( .

ϕy −
.
ϕyb

)]
−ky[(y− yb) + a(ϕz − ϕzb) + c(ϕx − ϕxb)]− cy

[( .
y− .

yb
)
+ a
( .

ϕz −
.
ϕzb
)
+ c
( .

ϕx −
.
ϕxb
)]

−kz

[
(z− zb)− a

(
ϕy − ϕyb

)
− b(ϕx − ϕxb)

]
− cz

[( .
z− .

zb
)
− a
( .

ϕy −
.
ϕyb

)
− b
( .

ϕx −
.
ϕxb
)]


(A2)

The forces of the other springs are obtained in the same manner.
Let X1 =

[
x y z ϕx ϕy ϕz

]T and Xb1 =
[

xb yb zb ϕbx ϕby ϕbz
]T

be the displacements and rotations vectors of the upper and bottom plates of the AVIS,
respectively. Substituting the spring forces into Equation (A1) yields:

..
X1 = M−1

(
A1X1 + A2

.
X1 + BaUa + D1Xb1 + D2

.
Xb1

)
(A3)

Thus, Equations (4) and (5) are derived.
Applying Equation (3) on all the vibration sensors, the measured values are given by:

.
x1 =

.
x + Lxy

.
ϕz − Lxz

.
ϕy.

x2 =
.
x− Lxy

.
ϕz − Lxz

.
ϕy.

y1 =
.
y + Lzx

.
ϕz + Lxz

.
ϕx.

y1 =
.
y− Lzx

.
ϕz + Lxz

.
ϕx.

z1 =
.
z− Lzx

.
ϕy − Lzy

.
ϕx.

z2 =
.
z− Lzx

.
ϕy + Lzy

.
ϕx.

z3 =
.
z + Lzx

.
ϕy + Lzy

.
ϕx.

z4 =
.
z + Lzx

.
ϕy − Lzy

.
ϕx

(A4)

Hence, Equation (6) is derived.
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