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Abstract: Technology is rapidly advancing and every aspect of life is being digitalized. Since technol-
ogy has made life much better and easier, so organizations, such as businesses, industries, companies
and educational institutes, etc., are using it. Despite the many benefits of technology, several risks
and serious threats, called cyberattacks, are associated with it. The method of neutralizing these
cyberattacks is known as cybersecurity. Sometimes, there are uncertainties in recognizing a cyberat-
tack and nullifying its effects using righteous cybersecurity. For that reason, this article introduces
interval-valued complex intuitionistic fuzzy relations (IVCIFRs). For the first time in the theory of
fuzzy sets, we investigated the relationships among different types of cybersecurity and the sources
of cyberattacks. Moreover, the Hasse diagram for the interval-valued complex intuitionistic partial
order set and relation is defined. The concepts of the Hasse diagram are used to inspect different
cybersecurity techniques and practices. Then, using the properties of Hasse diagrams, the most
beneficial technique is identified. Furthermore, the best possible selection of types of cybersecurity is
made after putting some restrictions on the selection. Lastly, the advantages of the proposed methods
are illuminated through comparison tests.

Keywords: cybercrime; cybersecurity; Hasse diagram; interval-valued complex intuitionistic fuzzy
relations; interval-valued complex intuitionistic fuzzy sets

1. Introduction

Mathematical modeling is a process of transforming practical problems and real life
events into a mathematical form. Human opinions and views are generally imprecise and
unclear. Similarly, experimental errors, inaccuracies and miscalculations lead to inexact
results. Hence, uncertainty is an inevitable part of our lives. Information is often complex,
unknowable and puzzling. Modeling uncertainty was almost impossible before 1965 when
Zadeh [1] introduced the world to a life changing theory of fuzzy sets (FS) and fuzzy logic.
This theory opened up new gates for mathematicians because it could model uncertainty
such as complexity in human opinions and errors in scientific experimentations. An FS is
a set that associates a mapping ḿ to each of its elements, where ḿ is called the degree of
membership that attains values from the [0, 1] interval.

The concept of relations between crisp sets was defined by Klir [2]. Crisp sets are
limited to only two possibilities; the elements are either a member of a set or not a member
of a set. In other words, crisp sets and their relations only work with yes-and-no-type
problems. This theory of sets deals with exact information and cannot be used to model
uncertainty. Mendel [3] invented the concepts of relations for FSs, which are called fuzzy

Appl. Sci. 2021, 11, 7668. https://doi.org/10.3390/app11167668 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8512-9687
https://doi.org/10.3390/app11167668
https://doi.org/10.3390/app11167668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167668
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167668?type=check_update&version=2


Appl. Sci. 2021, 11, 7668 2 of 31

relations (FRs). FRs are not just limited to respond in yes-or-no, but they can also specify
the strength, grade and level of good relations between any pair of FSs. This depends on its
degree of membership: if the value of the degree of membership is near one then the relation
is said to be a strong relation, while values near zero are the sign of weak relationship.
FRs generalize crisp relations because, if the values of the degrees of membership of
each element of an FR are restricted to zero (0) and one (1), then the FR becomes a crisp
relation. In 1975, Zadeh [4] generalized FSs and introduced the idea of interval-valued
fuzzy sets (IVFSs). An IVFS replaces the single value of the degree of membership in an FS
by an interval, whose extremes belong to a [0, 1] interval, i.e., the degree of membership
is a subinterval of a [0, 1] interval. The concept of relation was introduced to IVFSs by
Bustince and Burillo [5], called the interval-valued fuzzy relation (IVFR). Goguen [6]
gave a system of axioms for a relatively simple form of FS theory; Zywica [7] modeled
the medical uncertainties using FSs; Roman-Flores et al. [8] proposed a note on Zadeh’s
extensions; Dubious and Prade [9] discussed uncertainty, bipolarity and gradualness
through FSs; Gehrke et al. [10] commented on IVFSs; Bustince [11] applied IVFSs to
approximate reasoning; Turksen [12] entitled his work IVFSs and compensatory AND.

In 2002, Ramot et al. [13] came up with an innovative idea of switching to complex
valued mappings as the degrees of membership of a set. They introduced the complex
fuzzy set (CFS) in which the degree of membership takes on values from a unit disk of
a complex plane. Since the degrees of membership in a CFS are complex numbers, thus,
they involve two parts: the real and imaginary parts. Each of these parts corresponds to a
different entity. The real part is known as the amplitude term of the degree of membership,
while the imaginary part is said to be the phase term of the degree of membership. Most
often, CFSs are used to model phase altering problems. When the phase term or the
imaginary part of the degree of membership is set to zero in the CFS, it becomes an FS.
Further, Ramot et al. [14] defined complex fuzzy relations (CFRs), which are used to find
the relationships between CFSs. Greenfield et al. [15] changed the degree of membership of
a CFS from a single number to an interval, thus bringing up the notion of interval-valued
complex fuzzy set (IVCFS). Recently, Nasir et al. [16] defined interval-valued complex
fuzzy relations as being used for studying the relationships between two or more IVCFSs.
Chen et al. [17] studied a neuro-fuzzy architecture employing CFSs; Yazdanbakhsh and
Dick [18] reviewed the CFSs; Tamir et al. [19] proposed some applications of CFSs; Dai
et al. [20] formulated distance measures between IVCFSs; Greenfield et al. [21] defined the
join and meet operations for IVCFSs.

According to the definition of an FS, it only discusses the degree of membership ḿ,
but it also covers the degree of non-membership n

¯
, which is the complement of the degree

of membership with respect to unit interval, i.e., n
¯
= 1 − ḿ. This hidden feature of

FSs led to the definition of the intuitionistic fuzzy set (IFS), proposed by Atanassov [22].
An IFS associates two mappings to each of its elements, which are called the degree of
membership and the degree of non-membership. Both of these mappings take on values
from [0, 1] interval given that their sum also lies within the range of this interval. The
idea of the intuitionistic fuzzy relation (IFR) was concocted by Burillo et al. [23]. In 1999,
Atanassov [24] expressed the degree of membership and the degree of non-membership
of an IFS in the form of intervals and, hence, developed a new concept called the interval-
valued intuitionistic fuzzy set (IVIFS). Complex valued mappings were brought in to IFS
theory by Alkouri et al. [25] in 2012, who introduced the notion of the complex intuitionistic
fuzzy set (CIFS). Garg and Rani [26] put forward the interval-valued complex intuitionistic
fuzzy relation (IVCIFS). Li [27] used IFSs for multiattribute decision-making (MD) models
and methods; De et al. [28] applied IFSs in medical diagnosis; Vlachos and Sergiadis [29]
applied IFSs to pattern recognition; Lee et al. [30] compared IVFSs, IFSs and bipolar-valued
FSs; Grzegorzewski [31] used Hausdorff metric for finding the distances between IVFSs and
IFSs; Nasir et al. [32–35] applied complex relations to analysis of economic relationships.
Ali et al. [36] studied complex intuitionistic fuzzy classes; Liu and Jiang [37] proposed a
new distance measure of IVIFSs and applied it in decision making; Bustince and Burillo [38]
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devised the correlation of IVIFSs; Nayagam and Sivaraman [39] proposed a method of
ranking IVIFSs. Otero et al. [40] proposed the application of fuzzy logic in assessing the
security control for organizations; Tariq et al. [41,42] also used fuzzy theory to rank and
prioritize the security controls for cloud wireless sensor networks and computing networks;
Mokhtari et al. [43] used fuzzy multiple-attribute decision-making techniques for selecting
the best control system.

In this paper, the Cartesian product (CP) of two IVCIFSs is introduced. Furthermore,
the innovative conception of an interval-valued complex intuitionistic fuzzy relation (IV-
CIFR) is defined by using the concept of the CP of IVCIFSs. Moreover, the types of IVCIFRs
have been defined, including the interval-valued complex intuitionistic converse fuzzy
relation, interval-valued complex intuitionistic equivalence fuzzy relation, interval-valued
complex intuitionistic partial order fuzzy relation, interval-valued complex intuitionistic
total order fuzzy relation, interval-valued complex intuitionistic composite fuzzy relation
and many more. Every definition is held by the examples. In addition, some results have
been proved for the type of IVCIFRs. Besides these, the Hasse diagrams for interval-valued
complex intuitionistic partial order fuzzy sets and relations have also been presented.
Furthermore, the ideas related to a Hasse diagram: maximum element, minimum ele-
ment, maximal element, minimal element, supremum, infimum, upper and lower bounds
are discussed. The novel concepts introduced in this study, i.e., IVCIFSs and IVCIFRs
are superior to the pre-existing frameworks of FSs, IFSs, IVFSs, IVIFSs, CFSs, CIFSs and
IVCFSs. Since IVCIFRs analyze the relationships among the IVCIFSs, so they are composed
of the degrees of membership and non-membership, which are in the form of intervals
with complex numbers. These notions can handle uncertainty much better than other
mentioned concepts. The advantage of the interval-values is that they cover the little
mistakes, ambiguities and errors made by decision makers and experts. In addition, their
intuitionistic-type structure talks about the degree of membership and the degree of non-
membership. Due to the complex valued mappings, they are also capable of handling
information with multiple variables.

Every now and then, enterprises, corporations, industries and business companies
shift their structures and organizations to a digital system. These computerized systems
are extremely beneficial, but they are also vulnerable to many risky attacks and threats,
which are known as cybercrimes. Different techniques, practices, tools and methods
called cybersecurities, are used to tackle cybercrimes. At times, it can be challenging
to detect the type of cybercrime, thus leaving many uncertainties. Similarly, there are
also hesitations in employing the right cybersecurity techniques to rescue the business
or companies from attacks as there are so many options out there to overcome these
threats and risks. The selection of the most appropriate security technique may be difficult
due to uncertainties and an inability to make the right decision. Therefore, in order to
overcome all these uncertainties, we used the fuzzy theory. This article mathematically
analyzes the relationships among cybersecurities and the sources of cyberattacks in an
industrial control system (ICS), such as the effectiveness and ineffectiveness of cybersecurity
against a certain source. Moreover, the current article also proposes a method to inspect
different types of cybersecurity and choose the best one for an organization or network.
This innovative method is based on the concepts of Hasse diagrams and interval-valued
complex intuitionistic partial order fuzzy relations. Furthermore, the proposed methods
are compared with other similar methods that pre-exist in the literature. The dominance
and the reliability of the introduced methods are verified using numerical problems as the
complex relations have not yet been discovered in fuzzy set theory. Henceforth, there is a
great opportunity for potential research work to be carried out to explore these structures.

The arrangement of the remaining the paper is as follows:
Section 2 reviews some predefined concepts of fuzzy set theory that are used as

the basis for the paper. Section 3 introduces the innovative conceptions of IVCIFRs, CPs
between two IVCIFSs, the types of IVCIFRs and some theorems are also proved. In Section 4,
we deliberate on the Hasse diagram for interval-valued complex intuitionistic partial order
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fuzzy sets and relations, including some useful properties and definitions related to Hasse
diagrams. Section 5 offers two applications of IVCIFSs and IVCIFRs. The first application
investigates cybercrimes, cyber-securities and the sources of penetration in an industrial
control system (ICS). The second application uses Hasse diagrams and interval-valued
complex intuitionistic partial order fuzzy relations to find the best cybersecurity technique.
The existing structures in the field of fuzzy set theory are compared with the proposed
structures in Section 6. Finally, the paper ends with the conclusion.

2. Preliminaries

In this section, some basic definitions and their examples are presented such as fuzzy
set (FS), interval-valued fuzzy set (IVFS), complex fuzzy set (CFS), interval-valued complex
fuzzy set (IVCFS), Cartesian product (CP) of two IVCFSs, interval-valued complex fuzzy
relation (IVCFR), intuitionistic fuzzy set (IFS), complex intuitionistic fuzzy set (CIFS), and
interval-valued complex intuitionistic fuzzy set (IVCIFS).

Definition 1. Ref. [1] A fuzzy set (FS) Ḝ in a universe T is of the following form

Ḝ = {(x, ḿ(x)) : x ∈ T}

where ḿ : Ḝ→ [0, 1] is a mapping called degree of membership.

Example 1. Ḝ = {(s, 0), (t, 0.63), (u, 0.97), (v, 0.26), (w, 0.18), (x, 1), (y, 0.85), (z, 0.35)} is
an FS.

Definition 2. Ref. [4] An interval-valued fuzzy set (IVFS) Ḝ in a universe T is of the following form

Ḝ =
{(

x,
[
ḿ−(x), ḿ+(x)

])
: x ∈ T

}
where ḿ− : Ḝ→ [0, 1] and ḿ+ : Ḝ→ [0, 1] are the mappings called lower and upper degrees of
membership, respectively.

Example 2. Ḝ =

{
(u, [0.32, 0.68]), (v, [0.16, 0.26]), (w, [0.58, 0.63]),
(x, [0.55, 0.66]), (y, [0.23, 0.49]), (z, [0.87, 1])

}
is an IVFS.

Definition 3. Ref. [13] A complex fuzzy set (CFS) Ḝ in a universe T is of the following form

Ḝ = {(x, ḿC(x)) : x ∈ T}

where ḿC : Ḝ→ Z 3 0 ≤ |Z| ≤ 1 and Z is a complex number. The mapping ḿC is called degree
of membership. Equivalently, the CFS can also be represented in the following form

Ḝ =
{(

x, α(x)ei2ρ(x)π
)

: x ∈ T
}

where α : Ḝ→ [0, 1] and ρ : Ḝ→ [0, 1] are mappings called amplitude term and phase term of
degree of membership and i =

√
−1.

Example 3. Ḝ =


(

u, 0.15ei2(0.58)π
)

,
(

v, 0.75ei2(0.23)π
)

,
(

w, 0.65ei2(0.42)π
)

,(
x, 0ei2(1)π

)
,
(

y, 1ei2(0)π
)

,
(

z, 0.93ei2(0.37)π
)  is a CFS.

Definition 4. Ref. [15] An interval-valued complex fuzzy set (IVCFS) Ḝ in a universe T is of the
following form

Ḝ =
{(

x,
[
ḿ−C (x), ḿ+

C (x)
])

: x ∈ T
}
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where ḿ−C : Ḝ→ Z and ḿ+
C : Ḝ→ Z 3 0 ≤ |Z| ≤ 1 and Z is a complex number. The map-

pings ḿ−C and ḿ+
C are called the lower and upper degrees of membership, respectively. Equivalently,

the IVCFS can also be represented in the following form

Ḝ =
{(

x,
[
α−(x), α+(x)

]
ei2[ρ−(x),ρ+(x)]π

)
: x ∈ T

}
where α− : Ḝ→ [0, 1] , α+ : Ḝ→ [0, 1] , ρ− : Ḝ→ [0, 1] and ρ+ : Ḝ→ [0, 1] are mappings
called the lower amplitude term, upper amplitude term, lower phase term and upper phase term of
degree of membership and i =

√
−1.

Example 4. Ḝ =


(

w, [0.28, 0.36]ei2[0.43,0.61]π
)

,
(

x, [0.17, 0.23]ei2[0.67,0.81]π
)

,(
y, [0.45, 0.50]ei2[0.04,0.21]π

)
,
(

z, [0.89, 0.98]ei2[0,0.16]π
)  is an IVCFS.

Definition 5. Ref. [16] Let Ḝ =

{(
x,
[

α−
Ḝ
(x), α+

Ḝ
(x)
]

e
i2[ρ−

Ḝ
(x),ρ+

Ḝ
(x)]π

)
: x ∈ T

}
and Ḟ ={(

y,
[
α−

Ḟ
(y), α+

Ḟ
(y)
]
ei2[ρ−

Ḟ
(y),ρ+

Ḟ
(y)]π

)
: y ∈ T

}
be two IVCFSs in a universe T, then their Carte-

sian product is given as

Ḝ× Ḟ =

{(
(x, y),

[
α−

Ḝ×Ḟ
(x, y), α+

Ḝ×Ḟ
(x, y)

]
e

i2[ρ−
Ḝ×Ḟ

(x,y),ρ+
Ḝ×Ḟ

(x,y)]π
)

: x ∈ Ḝ, y ∈ Ḟ

}

where α−
Ḝ×Ḟ

(x, y) = min
{

α−
Ḝ
(x), α−

Ḟ
(y)
}

, α+
Ḝ×Ḟ

(x, y) = min
{

α+
Ḝ
(x), α+

Ḟ
(y)
}

ρ−
Ḝ×Ḟ

(x, y) =

min
{

ρ−
Ḝ
(x), ρ−

Ḟ
(y)
}

and ρ+
Ḝ×Ḟ

(x, y) = min
{

ρ+
Ḝ
(x), ρ+

Ḟ
(y)
}

.

Definition 6. Ref. [16] The interval-valued complex fuzzy relation (IVCFR) is a subset of the
Cartesian product of any two IVCFSs, i.e., R̄

˙
⊆ Ḝ× Ḟ, where Ḝ and Ḟ are IVCFSs and R̄

˙
denotes

the IVCFR.

Example 5. The Cartesian product of two IVCFSs

Ḝ =


(

s, [0.28, 0.36]ei2[0.43,0.61]π
)

,
(

t, [0.17, 0.23]ei2[0.67,0.81]π
)

,(
u, [0.45, 0.50]ei2[0.04,0.21]π

)
,
(

v, [0.89, 0.98]ei2[0,0.16]π
)  and

Ḟ =


(

w, [0.53, 0.64]ei2[0.29,0.37]π
)

,
(

x, [0.73, 0.79]ei2[0.43,0.52]π
)

,(
y, [0.19, 0.35]ei2[0.24,0.35]π

)
,
(

z, [0.39, 0.55]ei2[0.45,0.55]π
)  is

Ḝ× Ḟ =



(
(s, w), [0.28, 0.36]ei2[0.29,0.37]π

)
,
(
(s, x), [0.28, 0.36]ei2[0.43,0.52]π

)
,(

(s, y), [0.19, 0.35]ei2[0.24,0.36]π
)

,
(
(s, z), [0.28, 0.36]ei2[0,0.16]π

)
,(

(t, w), [0.17, 0.23]ei2[0.29,0.37]π
)

,
(
(t, x), [0.17, 0.23]ei2[0.43,0.52]π

)
,(

(t, y), [0.17, 0.23]ei2[0.24,0.35]π
)

,
(
(t, z), [0.17, 0.23]ei2[0.45,0.55]π

)
,(

(u, w), [0.45, 0.50]ei2[0.04,0.21]π
)

,
(
(u, x), [0.45, 0.50]ei2[0.04,0.21]π

)
,(

(u, y), [0.19, 0.35]ei2[0.04,0.21]π
)

,
(
(u, z), [0.39, 0.50]ei2[0.04,0.21]π

)
,(

(v, w), [0.53, 0.64]ei2[0.29,0.37]π
)

,
(
(v, x), [0.73, 0.79]ei2[0,0.16]π

)
,(

(v, y), [0.19, 0.35]ei2[0,0.16]π
)

,
(
(v, z), [0.39, 0.55]ei2[0,0.16]π

)


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The IVCFR R̄
˙
. between the IVCFSs Ḝ and Ḟ is given

R̄
˙
=


(
(s, w), [0.28, 0.36]ei2[0.29,0.37]π

)
,
(
(s, x), [0.28, 0.36]ei2[0.43,0.52]π

)
,(

(t, x), [0.17, 0.23]ei2[0.43,0.52]π
)

,
(
(u, w), [0.45, 0.50]ei2[0.04,0.21]π

)
,(

(v, y), [0.19, 0.35]ei2[0,0.16]π
)

,
(
(v, z), [0.39, 0.55]ei2[0,0.16]π

)
.

Definition 7. Ref. [22] An intuitionistic fuzzy set (IFS) Ḝ in a universe T is of the following form

Ḝ = {(x, ḿ(x), n
¯
(x)) : x ∈ T}

where ḿ : Ḝ→ [0, 1] and n
¯

: Ḝ→ [0, 1] are mappings called the degree of membership and degree
of non-membership, respectively, given that 0 ≤ ḿ(x) + n

¯
(x) ≤ 1.

Example 6. Ḝ = {(u, 0.86, 012), (w, 0.47, 0.36), (x, 0.34, 0.59), (y, 0.61, 0.28), (z, 0.16, 0.73)}
is an IFS.

Definition 8. Ref. [25] A complex intuitionistic fuzzy set (CIFS) Ḝ in a universe T is of the
following form

Ḝ = {(x, ḿC(x), n
¯C

(x)) : x ∈ T}

where ḿC : Ḝ→ Z and n
¯C

: Ḝ→ Z 3 0 ≤ |Z| ≤ 1 and Z is a complex number. The mappings
ḿC and n

¯C
are called degree of membership and degree of non-membership, respectively, given that

0 ≤ |ḿC(x)|+ |n
¯C

(x)| ≤ 1. Equivalently, the CIFS can also be represented in the following form

Ḝ =
{(

x, αḿ(x)ei2ρḿ(x)π , αn
¯
(x)ei2ρn

¯
(x)π

)
: x ∈ T

}
where αḿ : Ḝ→ [0, 1] , αn

¯
: Ḝ→ [0, 1] , ρḿ : Ḝ→ [0, 1] and ρn

¯
: Ḝ→ [0, 1] are mappings

called amplitude term of degree of membership, amplitude term of degree of non-membership,
phase term of degree of membership and phase term of degree of non-membership and i =

√
−1,

given that 0 ≤ αḿ(x) + αn
¯
(x) ≤ 1 and 0 ≤ ρḿ(x) + ρn

¯
(x) ≤ 1.

Example 7. Ḝ =


(

w, 0.35ei2(0.42)π , 0.26ei2(0.31)π
)

,
(

x, 0.51ei2(0.16)π , 0.38ei2(0.84)π
)

,(
y, 0.71ei2(0.22)π , 0.19ei2(0.49)π

)
,
(

z, 0.09ei2(0.17)π , 0.03ei2(0.75)π
)  is

a CIFS.

Definition 9. Ref. [26] An interval-valued complex intuitionistic fuzzy set (IVCIFS) Ḝ in a
universe T is of the following form

Ḝ =
{(

x,
[
ḿ−C (x), ḿ+

C (x)
]
,
[
n
¯
−
C (x), n

¯
+
C (x)

])
: x ∈ T

}
where ḿ−C : Ḝ→ Z , ḿ+

C : Ḝ→ Z , n
¯
−
C : Ḝ→ Z and n

¯
+
C : Ḝ→ Z 3 0 ≤ |Z| ≤ 1 and Z is a

complex number. The mappings ḿ−C and ḿ+
C are called the lower and upper degrees of membership,

respectively, while the mappings n
¯
−
C and are called the lower and upper degrees of non-membership,

respectively, given that 0 ≤
∣∣ḿ+

C (x)
∣∣ + ∣∣n

¯
+
C (x)

∣∣ ≤ 1. Equivalently, the IVCIFS can also be
represented in the following form

Ḝ =

{(
x,
[
α−ḿ(x), α+ḿ(x)

]
ei2[ρ−ḿ(x),ρ+ḿ(x)]π ,

[
α−n

¯
(x), α+n

¯
(x)
]
e

i2[ρ−n
¯
(x),ρ+n

¯
(x)]π

)
: x ∈ T

}
where α−ḿ : Ḝ→ [0, 1] , α+ḿ : Ḝ→ [0, 1] , ρ−ḿ : Ḝ→ [0, 1] , ρ+ḿ : Ḝ→ [0, 1] and α−n

¯
: Ḝ→ [0, 1] ,

α+n
¯

: Ḝ→ [0, 1] , ρ−n
¯

: Ḝ→ [0, 1] , ρ+n
¯

: Ḝ→ [0, 1] are mappings called the lower amplitude term,
upper amplitude term, lower phase term, upper phase term of degree of membership and lower ampli-
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tude term, upper amplitude term, lower phase term, upper phase term of degree of non-membership,
respectively, i =

√
−1. Given that 0 ≤ α+ḿ + α+n

¯
≤ 1 and 0 ≤ ρ+ḿ + ρ+n

¯
≤ 1.

Example 8. Ḝ =



(
w, [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π

)
,(

x, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
y, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)(
z, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


is an IVCIFS.

3. Interval-Valued Complex Fuzzy Relations

This section introduces the novel concepts of the Cartesian product of two interval-
valued complex intuitionistic fuzzy sets (IVCIFSs), an interval-valued complex intuitionistic
fuzzy relation (CIVIFR) and its types. For each definition a suitable example is given.
Moreover, some interesting results for IVCIFRs have also been proved.

Definition 10. Let Ḝ =




x,
[

α−
(Ḝ)ḿ

(x), α+
(Ḝ)ḿ

(x)
]

e
i2[ρ−

(Ḝ)ḿ
(x),ρ+

(Ḝ)ḿ
(x)]π

,[
α−
(Ḝ)n

¯
(x), α+

(Ḝ)n
¯
(x)
]

e
i2[ρ−

(Ḝ)n
¯
(x),ρ+

(Ḝ)n
¯
(x)]π

 : x ∈ T

 and

Ḟ =


 y,

[
α−
(Ḟ)ḿ

(y), α+
(Ḟ)ḿ

(y)
]
e

i2[ρ−
(Ḟ)ḿ

(y),ρ+
(Ḟ)ḿ

(y)]π
,[

α−
(Ḟ)n

¯
(y), α+

(Ḟ)n
¯
(y)
]
e

i2[ρ−
(Ḟ)n

¯
(y),ρ+

(Ḟ)n
¯
(y)]π

 : y ∈ T

 be two IVCFSs in a universe

T, then their Cartesian product is given as

Ḝ× Ḟ =




(x, y),
[

α−
(Ḝ×Ḟ)ḿ

(x, y), α+
(Ḝ×Ḟ)ḿ

(x, y)
]

e
i2[ρ−

(Ḝ×Ḟ)ḿ
(x,y),ρ+

(Ḝ×Ḟ)ḿ
(x,y)]π

,[
α−
(Ḝ×Ḟ)n

¯
(x, y), α+

(Ḝ×Ḟ)n
¯
(x, y)

]
e

i2[ρ−
(Ḝ×Ḟ)n

¯
(x,y),ρ+

(Ḝ×Ḟ)n
¯
(x,y)]π

 : x ∈ Ḝ, y ∈ Ḟ


where α−

(Ḝ×Ḟ)ḿ
(x, y) = min

{
α−
(Ḝ)ḿ

(x), α−
(Ḟ)ḿ

(y)
}

, α+
(Ḝ×Ḟ)ḿ

(x, y) = min
{

α+
(Ḝ)ḿ

(x), α+
(Ḟ)ḿ

(y)
}

ρ−
(Ḝ×Ḟ)ḿ

(x, y) = min
{

ρ−
(Ḝ)ḿ

(x), ρ−
(Ḟ)ḿ

(y)
}

and ρ+
(Ḝ×Ḟ)ḿ

(x, y) = min
{

ρ+
(Ḝ)ḿ

(x), ρ+
(Ḟ)ḿ

(y)
}

and α−
(Ḝ×Ḟ)n

¯
(x, y) = max

{
α−
(Ḝ)n

¯
(x), α−

(Ḟ)n
¯
(y)
}

, α+
(Ḝ×Ḟ)n

¯
(x, y) = max

{
α+
(Ḝ)n

¯
(x), α+

(Ḟ)n
¯
(y)
}

ρ−
(Ḝ×Ḟ)n

¯
(x, y) = max

{
ρ−
(Ḝ)n

¯
(x), ρ−

(Ḟ)n
¯
(y)
}

and ρ+
(Ḝ×Ḟ)n

¯
(x, y) = max

{
ρ+
(Ḝ)n

¯
(x), ρ+

(Ḟ)n
¯
(y)
}

.

Definition 11. The interval-valued complex intuitionistic fuzzy relation (IVCIFR) is a subset of
the Cartesian product of any two IVCIFSs, i.e., R̄

˙
⊆ Ḝ× Ḟ, where Ḝ and Ḟ are IVCIFSs and R̄

˙denotes the IVCIFR.

Example 9. The Cartesian product of two IVCFSs

Ḝ =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)
 and

Ḟ =


(

x, [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
y, [0.52, 0.58]ei2[0.30,0.42]π , [0.18, 0.37]ei2[0.06,0.13]π

)
,(

z, [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π
)

,

 is
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Ḝ× Ḟ =



(
(u, x), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, y), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(u, z), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, x), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π
)

,(
(v, y), [0.52, 0.58]ei2[0.03,0.15]π , [0.18, 0.37]ei2[0.73,0.82]π

)
,(

(v, z), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π
)

,(
(w, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(w, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, z), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π

)


The IVCIFR R̄

˙
between the IVCFSs Ḝ and Ḟ is

R̄
˙
=



(
(u, y), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, x), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π
)

,(
(v, z), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π

)
,(

(w, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, z), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π

)


The IVCIFR R̄

˙
between the IVCFSs Ḝ and Ḟ is given as below (Figure 1),
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Figure 1. Interval-valued complex intuitionistic fuzzy relation.

NOTE: For convenience, throughout this article, x and (x, y) will be used to denote(
x,
[

α−
(Ḝ)ḿ

(x), α+
(Ḝ)ḿ

(x)
]

e
i2[ρ−

(Ḝ)ḿ
(x),ρ+

(Ḝ)ḿ
(x)]π

,
[

α−
(Ḝ)n

¯
(x), α+

(Ḝ)n
¯
(x)
]

e
i2[ρ−

(Ḝ)n
¯
(x),ρ+

(Ḝ)n
¯
(x)]π

)

and


(x, y),

[
α−
(Ḝ×Ḝ)ḿ

(x, y), α+
(Ḝ×Ḝ)ḿ

(x, y)
]

e
i2[ρ−

(Ḝ×Ḝ)ḿ
(x,y),ρ+

(Ḝ×Ḝ)ḿ
(x,y)]π

,[
α−
(Ḝ×Ḝ)n

¯
(x, y), α+

(Ḝ×Ḝ)n
¯
(x, y)

]
e

i2[ρ−
(Ḝ×Ḝ)n

¯
(x,y),ρ+

(Ḝ×Ḝ)n
¯
(x,y)]π

, respectively,

otherwise it will be mentioned.
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Definition 12. Let Ḝ be an IVCIFS in a universe T and R̄
˙

be an IVCIFR on Ḝ. Then,

1. R̄
˙

is known as an IVCI reflexive fuzzy relation (IVCI-reflexive-FR) on Ḝ if (x, x) ∈ R̄
˙
,

∀x ∈ Ḝ.
2. R̄

˙
is known as an IVCI irreflexive fuzzy relation (IVCI-irreflexive-FR) on Ḝ if (x, x) /∈ R̄

˙
,

∀x ∈ Ḝ.
3. R̄

˙
is known as an IVCI symmetric fuzzy relation (IVCI-symmetric-FR) on Ḝ if ∀x, y ∈ Ḝ,

(x, y) ∈ R̄
˙
⇒ (y, x) ∈ R̄

˙
.

4. R̄
˙

is known as an IVCI antisymmetric fuzzy relation (IVCI-antisymmetric-FR) on Ḝ if
∀x, y ∈ Ḝ, (x, y) ∈ R̄

˙
and (y, x) ∈ R̄

˙
⇒ x = y .

5. R̄
˙

is known as an IVCI asymmetric fuzzy relation (IVCI-asymmetric-FR) on Ḝ if ∀x, y ∈ Ḝ,
(y, x) ∈ R̄

˙
⇒ (x = y /∈)R̄

˙
.

6. R̄
˙

is known as an IVCI complete fuzzy relation (IVCI-complete-FR) on Ḝ if ∀x, y ∈ R̄
˙
,

(x, y) ∈ R̄
˙

or (y, x) ∈ R̄
˙
.

7. R̄
˙

is known as an IVCI transitive fuzzy relation on (IVCI-transitive-FR) Ḝ if ∀x, y, z ∈ Ḝ,
(x,y) ∈ R̄

˙
and (y, z) ∈ R̄

˙
⇒ (x, z) ∈ R̄

˙
.

8. R̄
˙

is known as an IVCI equivalence fuzzy relation (IVCI-equivalence-FR) on Ḝ if R̄
˙

is IVCI-
reflexive-FR, IVCI-symmetric-FR and IVCI-transitive-FR on Ḝ.

9. R̄
˙

is known as an IVCI preorder fuzzy relation (IVCI-preorder-FR) on Ḝ if R̄
˙

is IVCI-reflexive-
FR and IVCI-transitive-FR on Ḝ.

10. R̄
˙

is known as an IVCI strict order fuzzy relation (IVCI-strict order-FR) on Ḝ if R̄
˙

is IVCI-
irreflexive-FR and IVCI-transitive-FR on Ḝ.

11. R̄
˙

is known as an IVCI partial order fuzzy relation (IVCI-partial order-FR) on Ḝ if R̄
˙

is
IVCI-preorder-FR and IVCI-antisymmetric-FR on Ḝ.

12. R̄
˙

is known as an IVCI linear order fuzzy relation (IVCI-linear order-FR) on Ḝ if R̄
˙

is
IVCI-partial order-FR and IVCI-complete-FR on Ḝ.

Example 10. For an IVCIFS Ḝ =



(
u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π
)

,(
w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


the Cartesian product Ḝ× Ḝ is

Ḝ× Ḝ =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, v), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(u, w), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(v, w), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π
)

,(
(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π
)

,(
(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


Then,
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1. The IVCI-equivalence-FR R̄
˙ 1 on Ḝ is given as

R̄
˙ 1 =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, w), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


2. The IVCI-preorder-FR R̄

˙ 2 on Ḝ is given as

R̄
˙ 2 =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)


3. The IVCI-strict order-FR R̄

˙ 3 on Ḝ is given as

R̄
˙ 3 =


(
(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π

)


4. The IVCI-partial order-FR R̄
˙ 4 on Ḝ is given as

R̄
˙ 4 =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


5. The IVCI-linear order-FR R̄

˙ 5 on Ḝ is given as

R̄
˙ 5 =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π

)
,(

(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)


Definition 13. For an IVCIFR R̄

˙
, the converse relation R̄

˙

c of R̄
˙

is defined as,
R̄
˙

c
=
{
(y, x) : (x, y) ∈ R̄

˙

}
.
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Example 11. If R̄
˙

=



(
(u, y), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, x), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π
)

,(
(v, z), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π

)
,(

(w, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, z), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π

)


is an

IVCIFR between IVCIFSs Ḝ =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)
 and

Ḟ =


(

x, [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
y, [0.52, 0.58]ei2[0.30,0.42]π , [0.18, 0.37]ei2[0.06,0.13]π

)
,(

z, [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π
)

,

, then the converse relation R̄
˙

c

of R̄
˙

is

R̄
˙

c
=



(
(x, v), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π

)
,(

(y, u), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(y, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)
,(

(z, v), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π
)

,(
(z, w), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π

)


The IVCI-equivalence-FRs sets off the concept of IVCIF-equivalences classes, which

are defined as follows.

Definition 14. For an IVCI-equivalence-FR R̄
˙
, the IVCIF equivalence class of x modulo R̄

˙
is

defined as, R̄
˙
[x] =

{
y
∣∣(y, x) ∈ R̄

˙

}
.

Example 12. If R̄
˙
=



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, w), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)
,


is an

IVCIFR on an IVCIFS Ḝ =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)
, then

the IVCIF-equivalences class of

1. x modulo R̄
˙

is given as

R̄
˙
[u] =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

) 
2. y modulo R̄

˙
is given as

R̄
˙
[v] =

{(
v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)}
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3. z modulo R̄
˙

is given as

R̄
˙
[w] =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

) 
Definition 15. For an IVCIFR R̄

˙
on an IVCIFS Ḝ, then the IVCI-composite-FR R̄

˙
◦ R̄

˙
is defined

as: for each (x, y) ∈ R̄
˙

and (y, z) ∈ R̄
˙
⇒ (x, z) ∈ R̄

˙
◦ R̄

˙
, ∀x, y, z ∈ T.

Example 13. For some IVCIFRs

R̄
˙ 1 =


(
(u, v), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π

)
 and

R̄
˙ 2 =



(
(u, w), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π

)(
(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)


on an IVCIFS.

Ḝ =


(

u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)
, then the IVCI-composite-

FR R̄
˙ 1 ◦ R̄

˙ 2 is given as,

R̄
˙ 1 ◦ R̄

˙ 2 =


(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(v, w), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π
)

,(
(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,


Theorem 1. An IVCIFR R̄

˙
is an IVCI-symmetric-FR on an IVCIFS Ḝ iff R̄

˙
= R̄

˙

c.

Proof. Assume that R̄
˙
= R̄

˙

c, then
(u, v) ∈ R̄

˙
⇒ (v, u) ∈ R̄

˙

c ⇒ (v, u) ∈ R̄
˙

.
Thus, R̄

˙
is an IVCI-symmetric-FR on an IVCIFS Ḝ.

Conversely, suppose that R̄
˙

is an IVCI-symmetric-FR on an IVCIFS Ḝ, then
(u, v) ∈ R̄

˙
⇒ (v, u) ∈ R̄

˙
.

However, (v, u) ∈ R̄
˙

c ⇒ R̄
˙
= R̄

˙

c . �

Theorem 2. An IVCIFR R̄
˙

is an IVCI-transitive-FR on an IVCIFS Ḝ i f f R̄
˙
◦ R̄

˙
⊆ R̄

˙
.

Proof. Assume that R̄
˙

is an IVCI-transitive-FR on an IVCIFS Ḝ.
Let (u, w) ∈ R̄

˙
◦ R̄

˙
,

Then, by the definition of IVCI-transitivity-FR,
(u, v) ∈ R̄

˙
and (v, w) ∈ R̄

˙
⇒ (u, w) ∈ R̄

˙
⇒ R̄

˙
◦R̄

˙
⊆ R̄

˙
.

Conversely assume that R̄
˙
◦ R̄

˙
⊆ R̄

˙
, then

for (u, v) ∈ R̄
˙

and (v, w) ∈ R̄
˙
⇒ (u, w) ∈ R̄

˙
◦ R̄

˙
⊆ R̄

˙
⇒ (u, w) ∈ R̄

˙
.

Thus, R̄
˙

is an IVCI-transitive-FR on Ḝ. �

Theorem 3. Suppose R̄
˙

is an IVCI-equivalence-FR on an IVCIFS Ḝ, then R̄
˙
◦ R̄

˙
= R̄

˙
.
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Proof. Assume that (u, v) ∈ R̄
˙
,

then by the definition of IVCI-symmetric-FR,
(v, u) ∈ R̄

˙
.

Now, by using the definition of IVCI-transitive-FR,
(u, u) ∈ R̄

˙
.

However, by the definition of IVCI-composite-FR,
(u, u) ∈ R̄

˙
◦ R̄

˙
.

Thus,
R̄
˙
⊆ R̄

˙
◦ R̄

˙
(1)

Conversely, assume that (u, v) ∈ R̄
˙
◦ R̄

˙
, then ∃ w ∈ S 3 (u, w) ∈ R̄

˙
and (w, v) ∈ R̄

˙
.

However, it is given that R̄
˙

is an IVCI-equivalence-FR on Ḝ, so R̄
˙

is also an IVCI-
transitive-FR. Therefore,

(u, v) ∈ R̄
˙
⇒ R̄

˙
◦R̄

˙
⊆ R̄

˙
(2)

Thus, by (1) and (2),
R̄
˙
◦ R̄

˙
= R̄

˙
. �

Theorem 4. Suppose R̄
˙

is an IVCI-partial order-FR on an IVCIFS Ḝ, then the converse relation R̄
˙

c

of R̄
˙

is also an IVCI-partial order-FR on Ḝ.

Proof. In order to prove the assertion, it is sufficient to show that the converse of a complex
intuitionistic partial order fuzzy relation Rc satisfies the three properties of a complex
intuitionistic partial order fuzzy relation.

By using the properties of IVCI-partial order-FR R̄
˙
, we prove the statement.

i. It is given that R̄
˙

is an IVCI-reflexive-FR. Therefore, for any u ∈ S, (u, u) ∈ R̄
˙
⇒

(u, u) ∈ R̄
˙

c. Thus, R̄
˙

c is an IVCI-reflexive-FR.
ii. Assume that (u, u) ∈ R̄

˙

c and (v, u) ∈ R̄
˙

c, then, (u, v) ∈ R̄
˙

and (v, u) ∈ R̄
˙
. However,

R̄
˙

is an IVCI-antisymmetric-FR. Therefore, (u, v) = (v, u). Thus, R̄
˙

is also an IVCI-
antisymmetric-FR.

iii. Suppose that (u, v) ∈ R̄
˙

c and (v, w) ∈ R̄
˙

c, then, (w, v) ∈ R̄
˙

and (v, u) ∈ R̄
˙
. However,

it is given that R̄
˙

is an IVCI-transitive-FR. Therefore, (w, u) ∈ R̄
˙
⇒ (u, w) ∈ R̄

˙

c .
Thus, R̄

˙

c is also an IVCI-transitive-FR.

From i, ii and iii, the converse relation R̄
˙

c of an IVCI-partial order-FR R̄
˙

is proved to be
an IVCI-partial order-FR too. �

Theorem 5. Suppose R̄
˙

is an IVCI-equivalence-FR on an IVCIFS Ḝ, then (x, y) ∈ R̄
˙
, i f f R̄

˙
[u] = R̄

˙
[v].

Proof. Assume that (u, v) ∈ R̄
˙

and w ∈ R̄
˙
[u] R̄

˙
(w, u) ∈ R̄

˙
.

Now, by using the fact that an IVCI-equivalence-FR is also an IVCI-transitive-FR, so
(w, v) ∈ R̄

˙
⇒ w ∈ R̄

˙
[v] .

Thus,
R̄
˙
[u] ⊆ R[v] (3)

As (u, v) ∈ R̄
˙
, by using the fact that an IVCI-equivalence-FR is also an IVCI-symmetric-

FR, so
(v, u) ∈ R̄

˙
.

Additionally, assume that w ∈ R̄
˙
[v]⇒ (w, v) ∈ R̄

˙
.

Now, again by using the fact that an IVCI-equivalence-FR is also an IVCI-transitive-FR,
so

(w, u) ∈ R̄
˙
⇒ w ∈ R̄

˙
[u] .

Thus,
R̄
˙
[v] ⊆ R̄

˙
[u] (4)

Therefore, (3) and (4) infer that R̄
˙
[v] = R̄

˙
[u].
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Conversely, assume that R̄
˙
[v] = R̄

˙
[u], w ∈ R̄

˙
[u] and w ∈ R̄

˙
[v]⇒ (w, v) ∈ R̄

˙
and

(w, u) ∈ R̄
˙
.

Again, by using the fact that an IVCI-equivalence-FR is also an IVCI-symmetric-FR, so
(w, u) ∈ R̄

˙
⇒ (u, w) ∈ R̄

˙
.

Now, by the definition of IVCI-transitive-FR,
(u, w) ∈ R̄

˙
and (w, v) ∈ R̄

˙
⇒ (u, v) ∈ R̄

˙
,

which completes the proof. �

4. Hasse Diagram for IVCI-Partial Order-FRs

In this section, the Hasse diagram for IVCI-partial order-FR is defined. Moreover,
some important ideas related to Hasse diagrams, such as maximum element, minimum
element, maximal element, minimal element, supremum, infimum, upper and lower
bounds, are defined.

Definition 16. The graphical representation of an IVCI-partial order-FS is called the Hasse diagram.
The diagram is made up of dots and lines, which are called the vertices and edges, respectively. Each
vertex represents an element of an IVCI-partial order-FS, while each edge represents a relationship
between some pair of these elements. There are certain rules in the construction of a Hasse diagram,
that are discussed below:

i. The elements are arranged in an ascending order to distinguish the lower ranks and higher
ranks. In an ordered pair of an IVCI-partial order-FR, the preceding element is considered
to be smaller than the element appearing second in the pair. For example, in the ordered
pair (t, x), the element t is smaller than the element x. t will appear higher than x in
the diagram.

ii. There are no self-loops for IVCI-reflexive-FRs. In a Hasse diagram, the self-relation is not
represented by any edge, it is just assumed to be there.

iii. There are no directional edges. The directional edges indicate the order of the element in the
ordered pair. For example, in the ordered pair (t, x), the relation in normal diagrams, would
be represented by a directional edge with an arrow head pointing towards element x. Thus,
ranking x higher than t. But in a Hasse diagram, the stepwise ascending arrangement of
the elements automatically distinguishes the higher ranked and lower ranked elements.

iv. There are no redundant edges, for instance the edge for an IVCI-transitive-FRs and
IVCI-reflexive-FRs. Consider (t, x) and then IVCI-transitive-FR R̄

˙
(t, k). In normal

diagrams, there would be three edges representing the above three relations. How-
ever, in a Hasse diagram, only two edges are constructed, i.e., from t to x and another
from to k. The indirect link between t and k via x is represented by the two edges. The
IVCI-transitive-FR is intuitively understood.

Example 14. Consider an IVCIFS

Ḝ =



(
u, [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

v, [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π
)

,(
w, [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)
,(

x, [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
y, [0.52, 0.58]ei2[0.30,0.42]π , [0.18, 0.37]ei2[0.06,0.13]π

)
,(

z, [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π
)

,


in a universe S.

The Cartesian product Ḝ× Ḝ is
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Ḝ× Ḝ =



(
(u, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, v), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(u, w), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π

)(
(u, x), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, y), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(u, z), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, u), [0.07, 0.12]ei2[0.03,0.15]π , [0.56, 0.66]ei2[0.73,0.82]π
)

,(
(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π

)
,(

(v, w), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π
)

,(
(v, x), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π

)
,(

(v, y), [0.52, 0.58]ei2[0.03,0.15]π , [0.18, 0.37]ei2[0.73,0.82]π
)

,(
(v, z), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π

)
,(

(w, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(w, v), [0.37, 0.46]ei2[0.03,0.15]π , [0.32, 0.43]ei2[0.73,0.82]π

)
,(

(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(w, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, z), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π

)
,(

(x, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π
)

,(
(x, v), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π

)
,(

(x, w), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
(x, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(x, y), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
(x, z), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(y, u), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(y, v), [0.52, 0.58]ei2[0.03,0.15]π , [0.18, 0.37]ei2[0.73,0.82]π

)
,(

(y, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(y, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(y, y), [0.52, 0.58]ei2[0.30,0.42]π , [0.18, 0.37]ei2[0.06,0.13]π
)

,(
(y, z), [0.26, 0.34]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.63,0.74]π

)
,(

(z, u), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(z, v), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π

)
,(

(z, w), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π
)

,(
(z, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(z, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(z, z), [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π

)


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An IVCI-partial order-FR R̄
˙

is

R̄
˙
=



(
(u, v), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(u, y), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π
)

,(
(u, z), [0.07, 0.12]ei2[0.24,0.29]π , [0.56, 0.66]ei2[0.57,0.71]π

)
,(

(v, v), [0.63, 0.71]ei2[0.03,0.15]π , [0.11, 0.23]ei2[0.73,0.82]π
)

,(
(v, z), [0.28, 0.36]ei2[0.03,0.15]π , [0.48, 0.61]ei2[0.73,0.82]π

)
,(

(w, w), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π
)

,(
(w, y), [0.37, 0.46]ei2[0.15,0.25]π , [0.32, 0.43]ei2[0.53,0.68]π

)
,(

(w, z), [0.28, 0.36]ei2[0.15,0.25]π , [0.48, 0.61]ei2[0.53,0.68]π
)

,(
(x, u), [0.07, 0.12]ei2[0.15,0.25]π , [0.56, 0.66]ei2[0.63,0.74]π

)
,(

(x, v), [0.26, 0.34]ei2[0.03,0.15]π , [0.38, 0.49]ei2[0.73,0.82]π
)

,(
(x, w), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(x, x), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
(x, y), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π

)
,(

(x, z), [0.26, 0.34]ei2[0.15,0.25]π , [0.38, 0.49]ei2[0.63,0.74]π
)

,(
(y, y), [0.52, 0.58]ei2[0.30,0.42]π , [0.18, 0.37]ei2[0.06,0.13]π

)
,(

(y, z), [0.26, 0.34]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.63,0.74]π
)

,(
(z, z), [0.28, 0.36]ei2[0.43,0.53]π , [0.48, 0.61]ei2[0.32,0.42]π

)


Figure 2 depicts the Hasse diagram of the IVCI-partial order-FR R̄

˙
.
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Figure 2. Hasse diagram for an IVCI-partial order-FR R̄
˙

Definition 17. Suppose that an IVCI-partial order-FR is represented by a Hasse diagram, then an
element is known as:

1. The maximal element if it appears at the top of the diagram.
2. The minimal if it appears at the bottom of the diagram.
3. The maximum or greatest element if every element related to it is smaller than it.
4. The minimum or least element if every element related to it is greater than it.
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Definition 18. Suppose Ḟ be the subset of an IVCI-partial order-FS Ḝ, then an element x ∈ R̄
˙
⊆

Ḝ× Ḝ is known as the:

1. Upper bound of Ḟ if (v, u) ∈ R̄
˙
, ∀v ∈ Ḟ.

2. Lower bound of Ḟ if (u, v) ∈ R̄
˙
, ∀v ∈ Ḟ.

3. Supremum of Ḟ if it is the least upper bound of Ḟ.
4. Infimum of Ḟ if it is the greatest upper bound of Ḟ.

Example 15. Assume that Ḝ = { f , g, h, k, l, o, p, q, r, s, t, u} is a complex intuitionistic partial
order fuzzy set Ḝ. For ease, we close your eyes to the degree of membership and degree of non-
membership. Figure 3 is the illustration of the Hasse diagram of set Ḝ.
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In the above diagram,

a. Maximal element is k.
b. Minimal element is t.
c. Maximum elements are k and p.
d. Minimum elements are q and t.

Now considering a subset Ḟ = {g, h, o, u} of set Ḝ whose elements are enclosed in the
green oval.

e. Upper bounds of Ḟ are h and k.
f. Lower bounds of Ḟ are u and t.
g. Supremum of Ḟ is h.
h. Infimum of Ḟ is u.

5. Application

As the name suggests, in this section the applications of the proposed concepts are
presented. We applied the introduced relations and their different types in the fields
of computer technology, more precisely: cybersecurity and cybercrime in the industrial
control system (ICS).

5.1. Security Measures

Over the past few decades, the automation of industrial systems has been steadily
gaining momentum. Business demands continuous improvements in the efficiency of
the production process, thus, the depth of IT penetration and system connectivity grows
continuously; industrial facilities are connected to corporate networks and are frequently
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managed remotely over the network. However, along with their benefits, these new
technologies have brought new threats into the world of industrial automation, and these
new threats came as a surprise. The Industrial Control Systems (ICS) in place today were
designed to operate for decades, and many of them were developed without any serious
regard to IT security.

The stable operation of today’s industrial networks can be disrupted, not only by a
failure at a production unit or an operator’s error but also by a software error, an accidental
infection of workstations with malware or a deliberate cybercriminal attack.

Some security measures are given below. Figure 4 portrays the flowchart for the
process being followed in the application.

I. Default-deny as a standard policy: In default-deny mode, the ICS works in a pro-
tected environment that only allows programs to run that are required for the tech-
nological process to function. All unknown and unwanted applications, including
malicious programs, are blocked. Thus, a secure running environment is created with
minimum load on system resources.

II. Proactive protection against unknown malicious programs and automatic protection
against exploits. The technology scans executable programs, assessing the security of
each application by monitoring its activities when in operation.

III. Device Control technology helps to manage removable devices (USB storages, GPRS
modems, smartphones, USB network cards) and creates limited lists of permitted
devices and the users who can access them.

IV. All-in-one IT security console helps to monitor and control all solutions to ensure
IT security. With the single management console, admins can install, configure and
manage security, and access reports.

V. Integration with SIEM (using special connectors) allows admins to export informa-
tion about security incidents at protected nodes of the technological network into the
corporate SIEM system.
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The above security measures are abbreviated and assigned degrees of membership
and degrees of non-membership values. Table 1 contains the details of their abbreviations
and values of degrees.

Table 1. Details of security measures.

Security Measures Abbreviations Membership Non-Membership

Default-deny as a standard policy DD [0.550, 0.600]ei16[0.500,0.750]π [0.300, 0.400]ei16[0.125,0.313]π

Proactive protection PP [0.475, 0.525]ei16[0.375,0.438]π [0.250, 0.375]ei16[0.125,0.250]π

Device Control technology DCT [0.375, 0.525]ei16[0.438,0.563]π [0.200, 0.350]ei16[0.188,0.250]π

All-in-one IT Security Console ITSC [0.400, 0.500]ei16[0.313,0.438]π [0.250, 0.350]ei16[0.250,0.313]π

Integration with SIEM SIEM [0.300, 0.375]ei16[0.563,0.613]π [0.275, 0.325]ei16[0.188,0.313]π
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5.2. Sources of Code Penetration

In a computer system there are certain weaknesses. Cybercriminals are always looking
for opportunities. They inject their codes using media that are sources of code penetration.
Following are the eight sources of code penetration:

I. Mobile Devices
II. Via USB Ports
III. Via Remote Access
IV. Wi-Fi
V. HMI Interface
VI. Internet Connections
VII. Outside Contractors
VIII. Via Corporate Networks

Table 2 contains the details of the above sources such as the abbreviations used in
calculations and the degree of membership and degree of non-membership.

Table 2. Details of code penetration sources.

Source Abbreviation Membership Non-Membership

Mobile Devices MD [0.275, 0.375]ei16[0.375,0.500]π [0.350, 0.400]ei16[0.250,0.313]π

USB Ports USB [0.375, 0.450]ei16[0.250,0.375]π [0.275, 0.325]ei16[0.125,0.250]π

Remote Access RA [0.350, 0.400]ei16[0.375,0.438]π [0.325, 0.350]ei16[0.188,0.313]π

Wi-Fi WiFi [0.450, 0.550]ei16[0.313,0.500]π [0.325, 0.400]ei16[0.188,0.250]π

HMI Interface HMI [0.300, 0.375]ei16[0.438,0.563]π [0.200, 0.300]ei16[0.063,0.188]π

Internet Connections IC [0.475, 0.575]ei16[0.500,0.613]π [0.250, 0.350]ei16[0.125,0.313]π

Outside Contractors OC [0.500, 0.550]ei16[0.375,0.500]π [0.225, 0.300]ei16[0.063,0.250]π

Corporate Networks CN [0.200, 0.475]ei16[0.313,0.613]π [0.250, 0.375]ei16[0.125,0.188]π

5.3. Calculations

Next, the relationships are analyzed, i.e., the effectiveness and ineffectiveness of each
cybersecurity method against every cybercrime. We carry out the following mathematics.

We present the following two IVCIFSs Ḝ and Ḟ representing the set of securities and
the set of sources of threats, respectively.

Ḝ =



(
DD, [0.550, 0.600]ei16[0.500,0.750]π , [0.300, 0.400]ei16[0.125,0.313]π

)
,(

PP, [0.475, 0.525]ei16[0.375,0.438]π , [0.250, 0.375]ei16[0.125,0.250]π
)

,(
DCT, [0.375, 0.525]ei16[0.438,0.563]π , [0.200, 0.350]ei16[0.188,0.250]π

)
,(

ITSC, [0.400, 0.500]ei16[0.313,0.438]π , [0.250, 0.350]ei16[0.250,0.313]π
)

,(
SIEM, [0.300, 0.375]ei16[0.563,0.613]π , [0.275, 0.325]ei16[0.188,0.313]π

)



Ḟ =



(
MD, [0.275, 0.375]ei16[0.375,0.500]π , [0.350, 0.400]ei16[0.250,0,313]π

)
,(

USB, [0.375, 0.450]ei16[0.250,0.375]π , [0.275, 0.325]ei16[0.125,0.250]π
)

,(
RA, [0.350, 0.400]ei16[0.375,0.438]π , [0.325, 0.350]ei16[0.188,0.313]π

)
,(

WiFi, [0.450, 0.550]ei16[0.313,0.500]π , [0.325, 0.400]ei16[0.188,0.250]π
)

,(
HMI, [0.300, 0.375]ei16[0.438,0.563]π , [0.200, 0.300]ei16[0.063,0.188]π

)
,(

IC, [0.475, 0.575]ei16[0.500,0.613]π , [0.250, 0.350]ei16[0.125,0.313]π
)

,(
OC, [0.500, 0.550]ei16[0.375,0.500]π , [0.225, 0.300]ei16[0.063,0.250]π

)
,(

CN, [0.200, 0.475]ei16[0.313,0.613]π , [0.250, 0.375]ei16[0.125,0.188]π
)


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To find out the efficacy of certain security measures against particular sources of code
penetration, we use the Cartesian product. Thus, finding the Cartesian product between
the IVCIFSs Ḝ and Ḟ

R̄
˙
= Ḝ× Ḟ

=



(
(DD, MD), [0.275, 0.375]ei16[0.375,0.500]π , [0.350, 0.400]ei16[0.250,0313]π

)
,(

(DD, USB), [0.375, 0.450]ei16[0.2500.375]π , [0.300, 0.400]ei16[0.125,031:3]π
)

,(
(DD, RA), [0.350, 0.400]ei16[0.375,0.438]π , [0.325, 0.400]ei16[0.188,0.313]π

)
,(

(DD, WiFi), [0.450, 0.550]ei16[0.313,0.500]π , [0.325, 0.400]ei16[0.188,0.313]π
)

,(
(DD, HMI), [0.300, 0.375]ei16[0.438,0.563]π , [0.300, 0.400]ei16[0.125,0.313]π

)
,(

(DD, IC), [0.475, 0.575]ei16[0.500,0.613]π , [0.350, 0.400]ei16[0.125,0.313]π
)

,(
(DD, OC), [0.500, 0.550]ei16[0.375,0.500]π , [0.300, 0.400]ei16[0.125,0.313]π

)
,(

(DD, CN), [0.200, 0.475]ei16[0.313,0.613]π , [0.300, 0.400]ei16[0.125,0.313]π
)

,(
(PP, MD), [0.275, 0.375]ei16[0.375,0.438]π , [0.350, 0.400]ei16[0.250,0.313]π

)
,(

(PP, USB), [0.375, 0.450]ei16[0.250,0.375]π , [0.275, 0.375]ei16[0.125,0.250]π
)

,(
(PP, RA), [0.350, 0.400]ei16[0.375,0.438]π , [0.325, 0.375]ei16[0.188,0.313]π

)
,(

(PP, WiFi), [0.450, 0.525]ei16[0.313,0.438]π , [0.325, 0.400]ei16[0.188,0.250]π
)

,(
(PP, HMI), [0.300, 0.375]ei16[0.375,0.438]π , [0.250, 0.375]ei16[0.125,0.250]π

)
,(

(PP, IC), [0.475, 0.525]ei16[0.375,0.438]π , [0.250, 0.375]ei16[0.125,0.313]π
)

,(
(PP, OC), [0.475, 0.525]ei16[0.375,0.438]π , [0.250, 0.375]ei16[0.125,0250]π

)
,(

(PP, CN), [0.200, 0.475]ei16[0.313,0.438]π , [0.250, 0.375]ei16[0.125,0.188]π
)

,(
(DCT, MD), [0.275, 0.375]ei16[0.375,0.500]π , [0.350, 0.400]ei16[0.250,0.313]π

)
,(

(DCT, USB), [0.375, 0.450]ei16[0.250,0.375]π , [0.275, 0.350]ei16[0.188,0.250]π
)

,(
(DCT, RA), [0.350, 0.400]ei16[0.375,0.438]π , [0.325, 0.350]ei16[0.188,0.313]π

)
,(

(DCT, WiFi), [0.375, 0.525]ei16[0.313,0.500]π , [0.325, 0.400]ei16[0.188,0.250]π
)

,(
(DCT, HMI), [0.300, 0.375]ei16[0.438,0.563]π , [0.200, 0.350]ei16[0.188,0.250]π

)
,(

(DCT, IC), [0.375, 0.525]ei16[0.438,0.563]π , [0.250, 0.350]ei16[0.125,0.313]π
)

,(
(DCT, OC), [0.375, 0.525]ei16[0.375,0.500]π , [0.225, 0.350]ei16[0.188,0.250]π

)
,(

(DCT, CN), [0.200, 0.475]ei16[0.313,0.563]π , [0.250, 0.375]ei16[0.188,0.250]π
)

,(
(ITSC, MD), [0.275, 0.375]ei16[0.313,0.438]π , [0.350, 0.400]ei16[0.250,0.313]π

)
,(

(ITSC, USB), [0.375, 0.450]ei16[0.250,0.375]π , [0.275, 0.350]ei16[0.250,0.313]π
)

,(
(ITSC, RA), [0.350, 0.400]ei16[0.313,0.438]π , [0.325, 0.350]ei16[0.250,0.313]π

)
,(

(ITSC, WiFi), [0.400, 0.500]ei16[0.313,0.438]π , [0.325, 0.400]ei16[0.250,0.313]π
)

,(
(ITSC, HMI), [0.300, 0.375]ei16[0.313,0.438]π , [0.250, 0.350]ei16[0.250,0.313]π

)
,(

(ITSC, IC), [0.400, 0.500]ei16[0.313,0.438]π , [0.250, 0.350]ei16[0.250,0.313]π
)

,(
(ITSC, OC), [0.400, 0.500]ei16[0.313,0.438]π , [0.250, 0.350]ei16[0.250,0.313]π

)
,(

(ITSC, CN), [0.200, 0.475]ei16[0.313,0.438]π , [0.250, 0.375]ei16[0.250,0.313]π
)

,(
(SIEM, MD), [0.275, 0.375]ei16[0.375,0.500]π , [0.350, 0.400]ei16[0.250,0.313]π

)
,(

(SIEM, USB), [0.300, 0.375]ei16[0.250,0.375]π , [0.275, 0.325]ei16[0.188,0.313]π
)

,(
(SIEM, RA), [0.300, 0.375]ei16[0.375,0.438]π , [0.325, 0.350]ei16[0.188,0.313]π

)
,(

(SIEM, WiFi), [0.300, 0.375]ei16[0.313,0.500]π , [0.325, 0.400]ei16[0.188,0.313]π
)

,(
(SIEM, HMI), [0.300, 0.375]ei16[0.438,0.563]π , [0.275, 0.3250]ei16[0.188,0.313]π

)
,(

(SIEM, IC), [0.300, 0.375]ei16[0.500,0.613]π , [0.275, 0.350]ei16[0.188,0.313]π
)

,(
(SIEM, OC), [0.300, 0.375]ei16[0.375,0.500]π , [0.275, 0.325]ei16[0.188,0.313]π

)
,(

(SIEM, CN), [0.200, 0.375]ei16[0.313,0.613]π , [0.275, 0.375]ei16[0.188,0.313]π
)


Every member of Ḝ × Ḟ is an order pair, which characterizes the connection be-

tween that pair, i.e., the influences and impacts of the first parameter on the second,
in an ordered pair. The degrees of membership indicate the efficacy of a security mea-
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sure to overcome a particular source of vulnerability with respect to time. In contrast,
the degrees of non-membership give the inefficiency or ineptness of a certain security
measure against a specific source of threat injection. For instance, the ordered pair(
(DD, IC), [0.475, 0.575]ei16[0.500,0.613]π , [0.350, 0.400]ei16[0.125,0.313]π

)
expresses that the

default-deny mode can successfully tackle the risks incoming through internet connections.
Further, the numbers explain that the level of inefficiency is low. More specifically, the
degree values are translated as: the grade of security that a default-deny mode provides
against the vulnerabilities injected through internet connections is 47.5% to 57.5%, with
respect to 8 to 10 time units and the chances of a cyberattack via internet connections
bypassing the default-deny mode is 35% to 40%, with respect to 2 to 5 time units. As far
as the security is concerned, the longer duration of time in the degree of membership is
considered better, while the smaller time frame in the degree of non-membership is better.

5.4. Cyber-Security Techniques and Practices

An industry’s digital system faces threats of all shapes and sizes. Thus, they should
be ready to defend, identify and respond to a full range of attacks. The security strategy
needs to be able to address the various methods these cybercriminals might employ. The
process of the method is depicted in Figure 5.
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Following are fourteen different security practices and techniques:

I. Access control (AC) If the cyberattacker is unable to access your industrial network,
then they will do very limited harm. AC limits user access according to their respon-
sibilities, which increases the security, and especially, internal breaches are restricted.(

AC, [0.455, 0.575]ei[0.305,0.540]π , [0.100, 0.180]ei[0.009,0.270]π
)
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II. Anti-malware software (AMS) Viruses, Trojans, worms, key-loggers and spyware
are all malwares, which are used to infect digital systems. Anti-malware software
identifies risky programs and files, then prevents them from spreading.(

AMS, [0.560, 0.610]ei[0.350,0.460]π , [0.350, 0.390]ei[0.300,0.450]π
)

III. Anomaly detection (AD) Identifying anomalies is a difficult task. Henceforth, anomaly
detection engines (ADE) are designed that allow the analysis of an industrial network.
This alerts the authorities when breaches occur so that they can respond at the right
times. (

AD, [0.295, 0.385]ei[0.390,0.480]π , [0.270, 0.350]ei[0.250,0.330]π
)

IV. Application security (AS) An AS establishes security parameters for any applications
that are relevant to industrial security.(

AS, [0.250, 0.340]ei[0.300,0.375]π , [0.280, 0.400]ei[0.220,0.300]π
)

V. Data loss prevention (DLP) DLP equipment and strategies protect employees and
users from ill-use, such as giving away sensitive data.(

DLP, [0.360, 0.425]ei[0.290,0.380]π , [0.310, 0.385]ei[0.200,0.300]π
)

VI. Email security (ES) An ES system basically identifies risky emails. These phishing
emails are usually very convincing because their target is to trick people. Further, this
system also stops cyberattacks and prevents the sharing of important data.(

ES, [0.405, 0.505]ei[0.650,0.780]π , [0.050, 0.100]ei[0.060,0.100]π
)

VII. Endpoint security (EPS) These days, the difference between personal and business
devices is nearly non-existent. Unfortunately, personal devices are targeted to attack
businesses. Endpoint security is a defensive layer between business networks and
such remote devices.(

EPS, [0.375, 0.440]ei[0.350,0.450]π , [0.450, 0.560]ei[0.350,0.450]π
)

VIII. Firewalls (FW) FW act as gateways in a network, used to secure the borders between
the internet and local networks. They are used to manage network traffic by allowing
approved traffic and blocking non-authorized traffic.(

FW, [0.450, 0.530]ei[0.500,0.580]π , [0.220, 0.290]ei[0.130,0.210]π
)

IX. Intrusion prevention systems (IPS) Different types of cyberattacks are identified and
then rapidly responded to by IPS after scanning and analyzing the traffic. These
systems use databases of well-known cyberattack approaches; therefore, they imme-
diately recognize threats.(

IPS, [0.275, 0.375]ei[0.375,0.500]π , [0.350, 0.400]ei[0.250,0.350]π
)

X. Network segmentation (NS) NS restricts the traffic from suspicious sources that
carries risky threats, and allows the authorized and right traffic.(

NS, [0.500, 0.580]ei[0.400,0.500]π , [0.200, 0.280]ei[0.200,0.300]π
)
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XI. Security information and event management (SIEM) SIEM is a field of cyber-security
that provides instantaneous analysis of security warnings spawned by applications
and network hardware.(

SIEM, [0.500, 0.600]ei[0.650,0.700]π , [0.040, 0.080]ei[0.050,0.120]π
)

XII. Virtual private network (VPN) The communication between secure networks and
an endpoint device is authenticated by using VPN tools. They block other parties
from spying by creating an encrypted line.(

VPN, [0.320, 0.450]ei[0.200,0.300]π , [0.350, 0.410]ei[0.375,0.500]π
)

XIII. Web security (WS) WS is an extensive word that describes the security measures
taken by businesses to ensure a harmless web experience when connected to an
internal network. This prevents web-based cyberthreats from using browsers as
access points to get into the network.(

WS, [0.325, 0.375]ei[0.365,0.490]π , [0.335, 0.400]ei[0.275,0.395]π
)

XIV. Wireless security (WiS) Traditional networks are generally more secure than wireless
networks. Thus, severe types of WiS measures are essential to certify that cybercrimi-
nals are not gaining access.(

WiS, [0.450, 0.560]ei[0.330,0.460]π , [0.285, 0.390]ei[0.230,0.315]π
)

XV. Encryption (E) The encryption of data is an exceptionally effective security technique.
The term “encryption” means the transformation of data to a code language or cipher
text that cannot be read by a human. Special keys are used to decrypt these codes and
cipher text back to a readable format. The complex encryption algorithms keep the
information safe. Some of these algorithms are; Twofish algorithm, Rivest–Shamir–
Adleman (RSA) algorithm and triple data encryption algorithm. Figure 6 illustrates
the process of data encryption.(

E, [0.650, 0.810]ei[0.660,0.790]π , [0.085, 0.190]ei[0.040,0.130]π
)
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Let us assign the degree of membership and the degree of non-membership to each of
the security measures and construct an IVCIFS Ḝ

Ḝ =



(
AC, [0.455, 0.575]ei[0.305,0.540]π , [0.100, 0.180]ei[0.009,0.270]π

)
,(

AMS, [0.560, 0.610]ei[0.350,0.460]π , [0.350, 0.390]ei[0.300,0.450]π
)

,(
AD, [0.295, 0.385]ei[0.390,0.480]π , [0.270, 0.350]ei[0.250,0.330]π

)
,(

AS, [0.250, 0.340]ei[0.300,0.375]π , [0.280, 0.400]ei[0.220,0.300]π
)

,(
DLP, [0.360, 0.425]ei[0.290,0.380]π , [0.310, 0.385]ei[0.200,0.300]π

)
,(

E, [0.650, 0.810]ei[0.660,0.790]π , [0.085, 0.190]ei[0.040,0.130]π
)

,(
ES, [0.405, 0.505]ei[0.650,0.780]π , [0.050, 0.100]ei[0.060,0.100]π

)
,(

EPS, [0.375, 0.440]ei[0.350,0.450]π , [0.450, 0.560]ei[0.350,0.450]π
)

,(
FW, [0.450, 0.530]ei[0.500,0.580]π , [0.220, 0.290]ei[0.130,0.210]π

)
,(

IPS, [0.275, 0.375]ei[0.375,0.500]π , [0.350, 0.400]ei[0.250,0.350]π
)

,(
NS, [0.500, 0.580]ei[0.400,0.500]π , [0.200, 0.280]ei[0.200,0.300]π

)
,(

SIEM, [0.500, 0.600]ei[0.650,0.700]π , [0.040, 0.080]ei[0.050,0.120]π
)

,(
VPN, [0.320, 0.450]ei[0.200,0.300]π , [0.350, 0.410]ei[0.375,0.500]π

)
,(

WS, [0.325, 0.375]ei[0.365,0.490]π , [0.335, 0.400]ei[0.275,0.395]π
)

,(
WiS, [0.450, 0.560]ei[0.330,0.460]π , [0.285, 0.390]ei[0.230,0.315]π

)
,


Table 3 contains the descriptions of an interval-valued complex intuitionistic partial

order-FR R̄
˙

that is obtained from the CP Ḝ× Ḝ.

Table 3. IVCI-partial order-FR R̄
˙
⊆ Ḝ× Ḝ.

Ordered Pairs (R̄
˙

=Ḝ×Ḝ) Degrees of Membership (ḿC) DegreesofNon-Membership(n
¯C

)

(AC, AC) [0.455, 0.575]ei[0.305,0.540]π [0.100, 0.180]ei[0.009,0.270]π

(AC, SIEM) [0.455, 0.575]ei[0.305,0.540]π [0.100, 0.180]ei[0.050,0.270]π

(AMS, AMS) [0.560, 0.610]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(AMS, E) [0.560, 0.610]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(AMS, SIEM) [0.500, 0.600]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(AD, AD) [0.295, 0.385]ei[0.390,0.480]π [0.270, 0.350]ei[0.250,0.330]π

(AD, AMS) [0.295, 0.385]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(AD, E) [0.295, 0.385]ei[0.390,0.480]π [0.270, 0.350]ei[0.250,0.330]π

(AD, SIEM) [0.295, 0.385]ei[0.390,0.480]π [0.270, 0.350]ei[0.250,0.330]π

(AS, AMS) [0.250, 0.340]ei[0.300,0.375]π [0.350, 0.400]ei[0.300,0.450]π

(AS, AS) [0.250, 0.340]ei[0.300,0.375]π [0.280, 0.400]ei[0.220,0.300]π

(AS, E) [0.650, 0.810]ei[0.660,0.790]π [0.280, 0.400]ei[0.220,0.300]π

(AS, SIEM) [0.250, 0.340]ei[0.300,0.375]π [0.280, 0.400]ei[0.220,0.300]π

(DLP, AC) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.200,0.300]π

(DLP, DLP) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.200,0.300]π

(DLP, EPS) [0.360, 0.425]ei[0.290,0.380]π [0.450, 0.560]ei[0.350,0.450]π

(DLP.SIEM) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.200,0.300]π

(E, E) [0.360, 0.425]ei[0.290,0.380]π [0.085, 0.190]ei[0.040,0.130]π

(E, SIEM) [0.500, 0.600]ei[0.650,0.700]π [0.085, 0.190]ei[0.050,0.130]π

(ES, AC) [0.405, 0.505]ei[0.305,0.540]π [0.100, 0.180]ei[0.060,0.270]π

(ES, DLP) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.200,0.300]π

(ES, ES) [0.405, 0.505]ei[0.650,0.780]π [0.050, 0.100]ei[0.060,0.100]π

(ES, EPS) [0.375, 0.440]ei[0.350,0.450]π [0.450, 0.560]ei[0.350,0.450]π

(ES, SIEM) [0.405, 0.505]ei[0.650,0.700]π [0.050, 0.100]ei[0.060,0.120]π
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Table 3. Cont.

Ordered Pairs (R̄
˙

=Ḝ×Ḝ) Degrees of Membership (ḿC) DegreesofNon-Membership(n
¯C

)

(EPS, EPS) [0.375, 0.440]ei[0.350,0.450]π [0.450, 0.560]ei[0.350,0.450]π

(EPS, SIEM) [0.375, 0.440]ei[0.350,0.450]π [0.450, 0.560]ei[0.350,0.450]π

(FW, AMS) [0.450, 0.530]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(FW, AD) [0.295, 0.385]ei[0.390,0.480]π [0.270, 0.350]ei[0.250,0.330]π

(FW, E) [0.450, 0.530]ei[0.500,0.580]π [0.220, 0.290]ei[0.130,0.210]π

(FW, FW) [0.450, 0.530]ei[0.500,0.580]π [0.220, 0.290]ei[0.130,0.210]π

(FW, SIEM) [0.450, 0.530]ei[0.500,0.580]π [0.220, 0.290]ei[0.130,0.210]π

(IPS, AMS) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.300,0.450]π

(IPS, AD) [0.275, 0.375]ei[0.375,0.480]π [0.350, 0.400]ei[0.250,0.350]π

(IPS, AS) [0.250, 0.340]ei[0.300,0.375]π [0.350, 0.400]ei[0.250,0.350]π

(IPS, E) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.250,0.350]π

(IPS, FW) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.250,0.350]π

(IPS, IPS) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.250,0.350]π

(IPS, SIEM) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.250,0.350]π

(NS, AC) [0.455, 0.575]ei[0.305,0.500]π [0.200, 0.280]ei[0.200,0.300]π

(NS, AMS) [0.500, 0.580]ei[0.350,0.460]π [0.350, 0.390]ei[0.300,0.450]π

(NS, AD) [0.295, 0.385]ei[0.390,0.480]π [0.270, 0.350]ei[0.250,0.330]π

(NS, AS) [0.250, 0.340]ei[0.300,0.375]π [0.280, 0.400]ei[0.220,0.300]π

(NS, DLP) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.200,0.300]π

(NS, E) [0.500, 0.580]ei[0.400,0.500]π [0.200, 0.280]ei[0.200,0.300]π

(NS, ES) [0.405, 0.505]ei[0.400,0.500]π [0.200, 0.280]ei[0.200,0.300]π

(NS, EPS) [0.375, 0.440]ei[0.350,0.450]π [0.450, 0.560]ei[0.350,0.450]π

(NS, FW) [0.450, 0.530]ei[0.400,0.500]π [0.220, 0.290]ei[0.200,0.300]π

(NS, IPS) [0.275, 0.375]ei[0.375,0.500]π [0.350, 0.400]ei[0.250,0.350]π

(NS, NS) [0.500, 0.580]ei[0.400,0.500]π [0.200, 0.280]ei[0.200,0.300]π

(NS, SIEM) [0.500, 0.580]ei[0.400,0.500]π [0.200, 0.280]ei[0.200,0.300]π

(SIEM, SIEM) [0.500, 0.600]ei[0.650,0.700]π [0.040, 0.080]ei[0.050,0.120]π

(VPN, AC) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, AMS) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, AD) [0.295, 0.385]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, AS) [0.250, 0.340]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, DLP) [0.320, 0.425]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, E) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, ES) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, EPS) [0.320, 0.450]ei[0.200,0.300]π [0.450, 0.560]ei[0.375,0.500]π

(VPN, FW) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, IPS) [0.275, 0.375]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, NS) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, SIEM) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, VPN) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(VPN, WiS) [0.320, 0.450]ei[0.200,0.300]π [0.350, 0.410]ei[0.375,0.500]π

(WS, AC) [0.325, 0.375]ei[0.305,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, AMS) [0.325, 0.375]ei[0.350,0.460]π [0.350, 0.400]ei[0.300,0.450]π

(WS, AD) [0.295, 0.385]ei[0.390,0.480]π [0.335, 0.400]ei[0.275,0.395]π

(WS, AS) [0.250, 0.340]ei[0.300,0.375]π [0.335, 0.400]ei[0.275,0.395]π

(WS, DLP) [0.325, 0.375]ei[0.290,0.380]π [0.335, 0.400]ei[0.275,0.395]π

(WS, E) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, ES) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, EPS) [0.325, 0.375]ei[0.350,0.450]π [0.450, 0.560]ei[0.350,0.450]π

(WS, FW) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, IPS) [0.275, 0.375]ei[0.365,0.490]π [0.350, 0.400]ei[0.275,0.395]π

(WS, NS) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, SIEM) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π
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Table 3. Cont.

Ordered Pairs (R̄
˙

=Ḝ×Ḝ) Degrees of Membership (ḿC) DegreesofNon-Membership(n
¯C

)

(WS, WS) [0.325, 0.375]ei[0.365,0.490]π [0.335, 0.400]ei[0.275,0.395]π

(WS, WiS) [0.325, 0.375]ei[0.330,0.460]π [0.335, 0.400]ei[0.275,0.395]π

(WiS, AC) [0.450, 0.560]ei[0.305,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, AMS) [0.450, 0.560]ei[0.330,0.460]π [0.350, 0.390]ei[0.200,0.450]π

(WiS, AD) [0.295, 0.385]ei[0.330,0.460]π [0.285, 0.390]ei[0.250,0.330]π

(WiS, AS) [0.250, 0.340]ei[0.300,0.375]π [0.280, 0.400]ei[0.220,0.300]π

(WiS, DLP) [0.360, 0.425]ei[0.290,0.380]π [0.310, 0.385]ei[0.230,0.315]π

(WiS, WiS) [0.450, 0.560]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, ES) [0.405, 0.505]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, EPS) [0.375, 0.440]ei[0.330,0.460]π [0.450, 0.560]ei[0.350,0.450]π

(WiS, FW) [0.450, 0.530]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, IPS) [0.275, 0.375]ei[0.330,0.460]π [0.350, 0.400]ei[0.250,0.350]π

(WiS, NS) [0.450, 0.560]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, SIEM) [0.450, 0.560]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

(WiS, WiS) [0.450, 0.560]ei[0.330,0.460]π [0.285, 0.390]ei[0.230,0.315]π

Figure 7 portrays the Hasse diagram for the above interval-valued complex intuitionis-
tic partial order fuzzy relation. For ease, the degrees of membership and non-membership
are kept hidden in the following diagram of R̄

˙
. In Figure 7, one can clearly tell that the best

security technique of these fourteen tools is the SIEM because it is the maximum as well
as the maximal element. On the contrary side, the VPN and WS are considered to provide
the least protection as they appear at the bottom of the diagram.
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If we consider that an industry has to choose from among the following shortlisted
security techniques because of some restrictions, these nominated security techniques and
practices are listed in the following subset Ḟ.

Ḟ =



(
AMS, [0.560, 0.610]ei[0.350,0.460]π , [0.350, 0.390]ei[0.300,0.450]π

)
,(

AD, [0.295, 0.385]ei[0.390,0.480]π , [0.270, 0.350]ei[0.250,0.330]π
)

,(
AS, [0.250, 0.340]ei[0.300,0.375]π , [0.280, 0.400]ei[0.220,0.300]π

)
,(

E, [0.650, 0.810]ei[0.660,0.790]π , [0.085, 0.190]ei[0.040,0.130]π
)

,(
FW, [0.450, 0.530]ei[0.500,0.580]π , [0.220, 0.290]ei[0.130,0.210]π

)
,(

IPS, [0.275, 0.375]ei[0.375,0.500]π , [0.350, 0.400]ei[0.250,0.350]π
)


The business seeks to select the best security technique from among the shortlisted

techniques in set Ḟ. In order to do so, they must look out for the upper bounds and
supremum. In the following diagram, the elements of Ḟ are enclosed in the dark red circle.
Here, the upper bounds are {E, SIEM}. The supremum is the least upper bound, therefore,
encryption is the supremum in this case. Amongst the members of the subset Ḟ, encryption
(E) is the best choice for coping with the cybersecurity reasons.

6. Comparative Analysis

In this section, the reliability of the proposed framework of IVCIFRs is verified through
comparing it with the pre-existing structures such as CFRs or IFRs and IVIFRs.

6.1. Comparison with FRs, CFRs, IVFRs and IVCFRs

The leading limitation of FR, CFR, IVFRs and IVCFR as compared to IVCIFRs is that
these notions discuss the degrees of membership only and do not talk about the degrees of
non-membership, while an IVCIFR argues about both of the degrees. Thus, an IVCIFR has
the power to analyze both the strength and the weakness of any relationship.

Moreover, the complex structure of IVCIFRs can model multivariable problems,
whereas the frameworks of FRs and IFRs are unable to model such problems. As an
IVCFR is the greatest structure among the aforementioned contestants, so a detailed com-
parison between IVCIFRs and IVCFRs is given below.

We investigate the problem discussed in Section 5.3 by using IVCFRs and thinking of
the following two IVCFSs Ḝ and Ḟ representing the set of securities and the set of sources
of threats, respectively. In order to minimize the amount of calculation and to conclude the
comparative analysis, some of the securities and the sources of threats are omitted.

Ḝ =


(

DD, [0.550, 0.600]ei16[0.500,0.750]π
)

,
(

PP, [0.475, 0.525]ei16[0.375,0.438]π
)(

SIEM, [0.300, 0.375]ei16[0.563,0.613]π
) 

Ḟ =


(

USB, [0.375, 0.450]ei16[0.250,0.375]π
)

,
(

RA, [0.350, 0.400]ei16[0.375,0.438]π
)

,(
IC, [0.475, 0.575]ei16[0.500,0.613]π

)
,
(

OC, [0.500, 0.550]ei16[0.375,0.500]π
) 

Table 4 contains the details of abbreviations used in the above sets.

Table 4. Abbreviations.

Abbreviations Full Names

DD Default-Deny as a standard policy
PP Proactive Protection

SIEM Integration with SIEM
USB USB Ports
RA Remote Access
IC Internet Connections
OC Outside Contractors
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The IVCFR R̄
˙

between Ḝ and Ḟ is

R̄
˙
=



(
(DD, USB), [0.375, 0.450]ei16[0.250,0.375]π

)
,(

(DD, RA), [0.350, 0.400]ei16[0.375,0.438]π
)

,(
(DD, IC), [0.475, 0.575]ei16[0.500,0.613]π

)
,(

(DD, OC), [0.500, 0.550]ei16[0.375,0.500]π
)

,(
(PP, USB), [0.375, 0.450]ei16[0.250,0.375]π

)
,(

(PP, RA), [0.350, 0.400]ei16[0.375,0.438]π
)

,(
(PP, IC), [0.475, 0.525]ei16[0.375,0.438]π

)
,(

(PP, OC), [0.475, 0.525]ei16[0.375,0.438]π
)

,(
(SIEM, USB), [0.300, 0.375]ei16[0.250,0.375]π

)
,(

(SIEM, RA), [0.300, 0.375]ei16[0.375,0.438]π
)

,(
(SIEM, IC), [0.300, 0.375]ei16[0.500,0.613]π

)
,(

(SIEM, OC), [0.300, 0.375]ei16[0.375,0.500]π
)


It can be seen that the above IVCFR R̄

˙
only gives the information for the degree of

membership. That is, it only gives the effectiveness of a cybersecurity technique against
a source of penetration and fails to reveal the ineffectiveness of these securities versus
the source of penetration’s relations because the structure of an IVCFR does not have any
degree of non-membership. Hence, these structures have certain limitations and, thus, they
give limited information.

6.2. Comparison with IFRs, CIFRs and IVIFRs

An IVCIFR argues about both the degree of membership and non-membership, as
do the structures of IFRs, CIFRs and IVIFRs. However, IFRs and IVIFRs involve only real
numbers, which limits them to single variable problems. They cannot express the problems
involving time (periodic) or with phase changes.

The structure of CIFRs is based on complex numbers and, thus, consists of amplitude
and phase terms. However, the advantage of an interval-valued structure of IVCIFRs over
the crisp valued structure of CIFRs is that the interval represents a set, thus covering the
uncertainties, including mistakes made by the person, experimental errors or computer
approximations that lead to fuzziness. A detailed comparison between IVCIFRs and IVIFRs
is given below.

We look to solve the problem discussed in Section 5.3 by using IVIFRs. We present the
following two IVIFSs Ḝ and Ḟ representing the set of securities and the set of sources of
threats, respectively. We omit some of the securities and the sources in order to minimize
the amount of calculation. The details of abbreviations used in the following sets are in
Table 4.

Ḝ =

{
(DD, [0.550, 0.600], [0.300, 0.400]), (PP, [0.475, 0.525], [0.250, 0.375]),

(SIEM, [0.300, 0.375], [0.275, 0.325])

}

Ḟ =

{
(USB, [0.375, 0.450], [0.275, 0.325]), (RA, [0.350, 0.400], [0.325, 0.350]),
(IC, [0.475, 0.575], [0.250, 0.350]), (OC, [0.500, 0.550], [0.225, 0.300])

}
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The IVIFR R̄
˙

between Ḝ and Ḟ is

R̄
˙
=



((DD, USB), [0.375, 0.450], [0.300, 0.400]),
((DD, RA), [0.350, 0.400], [0.325, 0.400]),
((DD, IC), [0.475, 0.575], [0.350, 0.400]),
((DD, OC), [0.500, 0.575], [0.300, 0.400]),
((PP, USB), [0.375, 0.450], [0.275, 0.375]),
((PP, RA), [0.350, 0.400], [0.325, 0.375]),
((PP, IC), [0.475, 0.525], [0.250, 0.375]),
((PP, OC), [0.475, 0.525], [0.250, 0.375]),

((SIEM, USB), [0.300, 0.375], [0.275, 0.325]),
((SIEM, RA), [0.300, 0.375], [0.325, 0.350]),
((SIEM, IC), [0.300, 0.375], [0.275, 0.350]),
((SIEM, OC), [0.300, 0.375], [0.275, 0.325])


From the above IVCFR R̄

˙
, it is observed that it explains the effectiveness and ineffec-

tiveness of securities against the sources of penetration. However, unlike IVCIFR, it does
not involve the time frame. We are also interested in the time durations for which certain
security can successfully handle the vulnerability. Therefore, the complex valued degrees
must be involved to achieve the needed information.

6.3. Cons of Alternative Methods

I. The structure of FRs, IVFRs, CFRs and IVCFRs lack the degree of non-membership.
II. The IFR, CIFR and IVIFR methods discuss the degree of membership as well as the

degree of no-membership, but they have certain limitations.

• IFR, with its single valued degrees, does not cope with uncertainty as effi-
ciently as interval-valued structures. Moreover, it cannot model multivariable
problems.

• Though CIFR is capable of modeling multivariable problems, it lags behind in
handling uncertainty due to its single valued degrees.

• An IVIFR can grip the uncertainty quite well with its interval-valued structure,
but it is only limited to one-dimensional problems.

6.4. Pros of IVCIFR

I. The structure is composed of the degrees of membership and non-membership.
II. Interval values cover the mistakes and errors made by the expert or that occur

during the survey or experiments.
III. Complex valued memberships and non-memberships can be used to cope with

multidimensional variables.

Table 5 provides a summary of the characteristics of eight different structures in fuzzy
set and logic theory. From Table 5, the grand structure of IVCIFRs is verified as it ticks all
four characteristics, while the rest of the competitors have limitations in their structures.

Table 5. Comparison on the basis of structural properties.

Structure Membership Non-Membership Multidimensional Variables Interval-Values

FR 3 5 5 5

CFR 3 5 3 5

IVFR 3 5 5 3

IVCFR 3 5 3 3

IFR 3 3 5 5

CIFR 3 3 3 5

IVIFR 3 3 5 3

IVCIFR 3 3 3 3
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7. Conclusions

This article introduced the innovative concepts of interval-valued complex intuitionis-
tic fuzzy relation (IVCIFR) and the Cartesian product (CP) between two interval-valued
complex intuitionistic fuzzy sets (IVCIFSs). Further, various types of IVCIFRs are also
defined, including the interval-valued complex intuitionistic equivalence fuzzy relation
(IVCI-equivalence-FR), IVCI-partial order-FR, IVCI-total order-FR, IVCI-composite-FR
and many more. Moreover, the Hasse diagram has been introduced for the IVCI-partial
order-FR and IVCI-partial order-FS. The concepts and ideas related to the Hasse diagram
have also been defined. Suitable examples are given for each of the definitions and some
results are proved for the different types of IVCIFRs. Furthermore, the proposed ideas are
utilized to investigate the relationships between different types of cybersecurity and cyber-
crimes and their sources. The section titled comparative analysis verifies the omnipotence of
IVCIFRs by its head-to-head comparison with other alternative mathematical techniques.
In addition, it also sums up the vast structure of IVCIFRs and the limitations of pre-existing
frameworks. The flaws of IVCIFRs include the absence of a degree of abstinence as well
as the restrictions and constraints on the sum of the degrees of membership and non-
membership. In the future, these concepts can be extended to the generalizations of fuzzy
sets, which will give rise to many interesting structures with a vast range of applications.
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