
applied
sciences

Article

Rapid Requirements Elicitation of Enterprise Applications
Based on Executable Mockups

Milorad Filipović ∗ , Željko Vuković , Igor Dejanović ∗ and Gordana Milosavljević ∗

����������
�������

Citation: Filipović, M.; Vuković, Ž.;

Dejanović, I.; Milosavljević, G. Rapid

Requirements Elicitation of

Enterprise Applications Based on

Executable Mockups. Appl. Sci. 2021,

11, 7684. https://doi.org/10.3390/

app11167684

Academic Editor: Andrea Prati

Received: 1 July 2021

Accepted: 16 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; zeljkov@uns.ac.rs
* Correspondence: mfili@uns.ac.rs (M.F.); igord@uns.ac.rs (I.D.); grist@uns.ac.rs (G.M.);

Tel.: +381-21-485-4562 (G.M.)

Abstract: Software development begins with the requirements. Misunderstandings with customers
in this early phase of development result in wasted development time. This work investigates the
possibility of using executable UI mockups in the initial phases of functional requirements elicitation
during the development of business applications. Although there has been a lot of research in the
field in recent years, we find that there is still a need to improve model-driven tool design in order to
enable customer participation from the initial phases of requirement specifications based on working
prototypes. These prototypes can directly be reused in the rest of the development process. To
meet the goal, we have been developing an open-source solution called Kroki that enables rapid
collaborative development. We conducted a series of 10 joint user sessions with domain experts from
different domains and backgrounds, resulting in the prototype specifications ranging from 7 to 20
screen mockups accompanied with domain models, developed in two-hour time frames. In this
paper, we present our tool design that contributes to rapid joint development, and the results from
the user sessions.

Keywords: requirements elicitation; executable mockups; model-driven engineering; code generation

1. Introduction

The adoption of agile development methodologies has become a widespread practice
in software companies in recent years. Techniques such as continuous delivery, iterative
and incremental development, user stories, and user-on-site have boosted delivery time
and improved stakeholders’ insight into the development process. However, there is still a
need to improve the requirements of engineering practices of agile methods, especially for
applications where a user interface (UI) plays an important role [1,2]. The communication
gap between the stakeholders and the development team is still hard to overcome.

A well-known technique in requirement engineering for narrowing the communica-
tion gap is the usage of prototypes. The prototype can be anything from a low-fidelity paper
mockup to an executable application that the customer can operate [3]. In the early design
phases, the purpose of the low-fidelity UI mockups is to ensure that required business
functions are supported and that customers can perceive whether some information is
missing. High-fidelity UI design is not necessary for this phase since the development
team could be caught up in cosmetic discussions [4]. It is essential to enable efficient
development and adjustments of mockups to foster communication and support changes
of requests. When low-fidelity mockups are finished and approved by all involved parties,
they can become a starting point for high-fidelity UI design [4].

Unfortunately, low-fidelity mockups created by paper and pencil or by general-
purpose mockup tools often fail to identify some design inconsistencies and shortcomings.
In our opinion, the best feedback could be gained when users can operate an executable
prototype in a context that is close to their natural workplace environment. However,
executable prototypes are considered expensive for development and hence traditionally
left for the later phases [3].

Appl. Sci. 2021, 11, 7684. https://doi.org/10.3390/app11167684 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6776-8207
https://orcid.org/0000-0001-7315-2943
https://orcid.org/0000-0002-0414-1455
https://orcid.org/0000-0003-1764-5422
https://doi.org/10.3390/app11167684
https://doi.org/10.3390/app11167684
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167684
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167684?type=check_update&version=1

Appl. Sci. 2021, 11, 7684 2 of 29

The optimal solution for more reliable requirements elicitation could be to efficiently
create low-cost executable mockups so that customers are able to perform a hands-on
evaluation from the very start. Although executable, these mockups should be low fidelity
in their visual appearance, to keep the focus on business features under development.
To achieve this, we have been developing an open-source tool called Kroki (fr. croquis—
sketch) [5,6] for the rapid prototyping of enterprise applications in collaboration with cus-
tomers.

The core of Kroki is our EUIS (Enterprise User Interface Specification) DSL (Domain-
Specific Language) [7]. EUIS DSL is developed to enable rapid sketching of enterprise
application mockups and their simple integration with persistence layers in order to
support code generation for all three application tiers (the user interface, the business
logic, and the database). This enables a more realistic user experience while operating the
prototype, since users tend to pay more attention and discover errors and inconsistencies
more easily when mockups can be populated with their actual data [8].

In Kroki, mockup execution is provided by two aspect-oriented engines for web
and desktop applications. Executing the prototype allows customers to evaluate the
look and behavior of the developed system so that corrections can be made immediately.
The verified specification can then be used as a basis for further manual development since
the prototype code and developed models can be exported from Kroki to general-purpose
modeling and programming tools. In addition, if Kroki’s supported technological platform
is appropriate, the generated prototype, accompanied by hand-written code, can evolve to
the final application. This way, the effort invested in mockup development is not wasted.

Since Kroki does not have support for non-functional requirements, they have to be
negotiated with customers before utilizing Kroki in mockup development.

In this paper, we present:

• A brief overview of the Kroki tool design that enables development agility needed for
collaborative work with customers (details can be found in our previously published
papers (http://www.kroki-mde.net/publications, accessed on 18 August 2021));

• An exploratory case study we performed to investigate what can be achieved if we
start to use executable mockups from initial requirements elicitation sessions with
customers. We conducted 10 two-hour development sessions with domain experts
from different business domains and developed an executable application prototype
ranging from 7 to 20 mockups in each session.

An insight into the design of this tool and the results of the study could be helpful for
model-driven tool developers.

The paper is structured as follows. Section 2 gives an overview of Kroki. Section 3
presents the exploratory study. Section 4 discusses the results of the study. Section 5
reviews the related work. Section 6 concludes the paper.

2. Kroki Tool

Kroki is a rapid prototyping tool that is being developed to enable:

• Participation of customers in the development process from the initial phases of
functional requirements specification;

• Direct reuse of as much information as possible from the developed prototypes to
avoid waste of time and energy.

To see the Kroki overview video visit https://www.youtube.com/watch?v=r2eQrl1
1bzA (accessed on 18 August 2021).

The prototype can be specified using a Mockup editor, Lightweight UML class diagram
editor, or Command console.

http://www.kroki-mde.net/publications
https://www.youtube.com/watch?v=r2eQrl11bzA
https://www.youtube.com/watch?v=r2eQrl11bzA

Appl. Sci. 2021, 11, 7684 3 of 29

The mockup editor is mostly used in collaborative sessions with customers. It consists
of a mockup drawing area, UI component palettes, and property editor panels used for
setting the property values of mockups and their components (Figure 1). By drawing
these components, the user is actually performing UI modeling since the editor is an
implementation of a mockup-based concrete syntax of EUIS.

Figure 1. Kroki Mockup editor.

The property editor is divided into three tabs for the specification of basic, advanced,
and persistence settings of the selected component (Figure 2). If not specified, default
settings are used, so prototype execution is possible even when only basic values are
filled in.

Figure 2. An example of (a) basic, (b) advanced, and (c) persistence settings for an Editable
component.

Kroki’s lightweight UML editor implements a UML-based graphical syntax of EUIS,
which is designed to look like a simplified UML class diagram notation with stereotypes
(Figure 3). While the UI drawing interface is tailored for direct communication with the
end users, this editor is intended for the developers, who can use it to better view and
specify the structure and navigation through the application, including composite panes
structure. In our experience of exposing the customers to UML, this is best done while they
are not present.

Appl. Sci. 2021, 11, 7684 4 of 29

Both UML and Mockup editors manipulate the same prototype specification (Figure 4).
Changes that are made in one representation are immediately visible in others. For newly-
added elements, automatic layouting is performed [9].

EUIS DSL is based on our HCI (human-computer interaction) guidelines, which define
functional and presentational features of coarse-grained building blocks of enterprise
applications (types of forms, reports, and subsystems). A brief overview of these guidelines
and corresponding EUIS meta-classes is given in Section 2.1.

The aspect-oriented engines that enable instant execution of the specified prototype
are explained in Section 2.4.

Kroki’s support for reusability, and import and export features is shown in Section 2.5.
The administration subsystem for the specification of user roles and their working

environments resides in Section 2.6.
The details regarding Kroki’s recommended usage are explained in Section 2.7.

Figure 3. Kroki’s lightweight UML editor.

Embedded

MS

Desktop AOP Engine

Web AOP Engine

Applica�on repository

Mockup editor

Lightweight

editor
Command Window

EUIS DSL

m model

Model based on

UIS DSL Administra�on subsystem

based on RBAC

Model Importer

Model Exporter

Code Exporter

Instance of

Prototype

speci�ca�on

Prototype

execu�on

Coopera�on

with external tools

XMI File

XMI File

Web app.

code

Desktop

app. code

SQL code

Generators for:

Db scheme, EJB, Menu, XML UI

pec, Web resource, …

Read/write objects

Read/write files

UML to EUIS

transforma�on

EUIS to UML

transforma�on

Figure 4. The architecture of Kroki.

Appl. Sci. 2021, 11, 7684 5 of 29

2.1. EUIS DSL and Our HCI Guidelines

EUIS DSL is based on concepts described in our human-computer interaction (HCI)
guidelines aimed at defining functional and visual features of business application UI
components. We intended to specify the minimal set of coarse-grained building blocks
to support simplicity of use, quick user training, and the automation of user interface
construction. Our HCI guidelines are, with some modifications, in use since 1996 by several
software companies that have adopted our approach to business application develop-
ment. As an example, the experience of Lanaco (https://www.lanaco.com/en/lanaco-
information-technology, accesed on 18 August 2021) has been described in [10].

The first formal specification of EUIS DSL was in the form of a UML profile [7].
EUIS profile was intended to provide a simple integration of the user interface model
with the persistent model and the relational model by using a UML class diagram as
a common foundation. The EUIS UML profile extends meta-classes from UML::Kernel
package: Class, Property, Operation, Parameter, Constraint, and Package.

The most important concepts of our HCI guidelines with corresponding EUIS profile
stereotypes are explained as follows, while more details can be found in [7,11].

A standard panel (stereotype StandardPanel, Figure 5a) performs CRUD (create,
update, delete) and search operations on instances of one domain class. Operations
common to most entities (“standard” operations) are represented by icons at the top of
the panel, while buttons on the right-hand side enable invocation of specific operations.
The specific operations are business transactions and reports (stereotypes Transaction
and Report, Figure 5d).

The standard panel can be directly invoked or used as a building block for complex
panels (descendants of ContainerPanel stereotype). A parent-child panel (stereotype
ParentChild) is used to organize data with a hierarchical structure, where the standard
panel represents one level in the hierarchy. The panel level is modeled by a hierarchical
association (Hierarchy stereotype, Figure 5c).

Elements of the standard panel (UI components) can be attached to editable (stereotype
Editable) or derived properties (stereotypes Aggregated, Calculated, and Lookup) of
domain classes (Figure 5b). The formula used to calculate derived values is specified
using OCL (Object Constraint Language [12]) and implemented using the Dresden OCL
library [13].

Relationships among panels are represented by four mechanisms: Zoom, next, activate,
and hierarchy, which are descendants of the VisibleAssociationEnd stereotype, Figure 5c).
The zoom mechanism represents an invocation of the panel associated with the given
domain class where the user can choose a row and pick its values to the fields of the
previous panel. The next mechanism, invoked from the panel of a parent class, displays the
panel associated with the child class in a separate view, with its data filtered according to
the selected row of the parent panel.

The activate mechanism enables direct invocation of a panel by another panel, with-
out restrictions on the data displayed. The invoked panel does not need to have an
association with the current one. The hierarchy mechanism enables the development of
parent-child panels.

The development of a business application prototype using the EUIS profile comprised
the following activities (Figure 6):

• Development of a domain model using a class diagram;
• The model-to-model transformation of the domain model to a UI model based on the

EUIS profile and persistence model;
• Manual adjustments of generated models;
• Code generation (model-to-code transformation) of the UI and persistence model.

https://www.lanaco.com/en/lanaco-information-technology
https://www.lanaco.com/en/lanaco-information-technology

Appl. Sci. 2021, 11, 7684 6 of 29

«stereotype»

VisibleAssociationEnd

«stereotype»

BusinessOperation

«stereotype»

ContainerPanel

«stereotype»

VisibleProperty

«stereotype»

VisibleOperation

«stereotype»

StandardPanel

«stereotype»

ManyToMany

«stereotype»

VisibleClass

«stereotype»

ParentChild

«stereotype»

Transaction

«stereotype»

Agregated

«stereotype»

PanelGroup

«stereotype»

Next

«stereotype»

Editable

«stereotype»

Activate

«stereotype»

Calculated

«stereotype»

Report

«stereotype»

ReadOnly

«stereotype»

Persistent

«stereotype»

Hierarchy

«stereotype»

Lookup

«stereotype»

Zoom

«Metaclass»

Operation

«Metaclass»

Class

«Metaclass»

Property

«Metaclass»

Property

*
0..1

a) b)

c) d)

Figure 5. The most important elements of the EUIS UML profile: (a) Visible classes (panels), (b) visible
properties, (c) visible association ends, and (d) visible operations.

Problem domain

model (UML)

UI model

Persistence

data model

mappings

UI code

Middleware
Database

scripts

transformation

Problem domain

model (UML)

UI model

Persistence

data model

mappings

UI code

Middleware
Database

scripts

transformation

Figure 6. The development process using the EUIS profile is based on transformations. Reproduced
with permission from [5], copyright IEEE, 2013.

However, since the development was conducted without customers during the do-
main model specification, we needed several iterations until mutual understanding was
achieved. A mental gap had to be crossed when manually mapping user requirements to
the domain model based on a UML class diagram [5].

2.2. Kroki Meta-Model

Kroki is designed as a tool for which the foundation is EUIS DSL—a stand-alone imple-
mentation of the EUIS UML profile. Its meta-model (Figure 7) consists of four smaller meta-
models integrated by common meta-classes. Meta-classes from the UI meta-model and the
Persistence meta-model reference meta-classes that implement a simplified UML::Kernel
meta-model. The Layout meta-model is added to enable the design of mockup layouts
(Figure 8).

Appl. Sci. 2021, 11, 7684 7 of 29

The goal of the way the meta-model is designed is to make it possible for UI model
elements to be viewed both as mockups through the Mockup editor and as “ordinary”
classes with stereotypes using Kroki’s lightweight UML editor. As a result, we have
eliminated the need for model-to-model transformations, which were a part of our earlier
approach with the EUIS profile and many other approaches presented in Section 5. Some
of the benefits of this design is that the many views of the application specification remain
constantly synchronized, without the need for round-trip transformations. Furthermore,
the feedback loop is much shorter as the specifications can be executed immediately.

UI

meta-model

Mockup lay-ou�ng

meta-model

Persistence

meta-model

Simpli�ed

UML::Kernel

meta-model

Figure 7. EUIS DSL meta-model structure. Reproduced with permission from [5], Copyright
IEEE, 2013.

«Metaclass»

PersistentProperty

PersistentClass

«Metaclass»

VisibleProperty

«Metaclass»

VisibleClass

«Metaclass»

Property

«Metaclass»

Class

1

0..1

1

*

1

*

* 1*

«Metaclass»

Persistence meta-model

UI meta-model

...

Figure 8. A sketch of UI meta-model and Persistence meta-model integration using common meta-
classes from simplified UML::Kernel meta-model implementation.

2.3. An Example Specificaton

Figure 9 presents an example of a prototype specification in Kroki’s lightweight UML
editor in the form of the UI model. Classes City, Office, Company, and Worker are denoted
as standard panels, while the class Workplace is denoted as a parent-child panel consisting
of class Company at level zero (parent), Office at level one, and Worker at level two.

The UI model in Figure 9 is a result of mockups’ sketching in Kroki’s Mockup editor.
Figure 10 presents a mockup for managing data regarding workers in an office.

Appl. Sci. 2021, 11, 7684 8 of 29

Figure 9. An example specification in the UML editor.

Figure 10. A mockup for managing worker data.

Figure 11 shows a parent-child Workplace mockup which is assembled of previously
created mockups for Company, Office, and Worker.

Figure 11. An example of a parent-child mockup.

Appl. Sci. 2021, 11, 7684 9 of 29

2.4. Kroki AOP Engines

To enable the execution of prototypes in Kroki, code generator modules feed the
specified model to aspect-oriented Java engines. This approach is based on the generic web
or desktop Java applications that adapt their look and behavior according to the prototype
specification [14] and defined user privileges.

The configuration files for these engines are generated for each project, while most of
the prototype code and assets already exist in the application repository (Figure 4) in order
to enable rapid collaborative development cycles with the customers. Each collaborative
cycle includes gathering the specification or changes of the specification from the customer
and presenting them with a running prototype.

A database schema created based on the generated JPA entities [15] can be deployed
into an existing local or remote database. If the database connection parameters are not
specified, the project will use a temporary, in-memory H2 database (H2 Database Engine,
http://www.h2database.com, accessed on 18 August 2021). An example of a running web
application that is the result of the described process can be viewed in Figure 12–14.

Figure 12. A web page for managing office data in (a) view mode and (b) edit mode.

Figure 13 presents a web page for managing workers’ data in view mode.

Figure 13. A web page for managing workers data in a view mode.

http://www.h2database.com
http://www.h2database.com

Appl. Sci. 2021, 11, 7684 10 of 29

Figure 14. A parent-child web page of a prototype.

2.5. Import and Export Features

Kroki fosters model reusability by providing UML class diagrams to be imported from
or exported to general-purpose modeling tools using the XMI format.

Generated prototype code can be exported as an Eclipse Java project. If we need to
manually change or enhance the generated project, we can implement the changes using
aspects. This way, there is no need to change the generated code directly, and subsequent
code generation cannot damage handwritten changes.

The usage of Kroki’s import and export features is described in more detail in [16].

2.6. Administration Subsystem

The administration subsystem consists of an Administration Manager and Menu
Editor tools [17]. The administration manager enables the specification of user roles and
their privileges in the developed system based on simplified RBAC (Role-Based Access
Control [18]). The existence of the user role’s privileges enables dynamic configuration of
the mockups and application specifications during runtime, based on the needs of each
user’s role.

If user roles and privileges are not specified; Kroki generates a default user with all
the privileges, so all specified features can be verified.

The Menu Editor enables the specification of the main menu structure for each user
role defined in the Administration subsystem. If the menu is not specified, Kroki’s Menu
Generator creates the main menu and its sub-menus so that they reflect the package
structure of the Kroki project.

2.7. Kroki’s Recommended Usage

Before we can utilize Kroki, we need to perform an initial development phase to
define non-functional requirements, the system’s scope, perform decomposition to a set of
well-defined subsystems, and create a plan for their implementation, integration, and de-
ployment. Each subsystem can then be developed using Kroki, with or without the help of
general-purpose modeling and programming tools.

Kroki is primarily designed to support the iterative and incremental prototype de-
velopment of enterprise applications in collaborative sessions with customers, although
it can be used in any development environment. If Kroki’s supported technological plat-
form is appropriate, the generated prototype, accompanied by handwritten code, can
evolve to the final application. Otherwise, the prototype can be used only for functional

Appl. Sci. 2021, 11, 7684 11 of 29

requirements elicitation, providing a data model and mockups specification as input to
manual construction.

Similar to our previous solutions [19], Kroki is designed to create a fully functional pro-
totype with as little generated code as possible. A large body of program code complicates
management and reconfiguration and slows down prototype compilation and execution.
The strategy of reducing the program code size is carried out through the Application
repository, the aspect-oriented engines, and the administration subsystem as follows.

The developed mockups from all development sessions should be kept in a single
project that can be logically separated into packages. User roles’ working environments
can be specified using the administration subsystem by choosing a subset of developed
mockups and setting appropriate privileges and menu items for their activation. A single
mockup can appear in multiple user roles’ working environments.

Suppose different user roles need several versions of the same mockup, with added or
removed UI components or operations. In that case, the development team should create a
single mockup as a union of the needed UI components and use the administration subsys-
tem to specify privileges for each UI component. The development team’s responsibility
is to recognize the overlapping requirements and address them by mockup adjustments
and specification of user rights. We did not want to implement automatic identification,
adjustment, and integration of separately developed mockups since this process is prone
to errors and can be done in a semi-automatic way at best [20]. During execution, generic
aspect-oriented engines instance only those elements (menus, forms, and UI components)
with appropriate privileges according to the RBAC standard.

3. Exploratory Case Study Research

In order to verify if executable mockups can be used for requirements’ specification
from the start, we decided to conduct an exploratory case study [21,22] with participants
from various business domains. The research question and the study proposition are
defined as follows:

• Research question:Is it beneficial to organize collaborative development sessions
based on executable prototypes in the early phases of requirements elicitation?

• Study proposition: Executable prototypes developed in tight cooperation with cus-
tomers can enhance mutual understanding, increase customer satisfaction, and shorten
the requirements elicitation phase.

So far, we were able to organize 10 sessions. A summary of these sessions is displayed
in the following sections. Developed specifications and prototype screenshots are available
in [23]. These specifications can be opened and executed by Kroki. The source code of
Kroki itself can be downloaded from [6].

The participants were voluntarily joining the research. Our goal was to find the
participants from different business domains, with different company positions and ed-
ucation levels. There was no restriction regarding age, gender, or computer literacy (see
Tables 1 and 2). The participants were chosen from domains that we were not familiar
with in order to avoid the influence of our domain knowledge. Participants were also
not engaged in software design and construction in their workplace. They did not have
previous knowledge of Kroki as a tool nor the prototyping approach on which we planned
to base the communication on.

Since we had experience with the development of several ERP (Enterprise Resource
Planning) systems, we did not choose participants from areas usually supported by ERPs
(accounting, invoicing, human resources management, asset management, production,
planning, etc.). They were also not chosen from our faculty services since we cooperated
with them during our in-house information system development. Although we could more
easily gather participants by recruiting our students, we did not engage them because they
were not a genuine substitute for real-world customers [24]. We used students for testing
the Kroki tool in [25].

Appl. Sci. 2021, 11, 7684 12 of 29

The development team consisted of two researchers who conducted all sessions so as
to avoid the impact of different researchers on the outcome. One of them operated Kroki
during the sessions, while the other was more engaged in design decisions. Both of them
were equally engaged in communication.

Participants were asked to come to their session with a software application in mind
that they would like to have developed and some artifacts (documents, forms, reports, etc.)
that could help us better understand their requirements. It could be a development of a
new application or an improvement of an existing one that lacked some essential features.
Some of the participants were customers during software development in their companies,
so they came particularly well prepared and often had examples of documents they were
operating with in their everyday tasks. After the sessions, they were able to compare our
approach with their previous experiences.

The sessions were limited to a two-hour time frame. At the beginning of each session,
we asked participants to briefly describe their domain, the main goals they wanted to
achieve, and the application’s main features. We also tried to understand the application
boundaries, especially if the application was perceived as a part of an anticipated more
complex system. When we felt that we acquired a basic understanding of participant’s
needs, we would start creating initial mockups for one of the features we agreed upon.
Mockups were created using the Kroki mockup editor (Figure 3), so the participants
were able to understand the process and suggest corrections. These mockups served as a
foundation for further discussion and development.

3.1. Evaluation Instrument

Since we aimed to investigate if the usage of executable prototypes in the early
phases of software development can enhance mutual understanding and increase customer
satisfaction, we chose participant observing, a technique of qualitative research, combined
with the questionnaires as a method of quantitative research, to enhance the validity of our
observations. The combination of technical and human aspects in software engineering
research demands both qualitative and quantitative methods in order to use the strengths of
both [21]. Participant observation can capture firsthand behaviors and interactions through
the collaborative work of a researcher and participants, which might not be noticed using
only quantitative methods [21].

To investigate if executable prototypes can shorten the requirements elicitation phase,
we planned to compare the time needed to acquire mutual understanding with the time
spent in sessions in which we did not use mockups in communication with customers [19].
The applications developed in both types of sessions were based on the same user inter-
face guidelines and created using code generators, so the comparison was possible. In
addition, one of the researchers was engaged in both session types so they could compare
their experience.

During study preparation, we conducted several focus groups aimed to design basic
propositions, questionnaires, and metrics for qualitative research. Once the preparation was
finished, we performed a zero session with a participant who was a marketing specialist in
a large corporation. Before the zero session, our expectation was that we would need at
least four hours to elicit requirements and create the prototype, but it helped us realize that
the process could be finished in even less time and that a two-hour session time limit was
adequate. Furthermore, a discussion with the zero-participant enabled us to improve the
questionnaires and the events that we planned to observe.

We prepared three questionnaires:

• A: Background questionnaire—used to obtain some general background information
about the participants (Table 1).

• B: Development session evaluation (15 questions)—a questionnaire with fixed and
open-ended questions regarding participant’s opinions on the collaborative design
session with the developers (Table 3).

Appl. Sci. 2021, 11, 7684 13 of 29

• C: Developed prototype evaluation (eight questions)—a questionnaire regarding
quality and ease-of-use of the generated prototype (Table 4).

Each questionnaire consisted of a number of closed questions and, with the exception
of the background test, a free section for comments and suggestions. Participants answered
each question by choosing an item on the five-point agreement scale [21] with the terms
“Strongly agree” and “Strongly disagree” on the opposite sides of the scale. Statements in
some questions were negated, and the questions in the same groups have been randomized
to minimize the systematic responses. In summaries, answer items were coded with
numbers one to five, where one corresponds to the statement “Strongly disagree” and five
to “Strongly agree”.

Table 1. Background questionnaire.

General Info

Gender
Age
Occupation
Education

Questions Scale

aQ1 How skilled are you in using a personal 5-point Inexperienced—Skilled
computer?

aQ2 How would you rate your skill in using 5-point Inexperienced—Skilled
graphical editors?

aQ3 Does the company you work for have any 5-point Inexperienced—Skilled
information system which you use as
a part of your everyday job? If the answer
is YES, how would you rate your skill
in using it?

aQ4 Did you attend any of the courses in Yes/No
information management or software
modeling during your education?

aQ5 How many times have you got the chance 5-point Never—Many times
to participate in a software development
process for your company or to cooperate
with the software development team as
a user or a client?

Table 2. Background questionnaire results. Education level is based on International Standard
Classification of Education (ISCED) 2011.

Session Gender Age Institution Job Description Education aQ1 aQ2 aQ3 aQ4 aQ5

S1 F 44 Bank Head of Master or 4 2 5 NO 4
non-performing equivalent
loans bank
division

S2 F 51 Primary Teaching Bachelor or 5 5 5 NO 4
school coordinator equivalent

S3 M 43 Theatre Museum collection Upper 5 5 5 YES 3
Museum archivist secondary

education
S4 F 42 Insurance Insurance Frauds Bachelor or 4 3 5 NO 3

company Inspector equivalent
S5 M 43 Insurance Insurance Chief Bachelor or 4 2 4 YES 5

company Underwriter equivalent
S6 F 30 University Assistant Doctoral 5 5 5 YES 3

professor
S7 M 28 Computer Computer Upper 5 4 5 YES 4

repair shop technician secondary
education

S8 F 62 Tax Tax inspector Bachelor or 5 5 5 NO 3
administration equivalent

S9 F 46 Music school Professor of Master or 3 3 5 NO 1
violin equivalent

S10 F 41 Moving CEO Bachelor or 4 2 5 NO 4
company equivalent

Average 43 4.4 3.6 4.9 3.4

Appl. Sci. 2021, 11, 7684 14 of 29

Table 3. Development sessions evaluation questionnaire.

Questions Scale

bQ1 Working together with the developers 5-point Strongly agree—Strongly disagree
helped me express my requirements.

bQ2 Time spent with the developers 5-point Strongly agree—Strongly disagree
was too long.

bQ3 During that time we did a lot of work. 5-point Strongly agree—Strongly disagree
bQ4 This way of working was exhausting. 5-point Strongly agree—Strongly disagree
bQ5 It was hard to understand the 5-point Strongly agree—Strongly disagree

developers’ questions.
bQ6 The developers had a hard time 5-point Strongly agree—Strongly disagree

understanding my needs.
bQ7 During the session, I felt 5-point Strongly agree—Strongly disagree

uncomfortable and incompetent.
bQ8 It would be easier for me to deliver 5-point Strongly agree—Strongly disagree

the requirements on paper without
direct communication.

bQ9 I think that sketching the program 5-point Strongly agree—Strongly disagree
on paper would be a better way to
communicate with the development
team.

bQ10 Running the application prototype 5-point Strongly agree—Strongly disagree
helped me notice what I need.

bQ11 Entering the data in the prototype 5-point Strongly agree—Strongly disagree
makes finding errors easier.

bQ12 Entering the data in the prototype 5-point Strongly agree—Strongly disagree
takes a lot of time.

bQ13 I would like to continue participating 5-point Strongly agree—Strongly disagree
in the development of software for my
company in this way.

bQ14 I think that I could make a 5-point Strongly agree—Strongly disagree
specification using Kroki tool by
myself, without the developers.

bQ15 If you have ever participated in Free text
software development with another
team, please write down your
impressions compared to this
experience.

bQ16 Comments and suggestions. Free text

Table 4. Developed application prototype evaluation questionnaire.

cQ1 The concepts of the application 5-point Strongly agree—Strongly disagree
prototype are easy to understand.

cQ2 The application elements are easy to use. 5-point Strongly agree—Strongly disagree
cQ3 I find the standardized look of 5-point Strongly agree—Strongly disagree

the forms intuitive.
cQ4 Navigating the application was easy 5-point Strongly agree—Strongly disagree

using the provided user interface.
cQ5 I think that I could use the developed 5-point Strongly agree—Strongly disagree

application without previous training.
cQ6 I think that I could use the developed 5-point Strongly agree—Strongly disagree

application without the written manual.
cQ7 I think that such an application would 5-point Strongly agree—Strongly disagree

help me in my job.
cQ8 I like the look of the application. 5-point Strongly agree—Strongly disagree
cQ9 Comments, suggestions: Free text

After the session, every participant received the questionnaires by email and was
asked to take their time to answer the questions clearly and honestly. We chose this way
of gathering answers in order to enable them to better concentrate on the survey instead
of filling it right after the session when they were perhaps exhausted from the process or
feeling obstructed by our presence.

The following section presents a summary of the notes and observations taken during
each session. The sessions and their application domains (project titles) are listed in Table 5.

Appl. Sci. 2021, 11, 7684 15 of 29

The developed models which can be executed using Kroki, screenshots of the application
prototypes, and the questionnaires are available in [23].

Table 5. Development sessions’ application domains.

Session Project Title

S1 Exposure and Collateral
S2 Professional development database
S3 Theatre Museum of Vojvodina
S4 Claims management
S5 Road assistance
S6 Printing office project management
S7 Computer repair shop
S8 Tax documentation management
S9 Performance and competition management

S10 Moving and relocation

3.2. Exposure and Collateral

The participant was a 44-year-old bank executive working on extensive credit man-
agement. She had an application that supported her daily routine, but it lacked some
navigation and reporting features. The current application could not provide a combined
and summary overview if a bank’s client had several loan accounts.

Firstly, we discussed data needed for the combined overview. We jointly created
several simple mockups (standard panels) that enabled managing the essential information
about clients, loan accounts, currencies, collaterals, etc.

Then we combined standard panels into a parent-child panel and activated the proto-
type execution. The participant helped us enter some data and realized that the parent-child
panel was not organized properly, and that some information is missing. We returned to
the Mockup editor, fixed the mockups, and executed the prototype once more. This time,
the combined overview was specified correctly.

Since we had to develop and validate de facto just one feature, this session was quite
short—it was finished in 70 min and resulted in seven developed mockups. The prototype
development in two iterations took 25 min. The participant satisfaction was very high.
Her comment about the participatory development (bQ15 in the development sessions
evaluation questionnaire) was the following: “From my previous experience, the project
lasted for months and included a lot of people with different levels of understanding and
ways of thinking. This experience is fantastic compared to my previous ones”.

3.3. Professional Development Database

This case involved a 51-year-old teaching coordinator in an elementary school. The par-
ticipant was responsible for collecting and recording data about teachers’ professional
development activities (seminars, workshops, publications, etc.). Application for logging
such information was non-existent, so she used multiple sources and teacher submissions
to put together an annual report for each teacher’s achievements.

The session had similar dynamics to the previous one. After the initial introduction to
the participant’s domain and required features (55 min), we jointly specified the standard
panels for managing teachers’ data (basic info, occupation, job position, office location, etc.)
and details about the competence improvement program. Then we created a parent-child
panel to integrate teachers with their accomplishments in the given school year. After fixing
the minor issues that we have discovered after launching the prototype, the participant
confirmed that she acquired what she had in mind. The prototype development took
40 min and resulted in eight developed mockups in two iterations.

The session took more time than the previous one with a similar result, but it was
not due to problems in communication. The current participant was just more elaborate
than the previous one. She rated the experience as very satisfying, particularly praising the
functional and straightforward design of the web prototype: “I like the simplicity and the
functionality of the user interface, without any redundant elements”.

Appl. Sci. 2021, 11, 7684 16 of 29

We find this input significant since she had formal education in the fine arts, so
we expected her to give some remarks on the overall aesthetics of the prototype. The
participant has collaborated with the programmers before and has stated the following
regarding that:

“I have been involved in the development of multiple software programs as a customer
before. This is by far the best experience. This way, the customer gets a better insight into
needed functionalities and becomes directly responsible for the developed application
features. This tailor-made concept is an answer to many client and developer doubts.
My only concern is that some future clients may consider your work too easy, unaware of
all the effort made in the background”.

3.4. Theater Museum of Vojvodina

In this case, the participant was a 43-year-old museum collection archivist in the
Theater Museum of Vojvodina in Novi Sad. The museum executive board was considering
digitization, so he was very enthusiastic about taking part in the session and discussing
the needed features of the future system.

After an introduction that provided us with a big picture (50 min), we estimated
that we could start with the mockup development. We had to provide an application for
managing data about theaters (basic info, available stages), events performed in theaters,
and events’ contributors (actors, directors, scriptwriters, etc.). Contributors were coming
from multiple countries, so events had to be organized in different languages.

Besides basic data entry, it was necessary to obtain the bibliography (published articles,
monographs, etc.) for the contributors, events, and theaters.

The prototype development lasted 75 min and resulted in 14 mockups developed in
four iterations.

The participant enjoyed this kind of development and was satisfied with the results.
He was keen to learn how to use Kroki to be able to add mockups by himself if the
need arose.

When asked to comment about the developed prototype, he stated the following:
“In two hours which I spent learning the tool’s functionalities and developing the prototype,
I was able to participate in application development and see instant results with great
ease. Also, my requirements were very easily applied. This tool greatly reduces the time
needed to create an application and, most importantly, simplifies the communication
between the customer and the developers. The client needs to have an insight into the
modeling process”. We organized another session to teach him how to use Kroki, helped
him to specify some additional features, and exported the model to XMI so that another
development team could get a starting point for the project.

3.5. Claims Management

This 42-year-old participant worked in an insurance company in the fraud detection
department. She wanted to enhance the existing application she was using at her job.
Her work extensively relied on the efficiently organized forms and advanced navigation
features, which were not satisfying in the current system.

An insurance claim was the main topic, accompanied by insurance policy, policy holder,
and other participants in the claim. A claim could be supplied with a number of support-
ing documents, each classified by type. It was also the basis for the claim calculation,
including financial reimbursements in a periodic manner. The insurance policies were
classified according to the insurance products and comprised risk and tariff descriptions.
The application also had to support responsibilities in the insurance company according to
geographic regions and organizational hierarchy.

Appl. Sci. 2021, 11, 7684 17 of 29

After we finished the required features overview (50 min), we jointly created standard
panels for managing data about the presented concepts. Then we tried to organize them
into composite panels in order to provide her with features she lacked in her existing
application. The final prototype specification consisted of 17 mockups, developed in five
iterations in 70 min.

The participant reported she collaborated in the software development before and
stated that the experience from the session “cannot be compared to the previous ones”
(in favor of the Kroki tool).

3.6. Road Assistance

This session involved a 43-year-old economist also working in an insurance company.
He wanted to develop a mobile application that would allow users to put together and buy
a custom car insurance package at any time. Considering that Kroki currently does not
support mobile application prototyping, the emphasis was on developing a prototype that
would serve as the back-end for such an application.

The application was focused on road assistance as an insurance product. It comprised
detailed information about vehicle characteristics relevant from the standpoint of insurance
and a policy holder. The road assistance product references a number of scopes of covers,
categorized into packages, and includes tariffs with time validity periods and vehicle types.

The participant had attended a one-semester course in information systems during
his education and has participated in the development process as a customer many times
(he ranked himself as a five in the background survey). Thanks to his experience, there was
little need for prototype execution during the session—he could easily comprehend all
necessary details from the mockups. His requirements were noticeably clear, so it was
straightforward for us to understand what he wanted.

This session was the most productive of all. At the beginning of the session, the partic-
ipant introduced us to his business domain in 40 min. Then, we jointly created 20 mockups
in 90 min in two iterations.

The participant stated that writing formal requirement specifications was a problem
for him and found this approach very creative, simple, and time-saving.

3.7. Printing Office Project Management

The participant was a 30-year-old assistant professor with a degree in graphics design
and engineering. As a member of a printing office at her faculty, she reported that a
large number of printing office projects had problems because of a lot of minor mistakes
made during the printing preparation. It was the consequence of informal communication
between their customers and printing office staff, performed mainly by telephone and e-
mail. The participant had expressed the need for project management software that would
provide a custom workflow of printing preparation phases for every project. There was
a known set of phases, and for every printing project there was a need to specify which
phases were contained, and in which order.

This was challenging and we spent almost 60 min trying to understand the partic-
ipant‘s needs in the first part of the session. However, once the mockups development
started, we rapidly made progress and even came up with a useful new feature that the
participant initially did not have in mind. It was a support for common project types with
predefined set of phases.

The session resulted in 16 mockups developed in three iterations in 60 min.

3.8. Computer Repair Shop

In this case, the participant was a 28-year-old technician that was working in a com-
puter repair shop. He was not satisfied with his current repair shop application, in which
data was entering mostly in free text forms. The application’s main purpose was to keep an
informal track of performed repairs to help with their customer’s complaints and reclama-

Appl. Sci. 2021, 11, 7684 18 of 29

tions. Pricing and invoicing features were not supported—technicians used to read prices
from printed lists.

In order to support technicians to work more efficiently, we provided support for
managing data about employees, customers, repair shop services and their prices, receipts
for received devices, etc.

The session was relatively short and lasted 80 min. The introductory part of the session
took 45 min. The prototype development took 35 min in which we specified 13 mockups in
two iterations. This was mainly the result of our familiarity with the domain of computer
equipment. In addition, the participant knew precisely what he wanted.

3.9. Tax Documentation Management

The participant, a retired 62-year-old tax inspector, wanted to develop a web applica-
tion that would help taxpayers organize needed documentation based on their tax profile.
Throughout her career, she has encountered many taxpayers with incomplete or faulty tax
documentation because they had trouble getting the needed information. This application
would be available to all taxpayers and allow them to log in and manage all their tax-related
activities. Inspectors could also use the application to track taxpayer’s activity.

This session was challenging for us. We spent most of the time trying to commu-
nicate the domain specifics and the details of the requirements. We had an impression
that there was a considerable amount of tacit knowledge that the participant could not
convey. Furthermore, since the participant has been retired for two years and was currently
occupied with a different career, she was constantly checking the official websites for new
information, which also took more time. In an attempt to reach mutual understanding, we
were making small iterations. We would create a mockup for a feature we thought that
we comprehended, launched the application, and asked her how to populate it with data.
Often, she did not know the answer, which was a sign that mutual understanding was
not acquired.

The session was unsuccessful regarding our understanding of the requirements. How-
ever, the participant said that the developed application was what she had in mind and
expressed a positive opinion in the questionnaires. We assumed that she probably thought
she would hurt our feelings if stated otherwise. We had an interview with her a few days
after the session, and she confirmed our assumption—the session was hard for her as well.

The initial part of the session lasted 40 min. The prototype development took 80 min
and resulted in nine mockups developed in 14 iterations.

3.10. Performance and Competition Management

This participant, a 46-year-old professor of violin, wanted to develop an application
that would help her keep records of students in her class. She wanted to be able to prepare
and enter a specific program for each of her students based on their abilities and ambitions.
The student program consisted of a list of compositions the student had to master in the
given school year. She also wanted to track the class involvement in music competitions
and other performances. A student group taking part in a competition or performance
could be assembled of students and professors from different music schools. Students
and professors could take part in several performing groups with different roles and
instruments. It is important to know the time, place, participants, and composition that
was performed.

She had the needed data in multiple documents, printed and digital, and the software
that would help her keep it in one place would be beneficial.

After an initial discussion that took 45 min, we started with prototype development.
We built 18 mockups in six iterations. It took 70 min.

Appl. Sci. 2021, 11, 7684 19 of 29

Every time the prototype was launched, the participant got more ideas about what
could be added next, so the prototype was gradually enhancing. The result was very satis-
fying for the participant. After the session, we installed the application prototype on her
laptop since she found it helpful even in the current state of development. She commented
that she really enjoyed the time spent in development and found the whole process highly
creative. We had the same impression.

3.11. Moving and Relocation

The participant was a 41-years-old CEO of a company that provided moving and
storage services. She wanted to develop a subsystem for managing external workers and
their assignments to work orders. The subsystem aimed to keep data about workers such
as their name, address, contact information, availability, skills, uniform size, etc. It was also
essential to enable support to assign workers to work orders and record their work log (the
time they spent on each type of service within the work order).

The introductory part of the session lasted 50 min. Then, we started with the col-
laborative prototype development. Firstly, we developed several simple mockups that
enabled workers’ information management and a parent-child mockup that enabled the
manager to grasp the most important worker’s information at a glance. The prototype was
launched, we entered some data and realized that additional fields were needed and that
the parent-child form should be organized differently. After the repair, the prototype was
restarted, and the participant was satisfied with the result.

Then, we developed mockups for work orders, workers’ assignments, and work
log tracking. This part was much shorter, as we understood the domain better, and the
participant had learned about our way of work.

The finished prototype consisted of 11 mockups developed in 60 min in two iterations.
The participant had detailed knowledge of her business domain, her requests were

precise, and she did not lose time to recall what information the subsystem should provide.
Communication was easy and understanding was mutual. After the session, she said she
would like to have this type of development in her company. She complained about the
rigid rules that their IT department implemented when new requests appeared, which
implies that the entry of a request and its detailed description in the requests tracking
system and waiting for its implementation, is a long time (even several months).

4. Discussion

We carried out 10 two-hour sessions with participants from various domains. Dur-
ing the limited time, we obtained a functional specification of the applications that the
participants had in mind in 9 out of 10 cases. The size of applications ranged from 7
to 20 mockups. Based on our observations, participant experience was mostly positive,
which greatly affected the commodity and the working pace, making the development less
stressful for all parties. Results from Table 6 and 7 confirm our observations.

Table 6. Development sessions evaluation results.

Ses. Project Title bQ1 bQ2 bQ3 bQ4 bQ5 bQ6 bQ7 bQ8 bQ9 bQ10 bQ11 bQ12 bQ13 bQ14

S1 Exposure and Collateral 5 1 5 1 1 1 1 1 1 4 5 1 5 2
S2 Professional development database 5 1 5 1 1 1 1 1 1 5 5 1 5 1
S3 Theatre Museum of Vojvodina 5 1 5 1 1 1 1 1 1 5 5 1 5 2
S4 Claims management 5 1 5 1 1 1 1 1 1 5 5 1 5 5
S5 Road assistance 5 1 5 1 1 2 1 1 1 5 5 1 5 1
S6 Printing office project management 5 1 5 2 2 1 1 1 1 5 4 2 4 5
S7 Computer repair shop 5 1 5 2 1 1 2 1 2 5 5 1 5 1
S8 Tax documentation management 5 1 5 1 1 1 1 1 1 5 3 1 5 1
S9 Performance and competition management 5 1 5 1 1 2 2 1 1 5 5 1 5 1
S10 Moving and relocation 5 1 5 1 1 1 1 1 1 5 5 1 5 1

Average 5 1 5 1.2 1.1 1.2 1.2 1 1.1 4.9 4.7 1.1 4.9 2

Appl. Sci. 2021, 11, 7684 20 of 29

Table 7. Developed application prototype evaluation results.

Session Project Title cQ1 cQ2 cQ3 cQ4 cQ5 cQ6 cQ7 cQ8

S1 Exposure and Collateral 5 5 5 5 3 5 5 5
S2 Professional development database 5 5 4 4 5 5 5 5
S3 Theatre Museum of Vojvodina 5 5 5 5 3 3 4 4
S4 Claims management 5 5 5 5 1 1 5 5
S5 Road assistance 5 5 5 5 5 5 5 5
S6 Printing office project management 5 4 4 3 2 4 3 4
S7 Computer repair shop 5 5 4 4 1 1 5 4
S8 Tax documentation management 5 5 5 5 1 1 5 5
S9 Performance and competition management 5 5 5 5 1 4 5 5
S10 Moving and Relocation 5 5 5 5 1 1 5 5

Average 5 4.9 4.7 4.6 2.3 3 4.7 4.7

Once the participants understood how their ideas can be turned into mockups, they
were able to give more concise requirements and review some of the previous ones. By navi-
gating the forms populated with their actual data, customers could spot some fundamental
issues in the prototype that were overlooked in the previous discussion (missing data
components, data components in wrong places, unsuitable forms’ organization, inadequate
navigation, etc.).

We noticed the tendency of less frequent prototype execution for more experienced
participants (the ones that had previously participated in software development as a
customer or the ones that work on executive positions in their company). During the
sessions, those participants were able to comprehend most of the concepts and details
during the mockup development.

We had a hard time understanding participants in some sessions and vice versa, which
also reflects real situations in initial meetings with customers. However, as soon as mockup
development and execution were started, mutual understanding was gained in 9 out of
10 sessions.

Table 8 shows the summary of development sessions. The average number of mockups
per session in the specified prototypes is 13.3, which is expected given the time limitation
of the sessions. The average time spent on each mockup is 4.67 min.

Table 8. Development session summary. The duration is given in minutes.

Session Project Title
Number Number of Session Prototype Mockups

Successful?of Iterations Duration Development per
Mockups Duration Minutes

S1 Exposure and Collateral 7 2 70 25 3.57 yes
S2 Professional development 8 2 95 40 5 yes

database
S3 Theatre Museum of 14 4 125 75 5.36 yes

Vojvodina
S4 Claims management 17 5 120 70 4.12 yes
S5 Road assistance 20 2 130 90 4.5 yes
S6 Printing office project 16 3 120 60 3.75 yes

management
S7 Computer repair shop 13 2 80 35 2.69 yes
S8 Tax documentation 9 14 120 80 8.89 no

management
S9 Performance and 18 6 105 45 2.5 yes

competition management
S10 Moving and Relocation 11 2 110 70 6.36 yes

Average 13.3 4.2 107.5 59 4.67

In our previous approach based on UML modeling with general-purpose modeling
tools and code generation from UML class diagrams using AppGen [19], we needed from
one to several days before we were able to generate an executable prototype (Figure 15,
AppGen part). Our approach was, as soon as the requirements elicitation session with
customers was finished, to proceed with a design session for the specification of a data
model in the form of a class diagram. Vagueness and shortcomings in user requirements

Appl. Sci. 2021, 11, 7684 21 of 29

were usually detected during the design, but we had to wait until the following requirement
session to get the needed clarifications. Each session usually lasted several hours.

Development based on executable mockups gains a dramatic improvement (Figure 15,
Kroki part) since we can perform several rounds of elicitation, design, and prototype
validation in a single session, using the means understandable to all parties.

Prototype

construction

Prototype

design

Prototype

evaluation

Physical database
model design

Exploitation

Exploitation

Prototype
evaluation

Prototype
refinement

Application
generating

Database
generating

UML diagrams
design

Requirements
elicitation

Requirements

elicitation

Significant errors
found

Less significant
errors found

Business rules
changed

Errors /
Imperfections

Vagueness
found

Refinement
needed

OK
OK

OK

OK

Business rules
changed

Significant errors
found

Refinement
needed

Less significant
errors found

OK

Errors /
Imperfections

Vagueness
found

OK

OK
OK

1 - 2 weeks

Feature discussion

Joint mockups

development for

the selected feature

Execu�on

Requirements Elicita�on Session

External Modeling

Tools

XMI

Code

Generators

src
Use in further

development

A few hours

per session

K
ro

k
i

A
p
p
G

e
n

Selec�on of

a new feature,

if re�nement is not

needed

Executable Applica�on

Model

Executable

prototype

Re�ne

Business domain

discussion

integrated data

+ UI model

Figure 15. A comparison of development processes using the AppGen [19] and Kroki tool.

Of course, the development of an actual application would take more time. In the
case of a real system, before we could use Kroki in development sessions, we would need
to perform the initial phase to obtain the system’s overview, decomposition, and non-
functional requirements, as described in Section 2.7.

During the session, we were populating only basic settings (Figure 2)—advanced and
persistence settings were omitted. We also needed at least an hour after each session to
write down detailed requirements.

From our point of view, the sessions were very intensive. It took considerable effort to
communicate with participants, memorize their requirements, and implement them in the
mockups, having the domain model in mind. We performed sessions in pairs, which helped
us to divide the work. For real development, we think that additional developers could be
helpful to prevent quick tiring and potential errors. Still, the development team probably
could not perform more than two sessions a day. In our opinion, this is enough, given the
speed of work and the level of understanding acquired in such sessions.

Appl. Sci. 2021, 11, 7684 22 of 29

In order to ensure the validity of our study, we used triangulation—a combination
of data extracted from qualitative and quantitative methods: Participative observation,
questionnaires, and comparison with the previous sessions in which the Kroki tool was not
used. During sessions, both researchers were taking notes, so they were able to compare
the notes and their impressions. Kroki’s message log window was helpful for time tracking
since it displays the time for every prototype launch. The study was carefully prepared,
using several focus groups and a zero session. We performed 10 sessions. Nine of ten
sessions were successful regarding acquiring mutual understanding.

The quality of the produced data model and development speed depends on the skills
of developers participating in the sessions. Someone fluent in requirements elicitation
and conceptual modeling will immediately create a quality solution that can be used for
further development. An inexperienced developer will probably create a solution that
needs additional refactoring, but it is still enough to serve as a basis for communication
with customers.

5. Related Work

A mockup-driven enhancement to a standard agile development life-cycle, called
MockupDD, is presented in [26]. It extends a technique and a tool introduced in [27].
A MockupDD process starts with the creation of user stories based on the brief requirements
specification phase. Then, clients and the development team build screen mockups as a
graphical representation of the user stories. Mockups are created using general-purpose
mockup tools, imported, and annotated in order to produce a Structural User Interface
(SUI) model. This model serves as a basis for obtaining a WebML model of a working
web application.

MockupDD is intended to be a tool for building general-purpose web applications,
so many of its concepts are specific to the web domain. Compared to our approach,
MockupDD needs additional post-processing in order to transform mockups into SUI. In
addition, MockupDD does not have the means to visualize data or UI models, which could
lead to harder comprehension of the developed application.

The described approach is later evolved into a process called DataMock [28] which
also uses user-annotated sketches to generate data models.

Similar variations of mockup-driven development can be found in [29]. Rough sketches
of a storyboard are created during participative development and then scanned, manually
annotated, and imported into Window/Event Representation (WED) using the AIDE tool.
WED is a UI specification notation based on UML 2 state machines that can be used to
specify the layout and the behavior of the UI. Each graphical element (a window, a dialog,
etc.) is represented as a state, while the events on those elements initiate state transitions.
AIDE generates XUL (XML User Interface Language) code which can be executed in a
web browser.

In the aforementioned papers, mockups need to be imported and, using additional
graphical or textual annotations, transformed into software models and then into working
code. In contrast to this, screen mockups developed in Kroki are elements of our EUIS
DSL, so no additional processing or transformation needs to be done to obtain a working
prototype, which contributes to the development speed required for collaborative sessions.

In [30], a UI prototype is developed as a result of a series of semi-automatic transforma-
tions performed by the Marama AI tool. Taking written textual requirements specification
as a starting point, the Essential Use Case (EUC) diagram is extracted and then mapped to
an abstract Essential User Interface (EUI) model, which is a base for generating a concrete
form-based UI. Each generated model has to be examined and manually adjusted before
the next step is performed.

Appl. Sci. 2021, 11, 7684 23 of 29

In [31], an approach is presented of using model-driven techniques in order to create
a prototype for large scale Enterprise Information Systems. The process begins with a
model of the data structure defined in one DSL, which is used to generate the backend
part of the target application, as well as a basis for model-to-model transformation into
another DSL, targeted toward GUI specification, which is subsequently used in order
to generate the front-end part of the enterprise application. The result is a functional
prototype of the system being developed, which can be used for validation with end users.
Included mechanisms provide the means for this prototype to be further refined and not
thrown away.

This approach has a similar vision to Kroki. One advantage that we see in Kroki is
that it does not have the need for model-to-model transformation while work is done in
the tool itself, but it enables the import and export of the specification as general purpose
UML (Unified Modeling Language [32]) via XMI (XML Metadata Interchange [33]).

The paper [34] presents a first proof of concept that targets an open issue in the
industry regarding automating the reuse of information included in prototypes developed
with clients in the early stages of software development. Since those early prototypes are
usually discarded, many times, the final product does not represent what the client expects.
The authors propose to build a tool that transforms prototypes into requirements and user
interface models. For the validation, they built a prototype consisting of two mockups
using PowerPoint, exported it to XMI, imported it into Enterprise Architect, and discussed
results with two companies.

We agree with the findings presented in [34]. Kroki enables the reusability of devel-
oped mockups both in data models and code. However, we do not use the transformation
from mockups to models since the mockups are part of the concrete syntax of EUIS DSL.

A model-oriented technology called Umple that can be used for rapid prototyping is
presented in [35]. Umple end-users need to create class and state machine models using
textual syntax. Code generation uses many heuristics for transforming these models into a
usable UI similar to our solution.

WebRatio [36,37] is a professional tool that started as a set of Eclipse plugins and grew
into four separate platforms: Mobile, BPM, web, and enterprise. WebRatio models are based
on IFML language, but the modeled concepts are on a lower abstraction level and harder
to learn than the ones used in EUIS DSL and the Kroki tool. It is expected since WebRatio’s
purpose is to develop general-purpose and fully-functional business applications.

CUBA Platform [38] is another model-driven tool intended for the rapid development
of web information systems. It is free and open-source. The generated CUBA Platform’s
application prototype has a similar look to the prototype developed using the Kroki tool.
The prototype can be manually enhanced to support a rich HTML interface with advanced
widgets such as data graphs, interactive maps, etc. The CUBA platform is not designed for
collaborative development with customers because developers need to elicit requirements,
transform them into a data model using dialogs for specification of persistent classes, and
finally generate and customize the prototype.

Prototizer is an open-source tool that can generate a working prototype of a web
application from a MagicDraw class diagram [39]. Prototizer supports the iterative de-
velopment and provides integration with manually written code. Similar to the CUBA
platform, the customers can take part when modeling and code generation is finished.

A DSL called Application Specification Language (ASL) can be used for the improvement
of the requirements in the engineering process [40]. It provides constructs for the definition
of DataEntities, which can then be grouped into DataEntityClusters. UseCases and
user interface elements can also be defined in ASL. A series of model-to-model and model-
to-code transformations can then be performed using the proposed approach, which en-
ables model validation and generation of an executable application for the Django frame-
work. The generated application can utilize the Admin site provided by Django for user
permission control.

Appl. Sci. 2021, 11, 7684 24 of 29

XIS-Web [41] is a model-driven approach implemented as a UML profile and XIS-
Web framework comprising a set of integrated software tools. It has been built on top
of the Sparx System Enterprise Architect and Eclipse Modeling Framework for the M2M
and M2T transformations. XIS-Web supports a “smart” mode where the designer only
needs to define the Domain, BusinessEntities, Actors, and UseCases view, while the
rest is automatically generated based on a predefined set of UI patterns. The language
and the framework do not provide the means to create UI in a WYSIWYG style (e.g., a
form designer). The evaluation is done on two use-cases: (1) Management of TimeSlots
booked by students and (2) management of personal documents. The use-cases were
implemented both manually and using the XIS-Web framework. The percentage of gen-
erated lines of code vs. lines of code in manually-implemented applications ranges from
58% to 87%, depending on the use-case and the target language. The presented pilot
study is based on a group of participants with at least a Bachelor in Computer Science or
Software Engineering degree, as the language and the framework are oriented towards
Web application developers.

Enterprise WAE (E-WAE) [42] is a lightweight UML extension for modeling of Enter-
prise Web Applications with a focus on the presentation tier and the ability to characterize
navigation maps with RBAC (Role-Based Access Control [18]) support. It comprises 22 stereo-
types. The PIM model is automatically transformed to PSM (currently Java Server Faces
and ASP.NET). The approach enables a quick modeling of the presentation tier, thus hav-
ing the appeal of mockup-based development but without the cost of mockup disposal.
However, the layout of the UI forms must be defined manually.

Comparison of the discussed tools is presented in Table 9. Most of the tools require
some form of a domain model as an input to code generators. This kind of approach
enables the rapid development but is not suitable for collaborative sessions with customers.
The developers must create a domain model based on elicited requirements and generate
code before the customers can participate in the generated prototype evaluation.

The tools that take mockups as input need additional processing: Scanning or parsing,
importing and annotating to transform mockups to software models. Mockups developed
in Kroki need no additional processing to provide a working prototype, contributing to the
development speed.

An overview of the benefits of incorporating mockup-driven techniques into the
requirements specification process is given in [43,44]. In the survey presented in [43], the re-
sponses from 92 industry participants showed that low-fidelity prototyping is the most
used UI technique (68.48%) in the requirements gathering phase. Still, the reusability of the
created sketches is low in the later development phases. The same survey showcased a
growing adoption of agile methodologies in the industry, with Scrum being most commonly
used, followed by Extreme Programming. In addition to these findings, the main driving
force for our work has been a growing interest in incorporating User-Centered Design
(UCD) into existing agile workflows and a lack of empirical research on this topic [45,46].

In [45], a case study of a large software project in Germany is presented. The authors
followed an agile development team called AgDev, which was working on a project
for a government company called WaterWorks. The user involvement was fostered by
conducting acceptance tests which took place in between the agile development iterations.
The study gives valuable insight into the real difficulties of converting requirements into
UI design due to the lack of collaboration between involved parties.

Appl. Sci. 2021, 11, 7684 25 of 29

Table 9. Comparison of mockup tools.

Tool
Design Starts with Mockups Are Needs Additional Requires Needs What Parts of the Supported Immediate
Development of Developed by Manual Processing Development of Model-to-Model Application Are Generated? Execution?of the Mockups? Mockup/Model Parsers? Transformations?

MockupDD [26] Mockups General purpose Yes Yes Yes Running prototype No
mockup tools, like /MDWE Models
Balsamiq or Pencil (such as WebML)

DataMock [28] Mockups General purpose Yes Yes Yes UML Class Diagrams No
mockup tools

AIDE [29] Mockups Paper and pencil Yes No No Generated XUL (XML No
User Interface
Language) code

Marama AI [30] EUI (Essential UI) model - - - Yes EUC (Essential Use No
developed in MaramaEUI editor Case) Model and a

simple HTML prototype
MontiGEM [31] Data structure model - - - Yes Extendable working prototype No

with CRUD functionalities
SocietySoft [34] Mockups PowerPoint No Yes Yes Navigable UI prototype for No

EnterpriseArchitect
Umple [35] Textual Data model - - - Yes UI prototype with CRUD Yes

functionalities
WebRatio [36,37] WebML data model - - - Yes Running application No
Prototizer [39] MagicDraw class diagram - - - No SQL scripts, model classes No

and UI code
ASL-based tools [40] Textual Data and Use Case model - - - Yes Django model classes with No

automatic admin (CRUD) pages
XIS Web [41] Domain View, Business Entities - - - Yes Web prototype with CRUD Yes

View, Architectural View, and functionality
Use Cases View

Enterprise WAE [42] UML diagrams with - - - Yes JSF or .NET web prototype No
WAE UML profile

CUBA Platform [38] Application specification - - - No Running Java Script web Yes
in CUBA studio application

AppGen [19] Data model - - - Yes Desktop application, No
database scripts

Kroki Mockups Kroki mockup editor No No No Desktop or web application, Yes
Data model in XMI

Appl. Sci. 2021, 11, 7684 26 of 29

Similar research presented in [46] discusses the trend of incorporating UCD into Scrum
and Extreme Programming (XP). The study follows three development teams within the
same company working on three different projects and aims to develop a set of principles
helpful in conducting a user-centered development workflow. As the authors stated,
a field study within just one company does not provide sufficient data for any meaningful
validation. The proposed framework has to be regarded as a set of guidelines rather than
a strict collection of rules. Nonetheless, the explicit emphasis on user involvement and
prototyping (the designers must be willing to “feed the developers” with prototypes and
user feedback on a cycle that works for everyone involved [46]) greatly corresponds with
the principles that form the foundation of our approach.

In the family of experiments presented in [44], the effectiveness of augmenting Use-
Case diagrams with screen mockups was measured using software engineering students.
The provided study represents the replication of the previously conducted controlled
experiment, which showed that screen mockups could almost double the efficiency of
model comprehension. The replication study confirmed the results of the original research.
Even though the experiments from [44] aim to quantify the impact of adopting screen
mockups on users with a software engineering background and are focused on model
comprehension improvement, it provides useful insight regarding the benefits of screen
mockups usage in requirements engineering.

A recent study that addresses state-of-the-art in the field of prototyping tools and
presents their comparative analysis is given in [47]. The publication underlines the benefits
of using software prototypes as a communication tool and the problem of treating them
as disposable artifacts that many stakeholders consider as a necessary but not beneficial
step in software development. Based on this, the authors have set up a list of research
questions and conducted a comparative analysis of the 10 selected prototyping tools
in order to quantify whether they live up to the promise of faster and more automatic
software prototype creation and reusability. Detailed results can be found in [47], but the
main takeaway is that the research questions are poorly addressed in the tested tools:
Only one tool has four positive answers to 10 available questions, while the rest have less
than that.

Regarding our research, this paper provides beneficial insight into the recent state-of-
the-art in the prototyping tooling scene. Still, some improvements could be performed to
enhance the contribution to the research field:

• Tool selection could be refined to include academic tools and domain-specific tools;
• The addition of research questions regarding the developed prototypes’ nature and

quality could improve the survey.

The authors in [47] also recognize those shortcomings and stress that the provided
research is just preliminary and will be used to lay the ground for more detailed ones in
the future.

6. Conclusions

This paper presented a brief overview of the design of Kroki—a tool that enables
collaborative sessions with customers. The needed agility is supported by:

• EUIS DSL based on our HCI guidelines, focused on a minimal set of course-grained
UI components;

• The mockup-based concrete syntax that enable customers to actively take part in the
prototype specification;

• The integrated meta-model of EUIS-DSL, which helps to avoid model-to-model trans-
formations. The transformations usually slow down development and prevent imme-
diate model execution;

• Aspect-oriented engines and code generators which produce a fully-functional, three-
tiered application prototype even when minimal specification details are obtained
(default code generation action exists for every non-specified functionality);

Appl. Sci. 2021, 11, 7684 27 of 29

• Administration subsystem based on the RBAC standard that enables flexible access
control policies and dynamic configuration of deployed application and its elements
based on user roles; and

• The option of reusing artifacts across development phases, in order to reduce waste of
time and effort.

We used Kroki in an exploratory case study performed to investigate what can be
achieved if we were to start to use executable mockups from initial functional requirements
elicitation sessions with customers. We conducted 10 two-hour development sessions with
domain experts from different business domains and developed an executable application
prototype ranging from 7 to 20 mockups in each session. Nine of ten sessions were
successful regarding achieving mutual understanding and development of the application
that the participant had in mind.

The development based on executable mockups gained a dramatic improvement
compared to our previous approach based on class diagram specification with general-
purpose modeling tools [19]. Using Kroki, we could perform several rounds of elicitation,
design, and prototype validation in a single session.

6.1. Perceived Limitations

A focus on enterprise applications created with a minimal set of coarse-grained
building blocks enabled the development speed and effective inclusion of participants in
development sessions. Although this type of business application has been successfully
tested in practice [10], it is possible that some teams or business domains would benefit
from a different or extended set of building blocks.

Kroki’s engines and code generators currently support the development of three-
tiered Java web and desktop applications. It is sufficient for functional requirements
elicitation based on executable prototypes. Still, it is constraining if the development
team would want to use Kroki for automating the construction phase based on a different
technological platform.

To achieve the best results regarding development efficiency and the quality of work,
the development team must have at least one experienced developer who can efficiently
map the requirements to mockups and the corresponding data model. Some form of
automatic validation that could help detect redundancy and other “bad smells” during
modeling could be needed for less experienced development teams.

Kroki currently does not support the specification of functional and non-functional
requirements in textual form. Its development products are mockups and data model
specification as well as generated code in Java.

6.2. Future Work

Since we achieved encouraging results, we plan to adjust our previous process de-
scribed in [19] to incorporate joint mockups development and to apply it to the develop-
ment of a real-world enterprise application.

We also plan to develop a module in Kroki for the specification of functional and non-
functional requirements in textual form to integrate developed mockups with requirements.

Exporting specifications built in Kroki to WebML [37] is under development. As a
tool intended for the automated development of general-purpose enterprise applications,
WebRatio could be utilized for the construction phase using a technological platform not
supported by Kroki.

Author Contributions: Conceptualization, G.M. and M.F.; methodology, G.M. and M.F.; software,
M.F., G.M. and Ž.V.; validation, G.M. and I.D.; investigation, M.F. and Ž.V.; data curation, M.F.;
writing—original draft preparation, M.F. and G.M.; writing—review and editing, M.F., I.D., Ž.V. and
G.M.; visualization, M.F., I.D., Ž.V. and G.M.; supervision, G.M. and I.D. All authors have read and
agreed to the published version of the manuscript.

Appl. Sci. 2021, 11, 7684 28 of 29

Funding: The research is partially funded by Ministry of Education, Science, and Technological
Development of the Republic of Serbia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Kroki is a free and open-source software [6]. Data presented in this
research is publicly available [23]. Additional information is available from corresponding authors
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Memmel, T.; Gundelsweiler, F.; Reiterer, H. Agile human-centered software engineering. In Proceedings of the BCS-HCI’07: 21st

British HCI Group Annual Conference on People and Computers, Lancaster, UK, 3–7 September 2007 ; pp. 167–175.
2. Inayat, I.; Salim, S.S.; Marczak, S.; Daneva, M.; Shamshirband, S. A systematic literature review on agile requirements engineering

practices and challenges. Comput. Hum. Behav. 2015, 51, 915–929. [CrossRef]
3. Mannio, M.; Nikula, U. Requirements Elicitation Using a Combination of Prototypes and Scenarios; Technical Report; Telecom Business

Research Center Lappeenranta, University of Technology: Lappeenranta, Finland, 2001; ISBN 951-764-528-7.
4. Sukaviriya, N.; Sinha, V.; Ramachandra, T.; Mani, S.; Stolze, M. User-centered design and business process modeling: Cross road

in rapid prototyping tools. In Proceedings of the IFIP Conference on Human-Computer Interaction, Rio de Janeiro, Brazil, 10–14
September 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 165–178.

5. Milosavljević, G.; Filipović, M.; Marsenić, V.; Pejaković, D.; Dejanović, I. Kroki: A mockup-based tool for participatory
development of business applications. In Proceedings of the 2013 IEEE 12th International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT), Budapest, Hungary, 22–24 September 2013; pp. 235–242.

6. Kroki Tool. 2021. Available online: http://www.kroki-mde.net/ (accessed on 18 August 2021).
7. Perišić, B.; Milosavljević, G.; Dejanović, I.; Milosavljević, B. UML profile for specifying user interfaces of business applications.

Comput. Sci. Inf. Syst. 2011, 8, 405–426. [CrossRef]
8. Lim, Y.k.; Pangam, A.; Periyasami, S.; Aneja, S. Comparative analysis of high-and low-fidelity prototypes for more valid usability

evaluations of mobile devices. In Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles,
Oslo, Norway, 14–18 October 2006; pp. 291–300.

9. Vaderna, R.; Dejanović, I.; Milosavljević, G. Grad: A new graph drawing and analysis library. In Proceedings of the 2016 Federated
Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016; pp. 1597–1602.

10. Kremenović, N.; Vukmir, S.; Dacešin, R. Lanaco Monograph; LANACO Information Technology Ltd.: Banja Luka, Bosnia and
Herzegovina, 2015.

11. Milosavljević, G.; Ivanović, D.; Surla, D.; Milosavljević, B. Automated construction of the user interface for a CERIF-compliant
research management system. Electron. Libr. 2011, 29, 565–588. [CrossRef]

12. OMG Object Constraint Language (OMG OCL). Version 2.4. 2014. Available online: https://www.omg.org/spec/OCL/
(accessed on 18 August 2021).

13. Demuth, B. The Dresden OCL toolkit and its role in Information Systems development. In Proceedings of the 13th International
Conference on Information Systems Development (ISD’2004), Vilnius, Lithuania, 9–11 September 2004; Volume 7.

14. Filipović, M.; Kaplar, S.; Vaderna, R.; Ivković, Ž.; Milosavljević, G.; Dejanović, I. Aspect-oriented engines for Kroki models
execution. In Proceedings of the 5th International Conference on Information Society Technology and Management (ICIST),
Kopaonik, Serbia, 8–11 March 2015; pp. 502–507.

15. Java Persistence API. 2021. Available online: http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049
.html (accessed on 18 August 2021).

16. Filipović, M.; Vaderna, R.; Ivković, Ž.; Kaplar, S.; Vuković, Ž.; Dejanović, I.; Milosavljević, G.; Ivanović, D. Application of Kroki
mockup tool to implementation of executable CERIF specification. Procedia Comput. Sci. 2017, 106, 245–252. [CrossRef]

17. Kaplar, S.; Filipović, M.; Milosavljević, G.; Sladić, G. Kroki Administration Subsystem Based on RBAC Standard and Aspects.
In Proceedings of the 5th International Conference on Information Society Technology and Management (ICIST), Kopaonik,
Serbia, 8–11 March 2015; pp. 61–66.

18. Ferraiolo, D.; Kuhn, D.R.; Chandramouli, R. Role-Based Access Control; Artech House: London, UK, 2003 .
19. Milosavljević, G.; Perišić, B. A method and a tool for rapid prototyping of large-scale business information systems. Comput. Sci.

Inf. Syst. 2004, 1, 57–82. [CrossRef]
20. Vuković, Ž.; Milanović, N.; Vaderna, R.; Dejanović, I.; Milosavljević, G.; Malbaša, V. Semantic-aided automation of interface

mapping in enterprise integration with conflict detection. Inf. Syst. E Bus. Manag. 2017, 15, 305–322. [CrossRef]
21. Shull, F.; Singer, J.; Sjøberg, D.I. Guide to Advanced Empirical Software Engineering; Springer: Berlin/Heidelberg, Germany, 2007.
22. Flyvbjerg, B. Five misunderstandings about case-study research. Qual. Inq. 2006, 12, 219–245. [CrossRef]
23. Filipović, M.; Milosavljević, G. Rapid Requirements Elicitation Sessions Based on Executable Mockups. Dataset on Mendeley.

2021; V1. Available online: https://data.mendeley.com/datasets/kbh7hjttzy/1 (accessed on 18 August 2021).

http://doi.org/10.1016/j.chb.2014.10.046
http://www.kroki-mde.net/
http://dx.doi.org/10.2298/CSIS110112010P
http://dx.doi.org/10.1108/02640471111177035
https://www.omg.org/spec/OCL/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://dx.doi.org/10.1016/j.procs.2017.03.022
http://dx.doi.org/10.2298/CSIS0402057M
http://dx.doi.org/10.1007/s10257-016-0326-7
http://dx.doi.org/10.1177/1077800405284363
https://data.mendeley.com/datasets/kbh7hjttzy/1

Appl. Sci. 2021, 11, 7684 29 of 29

24. Höst, M.; Regnell, B.; Wohlin, C. Using students as subjects—A comparative study of students and professionals in lead-time
impact assessment. Empir. Softw. Eng. 2000, 5, 201–214. [CrossRef]

25. Alhaag, A.A.; Savic, G.; Milosavljevic, G.; Segedinac, M.T.; Filipovic, M. Executable platform for managing customizable metadata
of educational resources. Electron. Libr. 2018, 36, 962–978. [CrossRef]

26. Rivero, J.M.; Grigera, J.; Rossi, G.; Luna, E.R.; Montero, F.; Gaedke, M. Mockup-driven development: Providing agile support for
model-driven web engineering. Inf. Softw. Technol. 2014, 56, 670–687. [CrossRef]

27. Rivero, J.M.; Rossi, G.; Grigera, J.; Burella, J.; Luna, E.R.; Gordillo, S. From mockups to user interface models: An extensible
model driven approach. In Proceedings of the International Conference on Web Engineering, Vienna, Austria, 5–9 July 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 13–24.

28. Rivero, J.M.; Grigera, J.; Distante, D.; Montero, F.; Rossi, G. DataMock: An Agile Approach for Building Data Models from User
Interface Mockups. Softw. Syst. Model. 2019, 18, 663–690. [CrossRef]

29. Störrle, H. Model driven development of user interface prototypes: An integrated approach. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume, Copenhagen, Denmark, 23–26 August 2010; pp. 261–268.

30. Kamalrudin, M.; Grundy, J. Generating essential user interface prototypes to validate requirements. In Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, 6–10 November,
2011; pp. 564–567.

31. Gerasimov, A.; Michael, J.; Netz, L.; Rumpe, B.; Varga, S. Continuous transition from model-driven prototype to full-size real-
world enterprise information systems. In Proceedings of the 25th Americas Conference on Information Systems (AMCIS 2020),
Online, 10–14 August 2020; pp. 1–10.

32. OMG. Unified Modeling Language(UML). 2021. Available online: http://www.omg.org/technology/documents/modeling_
spec_catalog.htm#UML (accessed on 18 August 2021).

33. OMG. MOF 2 XMI Mapping (XMI®). 2021. Available online: http://www.omg.org/technology/documents/modeling_spec_
catalog.htm#XMI (accessed on 18 August 2021).

34. Sánchez-Villarín, A.; Santos-Montaño, A.; Koch, N.; Casas, D.L. Prototypes as Starting Point in MDE: Proof of Concept.
In Proceedings of the WEBIST, Online, 3–5 November 2020; pp. 365–372.

35. Forward, A.; Badreddin, O.; Lethbridge, T.C.; Solano, J. Model-driven rapid prototyping with Umple. Softw. Pract. Exp. 2012,
42, 781–797. [CrossRef]

36. Acerbis, R.; Bongio, A.; Brambilla, M.; Butti, S. Webratio 5: An eclipse-based case tool for engineering web applications.
In Proceedings of the International Conference on Web Engineering, Como, Italy, 16–20 July 2007; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 501–505.

37. Brambilla, M.; Fraternali, P. Large-scale Model-Driven Engineering of web user interaction: The WebML and WebRatio experience.
Sci. Comput. Program. 2014, 89, 71–87. [CrossRef]

38. CUBA Platform. Available online: https://www.cuba-platform.com (accessed on 18 August 2021).
39. Hovsepyan, A.; Van Landuyt, D. Prototizer: Agile on Steroids. In Proceedings of the Flexible Model Driven Engineering

Proceedings (FlexMDE 2015), Ottawa, ON, Canada, 29 September 2015; pp. 51–60.
40. Gamito, I.; da Silva, A.R. From Rigorous Requirements and User Interfaces Specifications into Software Business Applications.

In Proceedings of the International Conference on the Quality of Information and Communications Technology, Faro, Portugal,
9–11 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 459–473.

41. Seixas, J.; Ribeiro, A.; da Silva, A.R. A Model-Driven Approach for Developing Responsive Web Apps. In Proceedings of the
ENASE, Heraklion, Greece, 4–5 May 2019; pp. 257–264.

42. Cortés, H.; Navarro, A. Enterprise WAE: A Lightweight UML Extension for the Characterization of the Presentation Tier of
Enterprise Applications with MDD-Based Mockup Generation. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 1291–1331. [CrossRef]

43. Hussain, Z.; Slany, W.; Holzinger, A. Current state of agile user-centered design: A survey. In Proceedings of the Symposium of
the Austrian HCI and Usability Engineering Group, Linz, Austria, 9–10 November 2009; Springer: Berlin/Heidelberg, Germany,
2009; pp. 416–427.

44. Ricca, F.; Scanniello, G.; Torchiano, M.; Reggio, G.; Astesiano, E. Assessing the effect of screen mockups on the comprehension of
functional requirements. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2014, 24, 1–38. [CrossRef]

45. Kautz, K. Participatory design activities and agile software development. In Proceedings of the IFIP Working Conference on
Human Benefit through the Diffusion of Information Systems Design Science Research, Perth, Australia, 30 March–1 April 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 303–316.

46. Chamberlain, S.; Sharp, H.; Maiden, N. Towards a framework for integrating agile development and user-centred design. In
Proceedings of the International Conference on Extreme Programming and Agile Processes in Software Engineering, Oulu,
Finland, 17–22 June 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 143–153.

47. Sanchez-Villarin, A.; Santos-Montaño, A.; Enríquez, J. Automatic Reuse of Prototypes in Software Engineering: A Survey of
Available Tools. In Proceedings of the 15th International Conference on Web Information Systems and Technologies, Vienna,
Austria, 18–20 September 2019; pp. 144–150. [CrossRef]

http://dx.doi.org/10.1023/A:1026586415054
http://dx.doi.org/10.1108/EL-04-2017-0079
http://dx.doi.org/10.1016/j.infsof.2014.01.011
http://dx.doi.org/10.1007/s10270-017-0586-9
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI
http://dx.doi.org/10.1002/spe.1155
http://dx.doi.org/10.1016/j.scico.2013.03.010
https://www.cuba-platform.com
http://dx.doi.org/10.1142/S0218194017500486
http://dx.doi.org/10.1145/2629457
http://dx.doi.org/10.5220/0008352901440150

	Introduction
	Kroki Tool
	EUIS DSL and Our HCI Guidelines
	Kroki Meta-Model
	An Example Specificaton
	Kroki AOP Engines
	Import and Export Features
	Administration Subsystem
	Kroki's Recommended Usage

	Exploratory Case Study Research
	Evaluation Instrument
	Exposure and Collateral
	Professional Development Database
	Theater Museum of Vojvodina
	Claims Management
	Road Assistance
	Printing Office Project Management
	Computer Repair Shop
	Tax Documentation Management
	Performance and Competition Management
	Moving and Relocation

	Discussion
	Related Work
	Conclusions
	Perceived Limitations
	Future Work

	References

