
applied  
sciences

Article

The Use of Transfer Learning for Activity Recognition in
Instances of Heterogeneous Sensing

Netzahualcoyotl Hernandez-Cruz * , Chris Nugent , Shuai Zhang and Ian McChesney

����������
�������

Citation: Hernandez-Cruz, N.;

Nugent, C.; Zhang, S.; McChesney, I.

The Use of Transfer Learning for

Activity Recognition in Instances of

Heterogeneous Sensing. Appl. Sci.

2021, 11, 7660. https://doi.org/

10.3390/app11167660

Academic Editor: Sławomir K.

Zieliński
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Abstract: Transfer learning is a growing field that can address the variability of activity recognition
problems by reusing the knowledge from previous experiences to recognise activities from different
conditions, resulting in the leveraging of resources such as training and labelling efforts. Although
integrating ubiquitous sensing technology and transfer learning seem promising, there are some
research opportunities that, if addressed, could accelerate the development of activity recognition.
This paper presents TL-FmRADLs; a framework that converges the feature fusion strategy with
a teacher/learner approach over the active learning technique to automatise the self-training pro-
cess of the learner models. Evaluation TL-FmRADLs is conducted over InSync; an open access
dataset introduced for the first time in this paper. Results show promising effects towards miti-
gating the insufficiency of labelled data available by enabling the learner model to outperform the
teacher’s performance.

Keywords: transfer learning; teacher/learner; activity recognition; machine-learning

1. Introduction

Activity recognition (AR) is a research area focused on identifying human actions
from a collection of sensor data. Often, solutions rely on design-time techniques that
remain static after being trained once and assume that further data derives from identical
sources and conditions. However, real-world applications require solutions to embrace
the unpredictability of daily living and allow for exposure to unexpected changes. A
practical alternative is required to address these issues, and transfer learning, if carried out
successfully, can significantly improve the performance of AR data-driven modelling.

Transfer learning is inspired by the capabilities of humans to transfer knowledge
across tasks, where the knowledge from one domain can improve the learning performance
or minimise the number of labelled samples required in another domain. It is of particular
significance when tackling tasks with limited labelled samples. Within AR, transfer learning
is an approach in which previous knowledge or a previous process addresses a new,
but related, task [1,2]. It accomplishes this by reusing the existing learned patterns on a
source domain to identify the similarities within tasks, regardless of the environment or
technological setting in a target domain. Hence, while conventional solutions to address AR
problems rely on machine-learning approaches, the benefits of reusing existing knowledge
can positively impact the training time of machine-learning algorithms.

Transfer learning techniques have proved their wide applicability to the automatic
learning and recognising of activities from scenarios where training data is already avail-
able in the source domain, enabling the transfer of knowledge to different technologies,
subjects, and settings at run-time. These techniques are being used as a starting point for
training classification machine-learning models, such as in a convolutional neural network
(CNN) that allows classification models to reduce the training investment. In particu-
lar, researchers have employed transfer learning to extend the features extraction when
training machine-learning classifiers [3]. Two of the attributes commonly investigated for
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CNNs are architectures [4] and fine-tuning [5], where researchers use already trained CNN
architectures and extend them by incorporating new convolutional layers to fine-tune the
machine-learning models. Although these strategies are common in scenarios where the
feature-distribution is similar between domains, other techniques, such as teacher/learner
(T/L), active learning (AL) and fusion techniques denote an alternative to address problems
where the feature-distribution is different [6].

Problem Statement and Contribution

The underlined problems are that while transfer learning offers a mechanism to
leverage small labelled datasets, current research efforts are restricted to sensing technology,
which relies on a similar feature-space. Simultaneously, current alternatives tend to be
impractical due to the inconvenient method of labelling intervention that increases the
time and resources costs, as well as the effort investment.

T/L modelling presents a new perspective on transfer learning that enables the
transferability of knowledge in scenarios where the feature-space is different; however, it
introduces some challenges. A major challenge is that the accuracy of the teacher limits
the accuracy of the Learner, as the system’s only source of a ground truth comes from the
teacher, and, thus, the learner is entirely reliant upon the teacher. Hence, it remains to be
explored whether the Learner can outperform the teacher.

This problem presents the opportunity to investigate the benefit of MWE sensing
technology and, together with its sensing characteristics, to train a classification model
underlined by transfer learning techniques to mitigate the insufficiency of labelled data for
ADL problems when the feature-space is different.

The key contributions of this paper are two:

• TL-FmRADLs: a framework that integrates the T/L, AL and data fusion techniques
that offers to optimise the performance of learner AR models regardless of the sensing
technology source;

• InSync: an open-access dataset that consists of subjects performing activities of daily
living while data are collected using three different sensing technologies to facilitate
the community future research in transfer learning.

The rest of the paper is organised as follows. The next Section 2 presents the back-
ground of the T/L, AL, and fusion techniques in a broader sense to build the foundations
and scope of our investigation. Then, in Section 3 we introduce TL-FmRADLs and explain
its different algorithms in the subsequent sub-sections. The experiment setup is presented
in Section 4, followed by the introduction of InSync Dataset in Section 5. Section 6 presents
implementation details. Results and Discussion are presented in Sections 7 and 8, respec-
tively. In the penultimate Section 9, we highlight research issues and potential future
directions, whereas the final Section 10 presents the concluding remarks of this paper.

2. Preliminaries

Whereas there are different kinds of knowledge representation investigated within
transfer learning such as instance-transfer [7], feature-representation-transfer [8], parameter-
transfer [9] and relational-knowledge-transfer [10], as discussed in detail in our previous
work [1]. This paper builds upon one of the findings reported by Hernandez et al. [1],
who observed that the T/L technique is a niche owing to its novelty, and stated that along
with the potential of transfer learning techniques within the area of AR to mitigate the
insufficiency of labelled sensing data, transfer learning has been shown to be progressing
when using the same sensing technology, i.e., feature-space and dimension. However,
there has been little work completed on transfer knowledge between any two or more
sensor modalities. In this regard, some authors proposed leveraging the capabilities across
sensing technologies, focused on fusion techniques [11–15], while other authors suggested
using a T/L model.
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2.1. Teacher/Learner

T/L is a technique in which no training data are required; instead, a previously-trained
classifier model (teacher) is introduced to operate simultaneously with a new classifier
model to be trained (learner) and provides the labels for the observed data instances;
this enables the capabilities of a Learner to perform AR utilising a teacher regardless of
the sensor data the teacher was trained with. T/L modelling for AR has shown to have
significant potential for improving transfer learning to make systems more robust and
versatile [6,16–21].

Some researchers have investigated T/L; for example Rokni and Ghasemzadeh [17],
Kurz et al. [18] and Roggen et al. [19] presented alternatives to enable the transference of
knowledge, where labelled data are fully available in the source data, but only a fraction of
the data are available in the target domain. Overall, the approach consists of incrementally
training the model on the target data. The limitation of these studies, however, lies in
the assumption that both the source and the target data consist of the same feature-space.
Hu and Yang [22] and Zheng et al. [23] have proposed alternatives that relax the assumption
of the same feature-space by transferring knowledge across different activities and different
sensors. They built a mapping between the source and the target domains over a bridge
built upon web knowledge. Although their experimentation consisted of different data in
highly different-spaces, their extension to mobile, wearable, and environmental (MWE)
sensing devices is uncertain. Fallahzadeh and Ghasemzadeh [24] proposed an uninformed
algorithm that leveraged the similarities by constructing a deep neural network (DNN)
based feature-level representation of the data in the source and the target domain. The
algorithm uses a heuristic classifier-based mapping to assign activity labels to the core
observations. Finally, the output of the labelling is fused with the prediction of the source-
model to develop a personalised AR algorithm. The limitation of this study, however,
lies in the constraint that it relies on the same feature-space. One general limitation of
T/L approaches, however, is that the accuracy of the learner’s training is bounded by the
accuracy of the teacher.

2.2. Active Learning

AL is a technique that seeks to achieve increased accuracy with fewer instances of
labelled data by being able to question the training data from which to learn selectively.
Unlike traditional machine-learning, AL can update a system as part of a continuous and
interactive learning process to annotate unlabelled data [25–27].

Some research has shown the feasibility of this technique. For example, Hu et al. [28]
proposed a method that self-supervised incremental learning knowledge that received contex-
tual information to gradually personalise models for individual subjects. Saeedi et al. [29]
introduced an architecture that adapts a machine-learning model developed in a given
context to a new setting or configuration, by learning from human annotators as experts.
Dao et al. [30] proposed a new method with adaptive, interactive, general personal-model
training components and data sharing on the cloud; the advantage of their approach was
the fast adaptation on new subjects on its deployment and the opportunity to enhance
predictability by other subjects being gradually integrated; this then helped to increase the
accuracy of the model over iterative retraining.

Although the studies described above have shown feasibility in contributing to the
solution of modelling problems for ADLs, their limitation, however, relies on one of the
following cases: (i) AL assumes human annotation as a feedback source, which interrupts
the user’s day-to-day activities, making those solutions less practical; or (ii) the approach
ignores labelled data from overlapped models that could be used locally, as stated by the
T/L approach. An approach to address the first problem is T/L, in which a teacher can
enable the scalability of a system by acting as an oracle; for the second problem fusion
techniques can be utilised, where fusion represents a technique that integrates multi-
sensor data to enhance the inference of activities that could not be feasible from a single
sensor [14,15,31].
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2.3. Fusion Techniques

Fusion techniques combine data from multiple sensors to achieve improved accuracy
and more specific inferences than can be achieved by the use of only a single sensor. They
have been employed on multi-sensor environments with the aim of fusing and aggregating
data from different sensors. The goal of using fusion in multi-sensor environments is to
obtain a lower detection error probability and an improved reliability using data from
multiple distributed sources [32].

Fusion techniques have shown to be effective in problems aligned with AR. For
example, Song et al. [33] presented a method to enable dense embedding using kernel
similarities. Junior et al. [34] proposed a classifier-fusion schema using learning algorithms,
in which feature extractors and classifier combinations were used to achieve higher accuracy.
Nweke et al. [35] presented a comparison of the performance achieved by single- and
multi-sensor fusion for AR using inertial data. The results of these studies showed the
significant impact of multi-sensor fusion for recognising human activities, demonstrating
the feasibility of fusion techniques for addressing AR problems.

3. Transfer Learning Framework for Recognising Activities of Daily Living across
Sensing Technology

TL-FmRADLs offers to automatically optimise the performance of AR models regard-
less of the sensing technology source. To introduce TL-FmRADLs, Figure 1 shows its three
key phases, namely, data preparation, transfer learning, and AL.

The first phase consists of preparing the sensor signal under a homogenised format to
facilitate the manipulation of data regardless of the sensing technology. The second phase
corresponds to the T/L approach to train untrained AR models (learner). Finally, the third
phase updates the learner models over data feature fusion pulled from learner models.
Details of these phases are presented next.

3.1. Teacher/Learner Phase

Similarly to the conventional machine-learning modelling’s process, TL-FmRADLs
entails two stages, namely, training and testing. The training stage embraces all three
phases of TL-FmRADLs (data preparation, transfer learning, and AL), whereas the testing
stage embraces only phases 2 and 3 (transfer learning and AL).

Referring to the steps from phase 1 illustrated in Figure 1, raw data gathered from the
available sensor devices are immediately pre-processed (1, 2). Data are then fragmented in
small time-windows to capture fine gestures involved within the AR events (3).

As part of the second phase, the segmented data are sent to a front-desk (FD) compo-
nent (4), which will then seek for a legacy version or else a compatible AR model based
on a semantic-based search [36]. If the FD finds a legacy version, the legacy version is
assigned with a teacher role (5a); otherwise the model builder (MB) component builds the
AR model upon any labelled data available at this step (5d). Another possible variation,
however, is when the FD finds more than one legacy AR model (5b), in which case the AR
model with higher classification accuracy will emerge as teacher (5c).

Formalisation and Pseudo-Code

To further detail on the functionality of the different components introduced above,
this Section first presents the primary algorithm corresponding to the T/L phase, followed
by its derived dependencies/functions. As presented before and illustrated within steps
from 5a to 5d from Figure 1, one of the responsibilities of the FD component consists of
assigning a T/L role to the incoming AR models. In Algorithm 1, we can observe that the
FD assigns roles based on the performance of the AR model given by unseenActRate =

∑l
k=1

D′S
DSk

, in which k is the kth AR model within a pool of AR trained models DS[·], and D′S
stands for a complementary AR trained model, where D′S ∈ DS[·] and D′S 6= DSk.
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Figure 1. A high-level overview of TL-FmRADLs which combines AL phase as a mechanism of self-training, where the
digits represent the sequential order of how data are processed.

Although unseenActRate consists of a scalar value that states the error loss retrieved
from the function setTrainingModel(·) the validation to determine the T/L roles is dictated
by the function getValidationUponRuleSchema(·) (detailed in Algorithm 2), in which the
lower the ratio of unseen activities, the more chances to become a Teacher (DS). To
ensure selecting the proper teacher model, the FD tests all associated models utilising the
function setTrainingModel(·) (detailed in Algorithm 3), and only those AR models whose
unseenActRate satisfy the selection rules are taken into account.
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Algorithm 1 Selection of the teacher models and training of the untrained learner model.
Where X: unlabelled dataset, DS[·]: associated trained model(s), D′S: complementary AR
model different than DSk, output: n-dimensional tensor consisting of a tandem of features
and predicted labels for X, and DS: most informative learner model.

INPUT:
X = A pool of unlabelled instances.
DS[·] = A pool of AR trained models {DS1, DS2, . . . , DSk}.
D′S = A complementary AR model different than DSk.
k = Index variable.
OUTPUT:
output = [data, labels].
DS = Most informative AR model (Teacher).

1: for (k = 0; k <= len(DS[·]), k ++) do
2: Search for an existent AR model in DS[·] that relates to the unlabelled instances

X.
3: Assign to unseenActRate the error lost retrieved from setTrainingModel(DSk, X).
4: Assign to DSk the most informative teacher model

determined by having the lowest error value from unseenActRate (∑l
k=1

D′S
DSk

).
5: if satisfy threshold given by getValidationUponRuleSchema(unseenActRate) then
6: DSk is assigned as teacher model.
7: DS = DSk.
8: ends if
9: ends for

10: output = buildModel(DS, X).
11: return [DS, output]

Algorithm 2 Validation of the AR model determined by accuracy reached.

INPUT:
DSk(unseenActRate) = Error ratio for the AR model in index k given by (∑l

k=1
D′S
DSk

).
Q = Configurable scalar set a-priori.
OUTPUT:
f lag = Boolean variable to determine whether a condition has been satisfied.

1: boolean = False.
2: threshold = Q.
3: function getValidationUponRuleSchema(unseenActRate)
4: if The AR model DSk satisfies the configuration requirements defined in Q then
5: The model is considered as informative, hence f lag = True.
6: ends if
7: return f lag
8: ends function

The remaining of this Section presents the main dependencies contributing to structure
Algorithm 1, namely, (i) getValidationUponRuleSchema, (ii) setTrainingModel, (iii) setRefer-
encedModel, and (iv) buildModel.
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Algorithm 3 Exploration of the classification error lost to determine the training model.

INPUT:
X = A pool of unlabelled instances.
DSk = A specific trained AR model with index k.
OUTPUT:
output[error] = Ratio of misclassified labels.

1: Library deep neural network as DNN.
2: output[·] = nil.
3: function setTrainingModel(DSk, X)
4: Build a classification model utilising the DNN library where the inputs

are DSk, X.
5: Retrieve an n-dimensional tensor output from the DNN classification model.
6: Assign output the error lost corresponding to the misclassified instances [error].
7: return output[error]
8: ends function

(i) getValidationUponRuleSchema.

Algorithm 2 presents function FD.getValidation-UponRuleSchema(·) consists of a condi-
tional statement in which DSk(unseenActRate) is compared against a threshold Q as a metric
to accept or reject given unseenActRate. Note that the algorithm introduces as a thresh-
old a unique rule which accepts any rational number settled a-priori (Line 2), however,
TL-FmRADLs can be extended to accommodate a more complex decision making criteria.

Examples of how to diversify the making criteria rules could be regulated to guarantee
the acceptance of at least one AR model as teacher given a DS[·], by opting for the top
AR model regardless of its performance. Other alternatives could rely on modelling an
acquisition function to acquire ground truth data over the calculation of probabilistic
uncertainties [37].

(ii) setTrainingModel.

Algorithm 3 shows function FD.setTrainingModel(·), which process consists on explor-
ing the classification error lost of a determined AR model DSk given a pool of unlabelled
instances X. As TensorFlow [38] is an end-to-end open-source platform for machine-
learning-enabled and a flexible ecosystem of tools and libraries to build and deploy
machine-learning models easily, this algorithm makes use of the DNN libraries taken
from TensorFlow (Line 1). It then performs a classification procedure utilising TensorFlow
(Line 4), retrieves the statistical results (Line 5), and return the overall error lost (Line 7).

(iii) setReferencedModel.

Algorithm 4 presents function FD.setRe f erencedModel(·), which consist on extracting
the hyper-parameters of a given AR model DSk. The underlined aim of this function is to
learn the key information relative from an AR model so that it can be passed to a learner
model. As it can be observed in Line 5, the properties of a reference model DSk are extracted
(assuming that DSk consists of the teacher model), and yielded in Line 6 so the learner
model can adopt them.

(iv) buildModel.

Finally, Algorithm 5 shows function MD.buildModel(·), which process consists on
building an AR model upon the teacher model’s properties yielded by function
FD.setRe f erencedModel(DSk), where DSk represents the kth teacher model in DS[·]. Func-
tion MD.buildModel(·), hence, builds an AR model and yields an n-dimensional tensor
consisting of a tandem of features and predicted labels for X.
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Algorithm 4 Selection of hyper-parameters from a given AR model.

INPUT:
DSk = A specific trained AR model with index k.
OUTPUT:
properties =
An n-dimensional tensor with design hyper-parameters to build an AR model.

1: properties = nil
2: function setRe f erencedModel(DSk)
3: Retrieve a tensor with the properties from the classification model DSk.
4: Assign the retrieved tensor to properties.
5: return properties
6: end function

Algorithm 5 Construction of AR models based on the data and labels given by a teacher.

INPUT:
X = A pool of unlabelled instances.
Teacher = A transitional AR model to be utilised to train a learner model.
OUTPUT:
output = [data, labels]
A n-dimensional tensor with a relationship between features and labels.

1: Library deep neural network as DNN.
2: output[·] = nil.
3: function buildModel(Teacher, X)
4: Retrieves teacher’s properties where properties = setRe f erencedModel(DSk)

(Algorithm 4).
5: Build a classification model utilising the DNN library by calling a function

such as f (∑i wixi + b), where the inputs consists consists of properties and X.
6: Retrieve a n-dimensional tensor output from the DNN classification model.
7: Assign to output the relationship between features and labels [data, labels].
8: return output[data, labels]
9: ends function

Note that to this extent, when the FD component does not find any compatible AR
legacy model nor labelled data are provided, TL-FmRADLs will rely on the oracle enabled
over the AL phase.

3.2. Active Learning Phase

This Section further detail on the functionality of the different components correspond-
ing to the AL phase along with their respective dependencies and functions.

Formalisation and Pseudo-Code

As previously mentioned, the AL phase of TL-FmRADLs will activate under two
conditions, when (i) there is no legacy AR model to refer to and (ii) when none of the
available AR models reaches the threshold Q assigned at the function getValidationUpon-
RuleSchema(unseenActRate). In these cases, the MB will interactively request (6) the
oracle to annotate unlabelled data X under function requestAnnotationFromOracle(X) in
Algorithm 6; so that the MB can perform respective prediction of activities (7).
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Algorithm 6 Request for annotating unlabelled data to the oracle.

INPUT:
X = A pool of unlabelled instances.
OUTPUT:
[data, label] = A tuple of unlabelled instance and label give by the oracle.

1: for (k = 0; k <= len(X), k ++) do
2: Display interface for the oracle to capture a label for the unlabelled

instance Xk.
3: Assign to [data, label] the oracle’s annotation.
4: return [data, label]
5: ends for

As the classification performance of data-driven machine-learning models intrinsically
depends on the quantity and quality of the labelled data, TL-FmRADLs does not restrict
to a particular amount of data to initiate the AL phase. However, one could adapt TL-
FmRADLs to embrace heuristics, for example, labelled data could consist of a factor relative
to the number of classes, or consist of a factor relative to the number of input features [39].

On the contrary, when there is a pool of AR models available (DS[·]), the AL phase of TL-
FmRADLs will aim to leverage the AR models over complementary AR models (D′Sk), where
D′S ∈ DS[·] and D′S 6= DSk. Note that D′Sk will consist of a complementary AR model to the
extent of sensing data in technology given by the function FD.getComplementaryModel(·) (8).
Having at least one complementary AR model within DS[·], the feedback selector (FS) will
sample the unlabelled data over function FS.getPortionData(·) and test all D′S by utilising
the function FS.setTrainingModel(·) to find the most suitable AR model to become a teacher.
The function FS.getValidationUponRuleSchema(·) will determine the best D′S by identi-
fying the DSk with the highest ratio of activities identified, as presented in Algorithm 7,
where X: unlabelled dataset, DS[·]: current model to be enforced, D′S: complementary
model, output: n-dimensional tensor consisting of a tandem of features and predicted
labels for X and DSk: most informative learner model.

The remaining of this Section presents some of the main dependencies contributing to
structure Algorithm 7, namely, (i) getComplementaryModel and (ii) getPortionData.

(i) getComplementaryModel.

Algorithm 8 shows FD.getComplementaryModel(·), which consists of a search to
retrieve a list of AR models built over different sensing technology than DS[·] but aims to
classify the same task.

(ii) getPortionData.

Function FS.getPortionData(·) consists of taking a random sample of data to test. As
described in Algorithm 9, this is a simple procedure that makes use of structured data that
is utilised to simplify this operation. Given a list of data (portion[·]), this function takes a
sample from X given a ratio O define at a-priori.
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Algorithm 7 AL phase as depicted along steps 7–9 from the general representation of
TL-FmRADLs’ architecture at Figure 1.

INPUT:
X = A pool of unlabelled instances.
DS[·] = A pool of trained AR models where {DS1, DS2, . . . , DSk}.
D′S = A complementary AR model different than DSk.
OUTPUT:
output = [data, labels].
DS = Most informative AR model (Teacher).

1: Assign to D′S the AR models collected in a similar domain as DSk but with different
sensing technology.

2: Retrieve a subset of unlabelled data from X over getPortionData(X).
3: for (k = 0; k <= len(DS [·]), k ++) do
4: Search for an existent AR model in DS[·] within the complementary set of models

D′Sk that relates to the unlabelled instances X.
5: Assign to D′SunseenActRate the error lost retrieved from setTrainingModel(DSk, X)

(Algorithm 3).
6: Assign to DSk the most informative learner model from D′S determined by

having the lowest error lost distance from unseenActRate (∑l
k=1

D′S
DSk

).
7: if getValidationUponRuleSchema(unseenActRate) is satisfied (Algorithm 2)
8: DSk is assigned as learner model.
9: outputDSk

= buildModel(DSk, X).
10: ends if
11: ends for
12: if no existing AR model within DS[·] satisfied the error lost threshold then
13: requestAnnotationFromOracle(X) (Algorithm 6).
14: else
15: output = buildModel(DS, [X, outputDSk

]).
16: return [DS, output]
17: ends if

Algorithm 8 Selection of complementary AR models in which technological characteristics
differ from those of a given model.

INPUT:
DS = A single AR model.
OUTPUT:
availableModels[·] = A pool of AR models aiming to solve the same task as DS[·].

1: availableModels[·] = nil.
2: function getComplementaryModels(DS)
3: Retrieve a list of AR models that consist of different sensing technology by

similar tasks as DS[·].
4: Assign to availableModels[·] the list of AR models previously retrieved.
5: return availableModels[·]
6: ends function
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Algorithm 9 Selection of a portion of incoming data to serve as a sample of unseen data to
test the accuracy of new AR models.

INPUT:
X = A pool of unlabelled instances.
O = Configurable scalar set a-priori.
OUTPUT:
portion = A sample of unlabelled instances randomly selected.

1: portion = nil
2: ratio = O
3: function getPortionData(X)
4: Randomly select a sample of X of which size is determined by ratio.
5: Assign to portion the sample of unlabelled data where portion ⊂ X.
6: return portion
7: ends function

Next, Algorithm 10 complements Figure 1 by summarising the nine detailed Algo-
rithms based in their execution order.

Algorithm 10 Organised list of the TL-FmRADL’s algorithms in order of execution as
introduced in Figure 1.

INPUT:
Step 1. Sensor devices gather data simultaneously.
OUTPUT:
Activity type

Phase 1. Data preparation
Step 2. Raw data are pre-processed.
Step 3. Data are fragmented in windows.

Phase 2. Transfer Learning
Step 4. Front-desk component looks for modules that match data acquisition
technology. —Algorithm 1, Algorithm 2, Algorithm 3
Step 5. Model is re-build utilising legacy data. —Algorithm 4, Algorithm 5

Phase 3. Active Learning
Step 6. Request label annotation to the user. —Algorithm 6
Step 7. Model is build. —Algorithm 7
Step 8. Search for complementary models. —Algorithm 7, Algorithm 8
Step 9. Data acquisition’s technology already has an HAR trained model
available. —Algorithm 7, Algorithm 9

4. Experiment Setup

To validate TL-FmRADLs this Section presents the development of two different
experiments where its main components, namely, T/L and AL, are separately so that one
can better appreciate how the learner model improved throughout TL-FmRADLs’ stages.

4.1. Teacher/Learner

The first experiment investigated the extent to which a teacher AR mode contributed
to a learner model. It used a dataset segmented in four semi-labelled subsets per subject,
where each subset corresponded to a variation relating to the amount of labelled data to be
transferred from the teacher to the learner models (Table 1). Such design criteria would
then allow measuring the impact on the classification performance achieved by the teacher
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model relative to the amount of labelled data available, where if the T/L concept were
feasible, one would expect an improvement of the AR model as more teaching is provided.

Table 1. Semi-labelled subset for validating the T/L technique, where the ratio value represents
the amount of data shared by the teacher to the learner model, where the ratios of data were
randomly allocated.

Alternative Ratio of Labelled Data Shared by the Teacher Model: Unshared Data

T/L100 100:0
T/L075 75:25
T/L050 50:50
T/L025 25:75

The first experiment building on the evaluation of the T/L approach consisted of
adopting one domain of technology as a teacher while the rest adopted the role of a learner.
In particular, the thermal image model was selected as a teacher, whereas the inertial and
audio models became the learners.

4.2. Active Learning

The second experiment was built on the evaluation for the AL approach and consisted
of progressively queuing an oracle (Learner model) to retrieve its sensing features. This
phase investigated the extent to which the feature fusion contributes to improving the
performance of learner models under the schema of AL. It is important to highlight that
this experiment built upon the previous learner model trained over the T/L phase. To
evaluate this experiment, four sub-datasets were created, concatenating data as a new
feature, as presented in Table 2.

Table 2. Sub-datasets where features from a complementary sensing domain are included as part of
the AL technique, where the ratios of data were randomly allocated.

Alternative Ratio of Data to Concatenated: Data Missing Concatenation

AL100 100:0
AL075 75:25
AL050 50:50
AL025 25:75

5. InSync Dataset

The evaluation used the InSync dataset, a dataset collected at the pervasive computing
lab at Ulster University, introduced for the first time upon this paper. It consists of subjects
performing ADLs in a simulated home environment while data are collected by three
different sensing technologies, namely, inertial, image, and audio.

InSync contains 12 h of data from ten subjects, consisting of 78 runs (times that a
subject performed the scripted protocol). Sensor data from three different technologies
(inertial, images, and audio) captured the performance of the subjects. All the activities
were annotated a posteriori using a video stream.

The data collection study was carefully designed to provide realistic data. To this
end, the study was conducted in an atmosphere that mimics a real-life environment.
Additionally, although the subjects were given a set of ADLs, they were encouraged to
perform the activities in a naturalistic way.

5.1. Activities of Daily Living

Considering that ADLs can be broken down into five categories: (i) Personal hygiene,
such as bathing, grooming, oral and hair care; (ii) Continence, as a person’s ability to make
use of the bathroom/toilet; (iii) Dressing, as a person’s ability to put on clothes; (iv) Feeding
themselves; and (v) Transferring, the ability to walk independently [40]. InSync was built
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from four out of these five categories. It excluded the categories of continence given the
privacy invasion that it will require to monitor it. The specific activities were:

• Personal hygiene: comb hair, brush teeth;
• Dressing: put joggers on and off;
• Feeding: drink water from a mug and use a spoon to eat cereal from a bowl;
• Transferring: walk.

5.2. Recording Scenario

InSync was collected within the facilities of the smart environment from the pervasive
computing labs at Ulster University, which mimics a daily life bedroom, bathroom, kitchen,
and living room setting.

The bedroom consisted of a 4 × 4 m space fitted with an single size bed (A), a small
stool (B), a toilet and large mirror (C) and a shower area at the right-up corner (not utilised
in this study), as depicted in Figure 2. The adjacent room shown in Figure 3, consisted of a
space free of obstacles which were considered as part of this study, so data from subjects
interacting with the doors and walking could be recorded.

As depicted in Figure 4, the kitchen consisted on a 4 × 3.5 m space fitted with a
(D) dinner table which includes a stool, (E) cabinets/cupboard, among other elements
not utilised in this study, such as an electric stove, one sink, one small microwave, and a
mini-fridge. The adjacent room consisted of a living room that included a free of obstacle
area with a (F) chair and two (G) bookshelves as depicted in Figure 5.

Figure 2. Sketch and photograph of the bedroom. The photograph was taken from position Z.

Figure 3. Sketch and photograph from the empty room mimicking a corridor. The photograph was taken from position Z.
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Figure 4. Sketch and photograph of the kitchen. The photograph was taken from position Z.

Figure 5. Sketch and photograph of the living conditioned with couches. The photograph was taken from position Z.

5.3. Scripted Protocol

The dataset aimed at recording the subject’s physical activity performance. The tasks
consisted of ADLs and well-known scenarios. Three general scenarios were chosen, a
bedroom-related scenario in which the subjects performed two of the ADLs, namely, per-
sonal hygiene and dressing [41–43], a breakfast-related scenario was chosen to embrace the
ADL of feeding as it has extensively been used in literature [44–46], and free of obstacle
scenario in which the subjects can walk alongside to demonstrate their transferring capa-
bilities [44,46]. The script was designed with nine high-level activities (napping, wearing
joggers, brushing teeth, combing hair, operating door, eating cereal, drinking, walking, and
standing) to which the subjects were encouraged to perform as naturally as possible (Note
that the activities were performed not simulated).

5.4. Technology

The dataset is collected from three different technologies: Wearable computing consist-
ing of sensors worn by the subjects, Smart-items consisting of sensors mounted on kitchen
appliances and grooming items, and environmental sensors consisting of microphones,
and thermal and binary sensors.

Overall, the deployed sensing technology included ten shimmer devices [47] enabled
with 3-axis accelerometers, four matrix voice ESP32 [48] consisting of eight embedded mi-



Appl. Sci. 2021, 11, 7660 15 of 28

crophones, four thermal vision sensors (TVSs) [49] and ten binary sensors, where the binary
sensors were exclusively used to support with the synchronisation of the sensing data.

5.4.1. Wearable Domain

This technological domain consisted of five shimmer sensors enabled with 3-axis
accelerometers working at a sample rate of 1.344 kHz (It should be noticed that the sample
rate consists of high speed intending to create a robust dataset, so further researchers can
experiment with it by down-sampling as needed). This device simulates the use of daily
life smart gadgets and garments, such as smartwatches [50], clothing [51], and shoes [52].
To capture a broader set of movements as possible, the subject’s wore one sensor on each
wrist, one at the lower back, one at the upper back and one on the right shoe, as depicted
in Figure 6.

Figure 6. On-body sensors utilised for the activity recognition.

Worn sensors were placed where gadgets are commonly located, such as smartwatches
(Figure 7g) worn on the wrist, smart shoes (Figure 7h) mounted on feet and garments
(Figure 7f), such as belts along the hips.

Figure 7. Sensor devices mounted on daily-life items. They are attached relying on the pressure force of elastic material
from homemade straps. Items consisted of (a) comb, (b) toothbrush, (c) glass, (d) spoon, (e) joggers, (f) belt, (g) strap to
mimic a watch, and (h) strap to mimic smart shoes.

5.4.2. Smart-Items Domain

To capture the subject’s performance while executing ADLs, the dataset utilised five
shimmer sensors mounted on everyday items, such as a hairbrush and toothbrush for
grooming (Figure 7a,b), a cup and spoon for feeding (Figure 7c,d), and joggers to be worn
along the hips (Figure 7e). Each smart-item has a binary sensor attached to keep track of
the time when they were picked by the subjects.

5.4.3. Environmental Domain

This technological domain consisted of four TVS and four matrix voice ESP32 devices
allocated in places nearby where the activities were being performed from each of the
laboratory’s rooms as shown in Figures 8 and 9. The TVS were strategical positioned in a
way to capture the subject movements when performing the ADLs, such as the bathroom
mirror where the subject would comb their hair, close to doors to capture the arm action of
opening, and next to the dinner table where the subject would eat cereal and at a position
where one could appreciate the subject transporting.
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The TVS (Figure 10a) were enabled with real-time processing, which captured its
frames using from the thermal lenses installed at strategical places in the different smart-
rooms of the lab. The vision-based image processing captured every single thermal frame
obtained from the TVS and applies a binary threshold which lowers the noise within the
threshold. The matrix voice ESP32 were enabled with the eight embedded microphones to
capture the acoustic yielded from the subject performing ADL (Figure 10b).

Binary sensors were mounted on each of the rooms’ door and kitchen cupboard
(Figure 10c) to keep track of the time when they were being operated by the subjects.

Figure 8. Sketches of the bedroom and the empty room that mimics a corridor for a free walk.

Figure 9. Sketches of the kitchen and the the living room conditioned with couches.

Figure 10. (a) TVS device, (b) matrix voice ESP32 (left), and location of embedded microphone (right) and (c) a cupboard
depicting a binary sensor.
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5.5. Annotations

To facilitate the activity annotation, video recording was taken for the duration of
data collection. The annotations consisted of nine high-level activities, namely, napping,
wearing joggers, brushing teeth, combing hair, operating door, eating cereal, drinking,
walking, and standing.

5.6. Subjects

Data were collected with the voluntary support of ten faculty-student and staff mem-
bers from the School of Computing at Ulster University. The age range was of 25 to 33 years
old (x: 26.1, σ: 5.7 years). Subjects self-certified their health and signed an ethical con-
sent letter beforehand. Data collection granted according to ethical governance from
Ulster University.

5.7. Data Collection and Preparation

Subjects were instructed to perform as many repetitions or runs of the scripted protocol
(Section 5.3) as possible. Overall, 62 runs were performed by the subjects; however, due
to logistic difficulties (One TVS was not turned one due to neglect of the researcher), and
technical complications consisting of malfunctions (One computer automatically turned
off a couple of times when the processor overheated, one matrix voice ESP32 froze once
unexpectedly) in the computers utilised to support with the capture of data and lost of
connectivity to sensors (No data were captured from a thermal sensor as the Ethernet cable
unplugged), five runs were excluded, as detailed in Table 3.

Table 3. Relationship for the runs performed by each subject.

Subject Performed Runs Excluded Runs Total

S01 8 2 6
S02 8 0 8
S03 4 0 4
S04 7 0 7
S05 6 1 5
S06 5 0 5
S07 6 0 6
S08 6 1 5
S09 6 0 6
S10 6 1 5

Total 62 5 57

Overall, it was identified that 0.5% of the raw inertial data was missing due to connec-
tivity issues. Hence, to compensate such missed data, new data were imputed based on the
mean value corresponding to the last second (i.e., 1344 data points) of the inertial data [53].

To mimic the sensing capabilities of commercial smart-items [54,55], the inertial data
were down-sampled to 100 Hz [56]. To keep consistency of the time across the different
sensing technology, all data were synchronised accordingly to the clock from the binary
sensors (as it was observed to be more stable compared to the other sensors’ technology).
Data segmentation was then performed by first defining time t as a starting point (t = 0)
over the synchronised data. Then data were segmented into windows of two seconds with
a step of one-second as proven effective by different researchers [57,58]. The dataset was
pre-processed using Matlab 2018b.

6. Machine-Learning Modelling

Two critical characteristics of TL-FmADLs are the capability to transfer knowledge
across sensing technology, and the improvement of AR models derived from AL techniques.
To this extent, we built three AR models, each trained under one sensing technology, i.e.,
AR inertial model, AR images model, and AR audio model.
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Note that, for the three models, cross-entropy loss function was used to measure
the error between the prediction and the true values. Adam [59], which is a stochastic
optimisation algorithm, was selected as the optimiser, as it has shown to be effective in
resolving classification problems [60–63].

(i) AR Inertial model.

Consisting of the sensing devices worn by the subject and embedded into smart-items,
the feature-space embodies the root mean square (RMS) and the mean of each of the three
axes from both acceleration and gyroscope data.

This machine-learning model conceived a one-dimensional DNN with a learning rate
of 0.001. Its first layer received a tensor of six features per smart-item; hence 60 features in
total. It then structured three hidden layers assembled over the rectified linear unit (ReLU)
and an output layer consisting of the softmax activation function (as it proved effective in
the results in training DNN models [21,64,65]).

(ii) AR Images model.

Consisting of the images captured by the TVS device, the feature-space embodies the
thermal images in grey-scale rather than RGB images to reduce the computational cost [66],
where features were extracted over a fully connected CNN for 32 × 32 pixel images.

This machine-learning model conceived a three-dimensional CNN with a learning
rate of 0.0001. Its first layer received a tensor of 32 × 32 × 3 (width, height, depth). It then
structured three hidden layers, assembled over max-pool and normalised convolutional
layer, followed by three layers under ReLU activation function.

(iii) AR Audio model.

Consisting of the acoustic data captured by the matrix voice ESP32, the feature-space
embodies eight elements: energy entropy, short-time energy, spectral roll-off, spectral
centroid, spectral flux, zero-crossing rate, relative spectral transform, and Mel-frequency
spectral coefficients.

This machine-learning model conceived a one-dimensional DNN with a learning
rate of 0.001. Its first layer received a tensor of eight features. It then structured three
hidden layers, assembled over the ReLU, and an output layer consisting of the softmax
activation function. The DNN models were created utilising machine-learning libraries
such as TensorFlow and Keras.

It is important to highlight that AR systems are typically evaluated for their ability to
generalise their AR models’ capabilities after being trained. In this regard, a commonly
investigated problem is the representation of AR models to generalise across subjects, which
bring different challenges derived from the dependency on subjects’ performance, i.e.,
population-based versus personal-based training [67]. Hence, in the interest of investigating
the transfer learning capabilities across sensor, the AR models focused on personal-based
training by evaluating the impact of TL-FmADLs per subject.

The performance was evaluated under 10-fold cross-validation [68]. The initiation
weight was randomly allocated and mini-batches with shuffling adopted as a strategy to
counterbalance the problem of non-convexity [68].

7. Results

Due to the random initiation of the DNN, the classification models were susceptible
to fall within the problem of non-convexity; where the models could fall within the local
minimum. To counteract this phenomenon, the AR models iterated ten times.

7.1. Baseline

To evaluate the contribution of the T/L and AL techniques, results were compared
against a baseline acquired by evaluating the performance of the three AR models, namely,
AR inertial model, AR image model, and AR audio model.



Appl. Sci. 2021, 11, 7660 19 of 28

Table 4 presents the results for the baseline classification accuracy of the Inertial
model. The average performance for the classification accuracy was 91.0% with a minimum
accuracy of 86.8% for S09 and maximum accuracy of 96.2% for S02.

Table 4. Average classification accuracy (expressed in percentage) for the inertial model trained
to classify the performance of the AR models of the ten subjects that participated within the data
collections of InSync dataset.

Subject Average Standard Deviation

S01 95.2 0.8
S02 96.2 2.0
S03 91.7 3.4
S04 90.2 2.2
S05 88.8 2.9
S06 92.9 1.5
S07 89.9 1.9
S08 90.6 1.2
S09 86.8 2.0
S10 87.5 2.1

Table 5 presents the results for the baseline classification accuracy of the audio model.
The average performance for the classification accuracy was 68.5% with a minimum
accuracy of 57.0% for S04 and maximum accuracy of 78.9% for S01.

Table 5. Average classification accuracy (expressed in percentage) for the audio model trained to
classify the performance of the AR models of the ten subjects that participated within the data
collections of InSync dataset.

Subject Average Standard Deviation

S01 78.9 0.6
S02 76.7 2.5
S03 62.7 0.7
S04 57.0 7.4
S05 71.3 0.4
S06 70.1 0.6
S07 62.8 5.6
S08 67.2 0.4
S09 69.0 4.0
S10 69.0 0.5

Table 6 presents the results for the baseline classification accuracy of the Images
model. The average performance for the classification accuracy was 95.3% with a minimum
accuracy of 90.9% for S09 and maximum accuracy of 99.0% for S01 and S03.

Table 6. Average classification accuracy (expressed in percentage) for the image model trained
to classify the performance of the AR models of the ten subjects that participated within the data
collections of the InSync dataset.

Subject Average Standard Deviation

S01 99.0 0.9
S02 98.9 0.4
S03 99.0 0.6
S04 95.4 0.7
S05 92.5 0.6
S06 97.9 0.5
S07 94.4 1.0
S08 93.5 0.8
S09 91.4 0.5
S10 90.9 1.1
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7.2. Teacher/Learner

As introduced early, to evaluate the performance of the T/L approach a teacher and
a learner model were defined. Derived from the baseline performance achieved by the
AR Image model which reached an average classification accuracy of 95.3%; represent-
ing a difference of 4.3% and 26.8% compared to the inertial-learner model and audio-
learner, respectively. The AR image model was defined as the teacher model underlined in
this evaluation.

Hence, to evaluate the performance of the Learner models, two experiments were
undertaken. Firstly, one experiment where the AR inertial model played the role as a
learner, followed by the second experiment, in which the AR audio model played the role
as learner.

Results from the first experiment consisting of training the inertial-learner model over
the teacher’s are presented in Table 7. The table shows the outcome from four sub-datasets
T/L100, T/L075, T/L050, and T/L025, which represents the amount of labelled data shared
by the learner model (i.e., 100%, 75%, 50%, and 25%), as rationalised in Section 4.1.

The table contrasts the baseline against the performance from the T/L classification
accuracy when the AR inertial model adopted the role as a learner. As it can be observed,
the highest performance was reached when training under the alternative T/L075 (93.4%),
with a difference of 2.5% compared to the baseline (91.0%).

Table 7. Relationship to compare the performance of the inertial-learner average classification
(expressed in percentage) model trained over the T/L approach in contrast to the baseline.

Subjects Inertial-Learner Baseline T/L100 T/L075 T/L050 T/L025

S01 95.2 95.9 95.9 95.4 95.5
S02 96.2 99.1 99.0 99.0 99.0
S03 91.7 93.2 93.2 93.1 92.9
S04 90.2 91.4 92.2 92.2 92.3
S05 88.8 84.6 91.6 89.4 86.1
S06 92.9 93.5 94.7 94.6 95.0
S07 89.9 88.7 92.8 92.8 92.3
S08 90.6 92.8 92.1 92.5 92.8
S09 86.8 89.0 91.7 91.8 91.5
S10 87.5 83.8 90.2 89.5 86.2

Average 91.0 91.2 93.4 93.0 92.3

Results from the second experiment consisting of training the audio-learner model
over the teacher’s are presented in Table 8. As it can be observed, in this experiment the
highest performance was reached when training under the alternative T/L075 (72.4%),
with a difference of 3.7% compared to the baseline (68.5%).

Table 8. Relationship to compare the performance of the audio-learner average classification (ex-
pressed in percentage) model trained over the T/L approach in contrast to the baseline.

Subjects Audio-Learner Baseline T/L100 T/L075 T/L050 T/L025

S01 78.9 78.9 79.0 78.6 79.3
S02 76.7 77.0 77.8 77.6 77.7
S03 62.7 65.2 65.7 65.6 65.8
S04 57.0 68.5 68.9 68.7 68.6
S05 71.3 67.7 73.0 70.1 68.3
S06 70.1 70.8 71.8 70.7 70.7
S07 62.8 71.3 73.3 72.8 72.0
S08 67.2 68.0 68.9 67.8 68.0
S09 69.0 71.0 72.9 73.0 72.3
S10 69.0 65.3 70.9 70.1 68.3

Average 68.5 70.4 72.2 71.5 71.1
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7.3. Active Learning

As introduced earlier, to evaluate the performance of the AL approach. Derived from
the baseline performance achieved by the AR Image model which reached an average
classification accuracy of 95.3%; representing a difference of 4.3% and 26.8% compared to
the inertial-learner model and audio-learner model, respectively. The AR image model was
defined as the teacher model underlined in this evaluation.

Hence, to evaluate the performance of the Learner models, two experiments were
undertaken. Firstly, one experiment where the AR inertial model played the role as a
learner, followed by the second experiment, in which the AR audio model played the role
as learner.

The evaluation consisted of progressively queuing the learner model to retrieve its
sensing features to fuse with the learner model. To illustrate the benefit of this mechanism,
the study defined four sub-dataset of data split into segments of 25% each. In this context,
the baseline results were compared against the performance of the classification model
when utilising 100%, 75%, 50%, and 25% of labelled data retrieved from the oracle, as
rationalised in Section 4.2.

Results from the AL approach are shown in Table 9. The table contrasts the baseline
against the performance from the AL classification accuracy when the inertial model adopts
the role as a learner model and it is trained under the schema of AL. The overall difference
as presented under the row ‘Average’, shows the best performance when 100% of the
learner model labels are used, consisting of 96.1%.

Table 9. Relationship to compare the performance of the Inertial average classification (expressed in
percentage) model in contrast to the baseline and the four different alternatives over the AL approach.

Subjects Inertial-Learner Baseline AL100 AL075 AL050 AL025

S01 95.2 97.2 97.0 93.1 91.0
S02 96.2 97.0 98.6 98.5 96.3
S03 91.7 97.2 93.4 92.8 91.6
S04 90.2 98.6 96.7 94.3 91.1
S05 88.8 96.6 92.6 89.3 88.6
S06 92.9 98.4 97.0 95.0 93.7
S07 89.9 93.2 92.6 91.7 90.8
S08 90.6 92.0 91.5 90.1 88.8
S09 86.8 96.1 95.6 89.3 86.7
S10 87.5 94.4 94.8 90.8 88.9

Average 91.0 96.1 95.0 92.5 90.8

Similarly, Table 10 contrasts the baseline against the performance from the AL classifi-
cation accuracy when the audio model adopts the role as a learner and gradually queried
the oracle. The average difference is presented in the row ‘Average’, which shows the best
performance when the learner model queried 100% of the labels provided by the learner
model, consisting of 94%.

The following tables compare the baselines from both learner models (inertial-learner
and audio-learner), teacher model (image-teacher) against the performance achieved by the
learner models when completing the proposed method training (column ‘Fusion stage’).
Specifically, Table 11 shows the performance when the inertial-learner model completed
the TL-FmRADLs process, and Table 12 shows the performance when the audio-learner
model completed the TL-FmRADLs process.

Results of this study showed the benefit of utilising TL-FmRADLs, which relies upon
feature fusion and T/L techniques to increase the performance of the classification accuracy
underlined by an AL to enable an automatic approach.
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Table 10. Relationship to compare the performance of the audio average classification (expressed in
percentage) model in contrast to the baseline and the four different alternatives over the AL approach.

Subjects Audio-Learner Baseline AL100 AL075 AL050 AL025

S01 78.9 95.2 87.6 80.7 74.3
S02 76.7 93.5 88.1 79.2 75.5
S03 62.7 94.6 86.1 77.7 72.0
S04 57.0 96.5 86.8 79.5 73.7
S05 71.3 95.5 87.1 80.5 73.8
S06 70.1 96.4 89.2 81.2 73.5
S07 62.8 93.4 86.1 78.8 75.5
S08 67.2 89.2 84.2 77.8 70.7
S09 69.0 93.0 87.4 79.8 73.2
S10 69.0 93.1 87.9 79.9 71.5

Average 68.5 94.0 87.0 79.5 73.4

Table 11. Comparison of the average classification accuracy (expressed in percentage) of the perfor-
mance achieved when the Inertial-Learner model is trained over TL-FmRADLs against the baseline
performance of the image-teacher model.

Subjects Inertial-Learner Image-Teacher Inertial-Learner (Fusion Stage)

S01 95.2 99.0 97.2
S02 96.2 98.9 97.0
S03 91.7 99.0 97.2
S04 90.2 95.4 98.6
S05 88.8 92.5 96.6
S06 92.9 97.9 98.4
S07 89.9 94.4 93.2
S08 90.6 93.5 92.0
S09 86.8 91.4 96.1
S10 87.5 90.9 94.4

Average 91.0 95.3 96.1

Table 12. Comparison of the average classification accuracy (expressed in percentage) of the perfor-
mance achieved when the audio-learner model is trained over TL-FmRADLs against the baseline
performance of the image-teacher model.

Subjects Audio-Learner Image-Teacher Audio-Learner (Fusion Stage)

S01 78.9 99.0 95.2
S02 76.7 98.9 93.5
S03 62.7 99.0 94.6
S04 57.0 95.4 96.5
S05 71.3 92.5 95.5
S06 70.1 97.9 96.4
S07 62.8 94.4 93.4
S08 67.2 93.5 89.2
S09 69.0 91.4 93.0
S10 69.0 90.9 93.1

Average 68.5 95.3 94.0

7.4. Comparison

To allow a better comparison of TL-FmRADLs performance against state-of-the-art
research in AR, this Section compares four different studies presenting different approaches
to transfer knowledge across sensors.
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• Radu and Henne [69] presented a method to transfer knowledge where the teacher
consisted of mainstream sensing (video) to provide labelled data to the inertial sensors
embracing the role as learners;

• Rey et al. [70] proposed a method that works by extracting 2D poses from video
frames and then used a regression model to map them to inertial sensors signal;

• Hu and Yang [22] presented a paper in which they used Web knowledge as a bridge
to help link the different label spaces between two smart environments. Their method
consisted of an unsupervised approach where features were clustered based in their
distribution; hence, even though the feature’s space were different, their distribution
distance helped to build an association to transfer knowledge.

• Xing et al. [71] presented two methods (PureTransfer and Transfer+LimitedTrain)
for transferring knowledge. For the purposes of this state-of-the-art comparison,
only the method reporting highest performance was taken into account (i.e., Trans-
fer+LimitedTrain). Transfer+LimitedTrain method consisted of a DNN which added
higher layers to the new targeted model, where only the higher layer is retrained.

Notice that, since the algorithms described in the aforementioned research have differ-
ent settings compared to those adopted in this evaluation, we cannot use their algorithms
to compare their performance when training over InSync. Hence, the comparison should
be made based upon the improvement (i.e., baseline 6= accuracy achieved).

The different studies mentioned above are enlisted in Table 13, where different sensing
technology has been used. The ‘Baseline’ column represents the accuracy performance
achieved by the machine-learning models before implementing the transfer learning ap-
proach proposed within the different researches. The performance achieved is presented
under the column ‘Achieved’, where the comparison difference is presented under the
column ‘Improvement’.

Results of this comparison show TL-FmRADLs outperforming the other approaches
with reporting a 25.5% improvement when transferring knowledge between image and
audio sensors. It should be noticed that while transferring knowledge from image to inertial
sensors only reached 5.1%, its classification performance is one of the highest compared to
the other method’s rising to 96.1%; just followed by Radu and Henne’s method.

Table 13. Comparison of TL-FmRADLs’ performance against state-of-the-art approaches, where CPP stands for contact
movement, passive infrared, pressure, and CIA stands for contact movement, image, audio.

Research Method Teacher Learner Baseline Achieved Improvement

Radu and Henne [69] Image Inertial 95.4 97.1 1.7
Rey et al. [70] Image Inertial 85.0 90.0 5.0

Hu and Yang [22] CPP CIA 47.3 59.8 12.5
Hu and Yang [22] CIA CPP 42.8 61.2 18.4

Xing et al. [71] Inertial Image 72.3 75.1 2.9
Xing et al. [71] Inertial Audio 84.3 87.8 3.5
Xing et al. [71] Image Audio 84.1 90.4 6.2
Xing et al. [71] Image Inertial 70.7 94.4 23.6
TL-FmRADLs Image Inertial 91.0 96.1 5.1
TL-FmRADLs Image Audio 68.5 94.0 25.5

8. Discussion

This paper presented and evaluated TL-FmRADLs; a transfer learning framework for
recognising activities of daily living across sensing technology. Three different AR models
were designed defined by its sensing data as the AR image model, AR inertial model and
AR audio model. Derived from the baseline experiment conducted, the AR image model
was empirically determined as the teacher model, whereas the AR inertial and AR audio
models adopted the role as learner.

Two experiments were presented, one showcasing the benefit of each of the main
components implemented in TL-FmRADLs. Regarding the T/L phase, results showed
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that the highest average improvement in accuracy of 93.4% and 72.2% when training the
inertial-learner model and the audio-learner model, respectively. It was observed that there
was a fluctuation on the accuracy achieved when increasing the amount of training data
from the alternative T/L075 to T/L100 (as shown in Tables 7 and 8). Results suggested
that transferring 100% of knowledge from the image-teacher model to the learners models
(inertial and audio) trained the DNN models’ process to the extent of overfitting the model.
In this regard, the performance diminished the classification accuracy of the objective AR
subject’s model. Nevertheless, this finding can represent a positive finding, since one can
assume that the performance of the AR model benefited from this method over a small
portion of fusion labelled data, thereby implying a reduced computational cost.

As for the second experiment, the AL technique contributed by fusing features from
a complementary sensing technology. Results showed the highest classification accuracy
when converging the Image-teacher model and inertial-learner model, which reached
96.1%, representing an increase of 2.7% compared to the achievement under the T/L phase
(93.4%). However, the highest gain was reflected when converging the image-teacher model
and audio-learner model as shown by its classification accuracy, which increased from
72.2% (achieved at the T/L phase) to 94% (achieved at the AL phase), thereby reflecting
an improvement of 21.8%. In general, one can rationalise that the learner model benefits
from the teacher’s knowledge over converging T/L and AL techniques since the Learner
models showed important improvements in both the experiment.

Finally, TL-FmRADLs was compared against five different methods reported in the
literature. Such a comparison showed a more significant improvement for the learner
model when transferring knowledge from an image-based model to an audio-based model
with an improvement rising to 25.5%. It also showed improvement in models that had
already achieved high performance in their baseline. In particular, the first experiment
showed that when transferring knowledge from an image-based sensor to an inertial-
sensor, the performance increased from 91% to 96.1% (an improvement of 5.1%), which,
when compared to the other methods, was one of the highest performances achieved just
after Radu and Henne.

9. Challenges and Research Directions

As presented in this paper, transfer learning, if carried out successfully, can sig-
nificantly improve the performance of AR data-driven modelling. In this Section, we
summarise and discuss the challenges faced and the potential research opportunities and
future directions of this investigation.

TL-FmADLs was introduced as a transfer learning framework to automate machine-
learning modelling. Although TL-FmADL was evaluated utilising InSync, one should note
that the data collection was conducted in a simulated home environment over a scripted
set of ADLs. To this end, TL-FmADL can develop further through an evaluation using data
collected under natural conditions and an extended number of subjects, where subjects
would perform their ADLs without guidelines, and the larger number of subjects could
allow us to generalise the results better. This activity can address two issues. First, it could
evaluate the classification capabilities of unpredicted human behaviour. Second, it could
assess the latency and response time for the computation component, which could impact
the performance of the modelling process.

Moreover, one can observe that the FrontDesk component seeks compatible machine-
learning models to refer to as teachers. Although current experimentation was conducted
utilising annotations to categorise each machine-learning model, a more robust approach
can be planned. In particular, one can envision the formatting style proposed for the open
data initiative (ODI) to represent data obtained from sensors [72]. ODI is an ontological
model that includes a common protocol for data collection, a common format for data
exchange, a data repository, and related tools to underpin research within the domain of
activity recognition. ODI utilises the extensible event stream (XES) standard for event
data storage [73] and an ontological model for the description of experimental metadata,
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which has been designed to address issues surrounding the management, storage, and
exchange of sensing data [74]. In this regard, one can anticipate the availability of contextual
information to characterise the environment in which the ADL is taking place, to optimise
the framework’s searching processes.

10. Concluding Remarks

This paper’s contribution comprised two elements. First, it detailed the evaluation of
TL-FmRADLs: a transfer learning framework for recognising activities of daily living across
sensing technology. Second, it introduces InSync: a dataset comprising sensing data from
three different sensing technologies, namely, audio, thermal images, and inertial data, as
ten subjects performing ADLs in a scripted fashion under a simulated home environment.

TL-FmRADLs proposes a mechanism for mitigating the insufficiency of labelled data
across sensing technologies by leveraging the performance of learner models using feature
fusion as a strategy and enabling the automatisation for self-training over the AL technique.
The evaluation comprised two experiments: one showcasing the benefit of the T/L phase
and another focusing on the AL phase.

As for the first contribution, the TL-FmRADLs was compared against five other
methods reported within the literature, where it showed promising results. The proposed
framework exhibits promising applications in scenarios where adaptation is important
due to the uncertainty of new data, as occurs in modelling problems for ADLs. The
second contribution consisting of a dataset, namely InSync, will be available to the research
community upon the publication of this paper as specified within the data availability
statement presented next.

It is important to consider that the run-time classification complexity of combining
the T/L and AL phases was not evaluated; however, considering the processor capability
of modern mobile devices, it was hypothesised that the implementation is suitable for
real-time recognition in mobile platforms. Nevertheless, due to the topic’s importance, it
can be relevant to investigate real-time performance in realistic scenarios, which is a study
that may be undertaken as part of further work.
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