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Abstract: Korean and Japanese have different writing scripts but share the same Subject-Object-Verb
(SOV) word order. In this study, we pre-train a language-generation model using a Masked Sequence-
to-Sequence pre-training (MASS) method on Korean and Japanese monolingual corpora. When
building the pre-trained generation model, we allow the smallest number of shared vocabularies
between the two languages. Then, we build an unsupervised Neural Machine Translation (NMT)
system between Korean and Japanese based on the pre-trained generation model. Despite the
different writing scripts and few shared vocabularies, the unsupervised NMT system performs well
compared to other pairs of languages. Our interest is in the common characteristics of both languages
that make the unsupervised NMT perform so well. In this study, we propose a new method to
analyze cross-attentions between a source and target language to estimate the language differences
from the perspective of machine translation. We calculate cross-attention measurements between
Korean—Japanese and Korean-English pairs and compare their performances and characteristics.
The Korean-Japanese pair has little difference in word order and a morphological system, and thus
the unsupervised NMT between Korean and Japanese can be trained well even without parallel
sentences and shared vocabularies.

Keywords: MASS; pre-trained generation model; unsupervised neural machine translation; language
typology; writing script; SOV word order

1. Introduction

Masked Sequence-to-Sequence (MASS) [1] is a pre-training method for language
generation. It adopts Transformer [2] as a basic architecture that consists of an encoder
and decoder. The encoder takes a sentence with a randomly masked fragment as its input,
and the decoder tries to predict this masked fragment. In this way, MASS can pre-train
both the encoder and the decoder jointly using only unlabeled data, and the pre-trained
encoder and decoder can be applied to most language-generation tasks, including Neural
Machine Translation (NMT).

In this study, we pre-train a language-generation model using MASS with two mono-
lingual corpora and then fine-tune the pre-trained model with the same corpora and a
back-translation loss for the unsupervised NMT task. The interesting language pair of
the NMT system is Korean—Japanese. Korean and Japanese use different writing scripts,
but they have very similar typological properties, such as the word order of the Subject-
Object-Verb (SOV) [3].

Since Korean and Japanese have different writing scripts, there are only a few shared
vocabularies between the two languages. However, alphabets, digits, and some Chinese
characters they share can occur in both corpora. In our preliminary experiments, therefore,
only Japanese text without alphabets and digits and Korean text without Chinese characters
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are gathered into the Japanese and Korean monolingual corpora, respectively. By doing
this, we allow the smallest number of common vocabularies in the NMT system between
the two languages. Only a few punctuations are shared by the two corpora.

We also build an unsupervised Korean-English NMT system using the same method.
To compare with the Korean—Japanese NMT, the Korean-English NMT system is built to
have as many common vocabularies between Korean and English as possible.

Korean, Japanese, and English do not share writing scripts; however, Korean-Japanese
and Korean—-English have very different characteristics. Due to the geographic proximity;,
Japanese and Korean share considerable similarities in typological features of their syntax
and morphology, while having different writing scripts [4,5]. It is widely accepted that
unsupervised NMT systems with high accuracies are possible only when the source and
target language have a high lexical resemblance with the same scripts.

Although the vocabularies shared by Korean and Japanese are only a few punctuations,
the unsupervised NMT system can learn to translate between the two languages without a
parallel corpus. Unlike a Korean-Japanese pair, the unsupervised Korean-English NMT
system shows disappointing results because the language pair has a different morphology
system and word order despite having as many common vocabularies as possible. These
preliminary experiments show that the similarities of morphology and syntax between the
two languages can be an essential prerequisite for successfully training an unsupervised
NMT without common vocabularies.

In this study, we want to discover what knowledge a model acquires through the
pre-training process and what knowledge from the pre-trained model enables an unsuper-
vised NMT with high accuracy. Therefore, we analyze which layers of the unsupervised
NMT system store what kind of information, and whether cross-attentions demonstrate
differences in the languages, such as word order. These findings can give us insight into
how to train an unsupervised NMT system between various language pairs.

The contributions of this paper are as follows:

¢ We propose a new method to analyze cross-attentions of an encoder-decoder architec-
ture considering the difference in properties between a source and target sequence.

e We apply the analysis method to an unsupervised NMT task between Korean and
Japanese, which are known to be very similar each other.

*  We demonstrate how similar Korean and Japanese are in terms of machine translation
by examining cross-attentions of an encoder—decoder on which the unsupervised
NMT between both languages is implemented.

The rest of the paper is organized as follows. We first explore related studies in
Section 2, and we describe the training datasets and unsupervised NMT systems and report
preliminary experimental results of the NMT systems in Section 3. We then propose a new
analysis method of cross-attentions of NMT systems and present the analysis results and
discussion in Section 4, followed by the conclusion in Section 5.

2. Related Studies
2.1. MASS

MASS is a method that pre-trains an encoder and decoder for language generation [1].
Unlike other pre-trained models such as BERT [6] and GPT [7], MASS adopts an en-
coder—decoder architecture because it pre-trains the encoder and decoder jointly. Hence,
MASS pre-trains a model using sequence-to-sequence data. A source sequence for an
encoder contains a special token, ‘M’, for a masked fragment, and the target sequence is
the string for the masked fragment. MASS pre-trains the decoder to recover the masked
segment given the context represented by the encoder. In this way, the model can learn not
only how to represent a source sequence in an encoder, but also how to generate a target
sequence in the decoder given the encoder’s context.

A pre-trained model can be adopted for language-generation tasks such as NMT. It is
also possible to develop unsupervised NMT systems by fine-tuning pre-trained models
with a source and a target language together. Unsupervised NMT systems built in this way
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are capable of bi-directional translation because MASS teaches the pre-trained models both
languages at the same time.

MASS achieves significant improvements in an unsupervised machine translation
over baselines without a pre-trained model.

2.2. Unsupervised NMT

Since NMT requires a large parallel corpus, an unsupervised NMT that relies solely on
a monolingual corpus can be an initial solution for language pairs, including low-resource
languages [8,9]. There are two approaches to training an NMT system in an unsupervised
manner [10].

Denoising is the same technique as is used in denoising autoencoders [11], in which
a system is trained to reconstruct the original version of a corrupted input sentence. To
build an unsupervised NMT system using the denoising technique, Artetxe et al. [10]
proposed an NMT system that consisted of one encoder shared by two languages and two
decoders for each language. The training process was as follows: The NMT system takes
an input sentence in a given language, encodes the sentence using the shared encoder,
and then reconstructs the original sentence using the decoder of that language. This
training process is essentially a trivial copying task. In order to make the system truly
learn the compositionality of its input sentence, a random noise is inserted into the input
sentence. As the system tries to recover the original input by denoising the random noise
from an input, it can eventually learn about the internal structure of the languages. After
completing the learning process, the system can translate an input sentence to a target
sentence by replacing the decoder with that of the target language.

Back-translation is another approach to building an unsupervised NMT system [10,12].
First, an NMT system translates an input sentence into a target sentence that is decoded
with a greedy approach. While the input sentence is genuine, the target sentence might be
synthetic and artificial. In a training process with back-translation, the unsupervised NMT
system learns to translate a synthetic translation into the original input sentence. The system
can be updated by this training process and can generate more natural pseudo-parallel
sentence pairs. This process is repeated until the NMT system reaches acceptable accuracy.

In this study, we adopt a back-translation approach to build an unsupervised NMT
system because MASS utilizing a shared encoder and decoder for both languages can easily
apply the back-translation approach. Both approaches assume that cross-lingual word
embeddings can be built between two languages before training an unsupervised NMT
system. Most embedding mapping methods independently learn the embedding for each
language using monolingual corpora separately, and then map them onto a shared space
by linear transformation and a bilingual dictionary.

In this study, we train cross-lingual word embeddings using a shared Byte Pair En-
coding (BPE) [13] between the two languages. Generally speaking, monolingual corpora
containing as many shared lexical entries as possible between the two languages are col-
lected and utilized to maximize the benefit from the shared BPE of an unsupervised NMT.

3. Pre-Trained Models and Unsupervised NMTs
3.1. Datasets and Pre-Training Setup

In this work, the language pairs in question for machine translation are Korean—
Japanese and Korean-English. We use the following four monolingual corpora that include
5 million sentences each, collected from news articles.

3.1.1. Monolingual Corpora

(K) The Korean corpus is collected from the Korean Contemporary Corpus of Written
Sentences (http:/ /nlp.kookmin.ac.kr/kcc/, accessed on 19 August 2021). To not only
maximize lexical overlap with the English corpus but also minimize lexical overlap
with Japanese corpus, we collect sentences including as many alphabets and digits
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as possible, but not Chinese characters. They are tokenized using the ETRI parser
(https:/ /aiopen.etri.re.kr/service_api.php, accessed on 19 August 2021).

(). The Japanese corpus is collected from WMT2019 (https://www.statmt.org/wmt1l
9/translation-task.html, accessed on 19 August 2021) and JParaCrawl [14]. To min-
imize lexical overlap with the Korean corpus, we only collect sentences with nei-
ther alphabets nor digits. They are tokenized using the Mecab tokenizer (https:
/ /taku910.github.io/mecab/, accessed on 19 August 2021).

(E) The English corpus is collected from WMT 2017-2019 datasets (https://www.statmt.
org/wmtl7/translation-task.htmlhttps:/ /www.statmt.org/wmt18/translation-task.
htmlhttps:/ /www.statmt.org/wmt19/translation-task.html, accessed on 19 August
2021), and those sentences are tokenized by the Moses tokenizer (https://github.com/
moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl, accessed
on 19 August 2021) for pre-processing.

These corpora consist of 5 million sentences each. They are all used in building the
pre-trained generation models.

First, we build a monolingual lexicon for each corpus separately using the BPE al-
gorithm [13] fixed at 60,000 sub-word units. The results are shown in the first column of
Table 1. Then, we build a joint lexicon between the two languages with the same fixed num-
ber of sub-word units using the BPE algorithm. The numbers of (shared) vocabularies in the
joint lexicons are shown in the second column of Table 1. Because the Japanese corpus does
not contain alphabets and digits, the number of shared vocabularies of Korean—Japanese
is only 33, most of which are punctuations. On the contrary, since most Korean sentences
contain alphabets and digits, the ratio of the shared vocabulary of Korean-English rises to
more than 30% despite the use of different writing scripts.

Table 1. The numbers of vocabularies in the lexicons built from each corpus.

Language Pair for The Number of Voc. in ~ The Number of Shared Voc./The Number

Pre-Training Monolingual Lexicon of Voc. in Joint Lexicon (the Ration)
Korean: 37,670 33/75,147
Korean-Japanese Japanese: 37,510 (0.089%)
) Korean: 47,805 20,174/65,176
Korean-English English: 38,085 (30.9%)

3.1.2. Parallel Corpora

Parallel corpora are used in supervised training of NMTs. The 50,000 pairs of sentences
are used for training NMT systems for each pair of languages. The Korean-English parallel
corpus consists of data from the AI Hub site (https://aihub.or.kr/aidata/7974, accessed
on 19 August 2021), and the Korean-Japanese parallel corpus is from [15].

For evaluation, we manually collect 2000 sentence triples of Korean—-English-Japanese.

3.2. Pre-Trained Models and Unsupervised NMTs

We build a pre-trained model for each language pair using the same hyper-parameters
and model configuration, as suggested in [1]. For the sake of clarity, the hyper-parameters
used in this study are presented in Table 2. We shared the same hyper-parameters to build
a pre-trained model, an unsupervised NMT, and a supervised NMT system except for the
mini-batch size.

An unsupervised NMT system is built based on a pre-trained model using the same
monolingual corpora and a back-translation loss while a supervised NMT system is built
based on a pre-trained model using parallel corpora and a cross-entropy loss.
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Table 2. The hyperparameters to build the pre-trained model, the unsupervised NMT, and the

supervised NMT models.
Hyperparameters Values
architecture Transformer
(encoder 6 layers, decoder 6 layers)
embedding dim. 1024
hidden layer dim. 1024
feed-forward dim. 4096
attention head 8
activation function Gelu
optimizer Adam
scheduler inverse sqrt
initial learning rate 10~*
betal, beta2 0.9, 0.98
dropout 0.1
mini-batch size 3000 tokens (pre-trained model)

2000 tokens (supervised /unsupervised NMT)

Table 3 lists the preliminary results of the NMT systems, measured by BLEU scores [16].

We can observe the following three facts from the experimental results. First, pre-
trained models are beneficial to improving the performance of a supervised NMT system.
Second, when trained with the same number of parallel sentences and evaluated on the
same sentence triples, the NMT system of Korean—Japanese performs better than that of
Korean-English in every case. Third, the BLEU scores of the tasks of Korean—Japanese
unsupervised NMT are quite high—32.76 for Japanese to Korean, and 29.07 for Korean to
Japanese—even when there is no lexical overlap in the training dataset between the two
languages. However, the Korean-English unsupervised NMT shows very disappointing
results despite sharing the greatest number of vocabularies between the two languages.
We can anticipate that the NMT system for the pair of Korean—-English cannot be trained
well without a parallel corpus.

Table 3. The performances of the neural machine translation systems.

BLEU Scores
Language Pairs Models Based on Pre-Trained Models .
Unsupervised  Supervised  Supervised NMT
NMT NMT

. JA — KO 32.76 51.69 48.12

Korean-Japanese (KOJA) 1o 29.07 41.96 41.02
. EN — KO 3.62 30.14 21.83
Korean-English (KO-EN) gy 1.10 27.13 19.49

In the following section, we list several experiments we performed to determine factors
behind the effectiveness of an unsupervised NMT system between Korean and Japanese.

4. Analysis and Discussion
4.1. Analysis Objectives

The model pre-trained by MASS adopts the Transformer as a backbone architecture
consisting of an encoder and a decoder. The encoder and decoder have six layers each,
and the pre-trained model has cross-attention between the encoder and decoder. Therefore,
we split the weights of the model into three groups. The first is the weights of word
embeddings, the second is those of self-attention layers, and the third is the weights of
encoder—decoder cross-attention layers. We aim to find the answers to the following
questions.
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1.  Are word embeddings of fine-tuned NMT models located appropriately in a vector
space according to their meanings?

2. Canword embeddings shift in a vector space appropriately when they are recalculated
through self-attention layers of an encoder?

3.  We assume that cross-attention layers between an encoder and a decoder reflect
syntactical differences between the two languages in a certain way. Can we mea-
sure the language differences by analyzing cross-attentions between an encoder and
a decoder?

4.2. Analysis of Cross-Word Embeddings
4.2.1. Word Translation: Cross-Lingual Alignment of Word Embeddings

To examine whether word embeddings of two languages are located closely in a
vector space when they have similar meanings, we perform the following word-translation
experiments.

We obtain bilingual dictionaries from Project MUSE [17]. They have 20,549 Korean-
English translated word pairs, 22,357 English-Korean pairs, 25,969 Japanese-English pairs,
and 35,353 English-Japanese pairs. For our experiments, we align those word pairs to make
English—-Korean—-Japanese word triples, so we collect 10,295 triples.

We translate a source word into a target word by choosing the K-nearest neighbors
(K =1) to the source word in the vector space of cross-lingual word embeddings. The
performances of word translation shown in Table 4 are measured by precisions, which
are the ratio of correct translations out of the total words. The higher score indicates the
better result.

Table 4. The performances of word translation.

MASS Encoder

Models JA — KO KO — JA EN — KO KO — EN
Unsupervised NMT 13.49 7.31 492 1.27
Supervised NMT 8.37 4.83 3.61 0.73

Shared vocabularies between two languages play an important role in grouping word
embeddings according to their meanings, not their languages, in a vector space. Therefore,
word embeddings from two different languages are not easy to map onto each other
without shared vocabularies.

However, the word-translation task shows an unexpected result. The word embed-
dings of the Korean—Japanese unsupervised NMT system are better clustered according to
their meanings than those of the Korean-English unsupervised NMT system, although the
former had few shared vocabularies, while the latter had many.

As long as two languages have many common characteristics in morphology and
syntax, it is possible to construct cross-lingual word embeddings, even if the two languages
share little vocabulary with each other.

One interesting result is that the precisions of supervised NMTs are lower than those of
unsupervised NMTs in both Korean—Japanese and Korean-English. The reason is thought
to be that supervised learning shifts the embeddings of a few words contained in a parallel
corpus in a vector space, taking into account the contexts in which the words are used.
However, a word-translation task does not consider the contexts and only considers a
neutral meaning of the word.

4.2.2. Sentence-Translation Retrieval

For experiments on sentence-translation retrieval, we use the same evaluation set de-
scribed in Section 3.1, consisting of 2000 triples of aligned English-Korean—Japanese sentences.
The final embeddings of words in a query sentence can be acquired by calculating the
weights of the encoder’s self-attention layers, and the query sentence embedding can be
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acquired by averaging those final embeddings. A sentence translation can be carried out
by retrieving a target sentence whose embedding is nearest to that of a query sentence.

We use 2000 queries of Japanese and English and 200,000 Korean candidates, including
2000 target sentences. Table 5 presents the results and the performances are also estimated
by precisions, which are the ratio of correctly translated sentences among the total 2000 sen-
tences. In Table 5, ‘Initial embeddings’ refers to word embeddings prior to the first layer of
an encoder, while ‘Final embeddings’ refers to word embeddings recalculated through the
encoder’s layers.

Table 5. The performances of sentence-translation retrievals.

. MASS Encoder
Models Embeddings JA = KO EN — KO
. Initial embeddings 6.10 1.05
Unsupervised NMT g ) mbeddings 20.90 2.95
. Initial embeddings 115 0.90
Supervised NMT Final embeddings 76.85 40.20

Like the word-translation task, the sentence-translation task from Japanese to Korean
outperforms that from English to Korean.

In addition, as easily guessed, the precisions of the supervised NMTs are higher than
those of the unsupervised NMTs. The precision of Japanese to Korean rose to 76.85%
when supervised learning is adopted in the pre-trained models. The precision of sentence
translation from Japanese to Korean in unsupervised learning goes up to 20.90% accuracy,
although the NMT model is never trained with any parallel sentences.

The precisions of the final embeddings were much better than those of the initial em-
beddings in the case of Japanese to Korean, regardless of how the NMT systems are trained.
This indicates that the encoder’s internal layers are well trained enough to appropriately
move word embeddings in a vector space, taking into account the context in which they
are used.

Only final embeddings of supervised NMT seemed to work for sentence translation
from English to Korean. This is analogous to the results in Table 1, in which a supervised
learning process is indispensable for an English-Korean NMT system.

4.3. Analysis of Cross-Attentions

Cross-attentions can be seen as a reordering model as well as an aligning model
between two languages from the perspective of machine translation [18]. Although cross-
attentions are known to be a core component of deep learning networks for translation,
few studies have analyzed the relationships between cross-attentions and a language pair.
In this study, we analyze the properties of cross-attentions between a source language and
a target language. Prior to analysis, we first define a few terminologies about attentions
used in this work.

Most NMT models are implemented based on an encoder—decoder architecture. In the
encoder—decoder architecture, a cross-attention mechanism is devised so that the decoder
can decide which part of a source sentence to pay attention to when generating the next
token. The cross-attention mechanism can relieve the encoder of the burden to represent
all the information of a source sentence in a fixed-size vector.

The cross-attention of each decoding step indicates which source part should be used
to translate into a target language. Therefore, in this work, we define the source token
with the highest attention score at each decoding step as an aligning token for the current
target token.

Assuming that a source and a target are the same, the sequence of aligning tokens for
the target sequence monotonically increases, as shown in Figure 1a. In this figure, the arrow
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points to an aligning token in a source sequence. We name it a fixed cross-attention and

denote it by A{lfff from a language L to the same language L.

Source Target Source Target
BOS BOS BOS: 0 0: BOS
Transfer / Transfer Transfer: 1 1: Transfer
learning / learning learning: 2 2:learning
can / can can:3 3:can
improve / improve improve: 4 4:improve
quality/ quality quality: 5 / 5: quality
for / for for:s >< 6: for
low / low low: 7 7: low
resource / resource resource: 8 8: resource
machine/ machine machine: 9 9:machine
translation / translation translation:1o 1otranslation
EOS/ EOS EOS:11 11:E08

—
Q
4

(b)
fixe
E

Figure 1. (a) Fixed cross-attention A Hg between the same sentence with monotonic increasing.

(b) cross-attentions that are non-aligned and aligned in the reverse order.

First, we analyze cross-attentions between the same sentences in NMT models. Since
MASS can train an NMT model bidirectionally, the NMT model implemented using MASS
in this study can translate sentences in both directions.

Therefore, it is possible to examine cross-attentions between the same sentences.
Ideally, the cross-attentions would be nearly the same as the fixed cross-attentions because
the source and the target sentences are the same in this case. However, the cross-attentions
between the same sentences may be different from the fixed cross-attentions because the
NMT model learns two languages together. Therefore, the other language’s properties, such
as word order and morphology, can affect the cross-attentions within the same language.

Let a source sequence be {BOS, s1,s),...,s5,, EOS} and a target sequence be {BOS,
t1,t,...,tm, EOS}. We align each token of a target sequence with a token of a source
sequence. For each target token f;, we can find a source token s; that has the highest
attention score and then denote the alignment by (t;, s;) for the target token ¢; and its
aligning token s;.

In this work, a target token (except the final one) of a target sequence is said to be
non-aligned when its aligning token in a source sequence is either ‘BOS’ or ‘EOS’. For a
given a alignment (¢;, s;), we can find the largest index k of the alignment (¢, s;), such that
k <iands; ¢ {BOS, EOS}. When the indexes of two alignments are | > j, the target token
t; is said to be aligned in the reverse order.

In the example of Figure 1b, the target tokens f;, f3, and f; are non-aligned because
they attend to ‘BOS” or ‘EOS’. The {4 is the token aligned in the reverse order because there
are two alignments (t¢, s5) and (5, s7) in the cross-attention.

The NMT model we built in this work has six layers in the decoder, and each layer
has eight heads of cross-attention; therefore, the decoder of the NMT model has 48 cross-
attention heads in total. We choose the best cross-attention head among the 48 that have
the smallest number of tokens non-aligned and aligned in the reverse order.
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Figure 2 shows the examples of alignments of NMT models of English-Korean and
Japanese-Korean, respectively. In these examples, the alignments (from sixth to ninth
tokens in Korean) between Japanese and Korean do not include non-aligned target tokens
and tokens aligned in the reverse order. However, the alignments between English and
Korean include the non-aligned token t9 and the token tg aligned in the reverse order.

Source Target Source
BOS BOS 0 BOS
Transfer F Ol 4 SRS
learning (=1 =) ez
can 2.3 .
improve = ] 1K
quality w_ token aligned in 7} :5 v —=

reverse order

for =2 :6\0)
low ZIA :7\1%19?2
resource tH 5 FER
machine =1 so)
translation =20 L1
__~"non-aligned
EOS ~~ token  Sr:11 =
SF&PA| 2 E =
==:13 x2e3
UELIChaa ZeEen
EOS:1s ESE-3F 3

Figure 2. The examples of cross-attentions between English—Korean and Japanese-Korean.

4.3.1. Cross-Attention between the Same Sentences

The first analysis of cross-attentions, which is illustrated in Figure 3, is conducted on
translation of the same sentence.

JK EK

K sentence 471( K sentence ‘751(
Attn) Att

Kk Mgk
encoder decoder encoder decoder

Figure 3. Comparison of cross-attentions between the same sentences.

We can easily deduce that the number of tokens aligned in the reverse order increases
when the two languages differ in word order. The number of non-aligned tokens likewise
increases when there are many words with different roles between the two languages. The
fixed cross-attention Attn{iid from Korean to Korean always attends to the next word;
therefore, the number of tokens aligned in the reverse order and non-aligned tokens will be
zero. The notation Attn{{ik indicates a cross-attention provided by an NMT model when
the NMT model, which can translate Japanese and Korean bi-directionally, translates a
Korean sentence into the same Korean sentence.

If Korean and Japanese are similar, Attn{(ik is nearly the same as the fixed cross-
attention Attn{iid. However, if the two languages are quite different, the numbers of
tokens aligned in the reverse order and non-aligned tokens will increase.

For 2000 Korean sentences, we analyze cross-attentions of the NMT models and count
the number of tokens aligned in the reverse order and non-aligned tokens for Japanese to

Korean and English to Korean, respectively. The results are shown in Table 6 and Figure 4.
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Table 6. The cross-attentions between the same sentences in Japanese—Korean and English-Korean
neural machine translation (NMT) models.

Cross Attentions Models Attn{<K_> K AttnEK
Aligned in the Pre-trained Model 0.204% 3.715%
- ‘;e‘r;se s Unsupervised NMT 0.109% 0.527%
Supervised NMT 0.514% 3.825%
Pre-trained Model 0.157% 4.808%
Non-aligned Unsupervised NMT 8.599% 6.789%
Supervised NMT 10.346% 18.366%
Aliened in the reverse order Pre-trained Model 0.691% 8.523%
& + Non-aliened Unsupervised NMT 9.447% 8.353%
& Supervised NMT 11.955% 30.874%
035 0.35
03 03 AttnicSy
0.25 0.25
02 AttnfE 02
0.15 0.15
0.1 0.1 Atk
Attng g 005 At 005 o
aunil 0
pre-trained unsupervised supervised pre-trained unsupervised supervised pre-trained unsupervised supervised
(a) tokens aligned in reverse order (b) non-aligned tokens (c) tokens aligned in reverse order

+ non-aligned tokens

Figure 4. The cross-attentions between the same sentences in Japanese-Korean and English—Korean neural machine

translation (NMT) models.

First, the ratios of tokens non-aligned and aligned in the reverse order in Attn,{ik and
AttnEK  are quite distinguishable. While 11.955% of the Japanese-Korean model’s tokens
are non-aligned or aligned in the reverse order, 30.874% of the English—-Korean model’s
tokens are non-aligned or aligned in the reverse order, which is more than twice that of the
Japanese-Korean model.

In addition, the results of Figure 4 show that the cross-attentions of the Japanese—
Korean model change significantly after unsupervised learning, while those of the English—
Korean model change significantly after supervised learning. In other words, Japanese—
Korean models can learn the properties of the two languages with unsupervised learning
only; however, English-Korean models hardly learn the properties of the two languages
without supervised learning.

From the fact that the ratio of tokens aligned in the reverse order in the Japanese—
Korean model is far below 1%, we can assert that Korean and Japanese are quite similar in
word order.

4.3.2. Cross-Attention between the Different Languages

This analysis is designed to observe how the cross-attentions are calculated when a
source and a target language are quite different. This analysis is illustrated in Figure 5. The
results are presented in Table 7 and Figure 6.

JK EK
K EK
J sentence Atmfak E sentence Attn,
encoder decoder encoder decoder

Figure 5. Comparison of cross-attentions between the different languages.
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Table 7. The cross-attentions between Japanese-Korean and English-Korean.

Cross Attentions Models Attn}li K Attngli> X

Aliened in the Pre-trained Model 0.992% 3.284%

revge[;se order Unsupervised NMT 0.703% 2.069%

Supervised NMT 0.992% 7.256%

Pre-trained Model 2.112% 8.126%

Non-aligned Unsupervised NMT 10.078% 18.917%

Supervised NMT 12.099% 16.095%

Aliened in the reverse order Pre-trained Model 4.446% 14.202%

& + Non-aliened Unsupervised NMT 12.055% 25.027%

& Supervised NMT 14.651% 41.279%
045 045 045

04 04 04 AtenfXy
0.35 0.35 035
03 03 03
0.25 0.25 0.25
02 AtengX 02 ArengXy 02
015 015 /\ 015
0.1 0.1 n]K 0.1 /_—_’—_nll(

0.05 aunX, 0o ﬂ Linis 005 Atttk
0 - 0 0

pre-trained unsupervised supervised pre-trained unsupervised supervised pre-trained unsupervised supervised

(a) tokens aligned in reverse order (b) non-aligned tokens (c) tokens aligned in reverse order

+ non-aligned tokens

Figure 6. The cross-attentions between Japanese-Korean and English-Korean.

(1) We can assert that the respective word orders of Korean and Japanese are almost
the same. In the attention Attn}i g of the Japanese-Korean model, the number of tokens
aligned in the reverse order is still below 1%, while that of the English-Korean model soars
to 17.256%.

(2) The number of non-aligned and aligned tokens in the reverse order in Attngﬁ K

goes up to 41.279%, while that in Attn}iK still remains at 14.651%.

From the analyses of cross-attentions between the languages, we can conclude that
Japanese and Korean are very similar in terms of machine translation. The word orders
of the two languages are very similar, and thus the alignment between the two languages
monotonically increases, excepting about 1%, and below 15% when considering non-
aligned tokens. Conversely, about 41% of the alignments of cross-attentions between
English and Korean are reversed in word order, or has meaningless attentions.

5. Conclusions

In this study, we built unsupervised NMT systems for pairs of Korean—Japanese and
Korean-English and analyzed the performances of the NMT systems according to the
properties of the language pairs.

We proposed a new method to analyze cross-attentions in terms of alignments. Using
this analysis method, we were able to draw insights about the differences in word order
between a source and a target language in an NMT model.

Korean and Japanese are known to be very similar in word order, morphology, and syn-
tax; however, there has been no way to measure their similarities. In this study, we mea-
sured the similarities between the two languages by alignments of cross-attentions. The
high similarity between the two languages allows unsupervised NMT systems of the
languages to achieve high performance.

Before building an unsupervised NMT system, we can estimate the differences be-
tween a language pair using the proposed method, and thereby predict whether an unsu-
pervised NMT system between the language pair can be trained well.
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Abbreviations

The following abbreviations are used in this manuscript:

BERT  Bidirectional Encoder Representations from Transformers
BOS Begin of Sentence

BPE Byte Pair Encoding

EOS End of Sentence

GPT Generative Pre-trained Transformer

MASS  Masked Sequence-to-Sequence

MUSE  Multilingual Unsupervised and Supervised Embeddings
NMT  Neural Machine Translation
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