
applied  
sciences

Article

Biomechanical Analysis of Posterior Ligaments of Cervical
Spine and Laminoplasty

Norihiro Nishida 1 , Muzammil Mumtaz 2, Sudharshan Tripathi 2, Amey Kelkar 2, Takashi Sakai 1

and Vijay K. Goel 2,*

����������
�������

Citation: Nishida, N.; Mumtaz, M.;

Tripathi, S.; Kelkar, A.; Sakai, T.; Goel,

V.K. Biomechanical Analysis of

Posterior Ligaments of Cervical Spine

and Laminoplasty. Appl. Sci. 2021, 11,

7645. https://doi.org/10.3390/

app11167645

Academic Editor: Mark King

Received: 21 July 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine,
1-1-1 Minami-Kogushi, Ube, Yamaguchi Prefecture 755-8505, Japan; nishida3@yamaguchi-u.ac.jp (N.N.);
cozy@yamaguchi-u.ac.jp (T.S.)

2 Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering
and Orthopaedics, The University of Toledo, Toledo, OH 43606, USA;
Muzammil.Mumtaz@rockets.utoledo.edu (M.M.); Sudharshan.Tripathi@rockets.utoledo.edu (S.T.);
Amey.Kelkar@rockets.utoledo.edu (A.K.)

* Correspondence: Vijay.Goel@utoledo.edu; Tel.: +1-(419)-530-8035

Abstract: Cervical laminoplasty is a valuable procedure for myelopathy but it is associated with
complications such as increased kyphosis. The effect of ligament damage during cervical lamino-
plasty on biomechanics is not well understood. We developed the C2–C7 cervical spine finite
element model and simulated C3–C6 double-door laminoplasty. Three models were created (a) in-
tact, (b) laminoplasty-pre (model assuming that the ligamentum flavum (LF) between C3–C6 was
preserved during surgery), and (c) laminoplasty-res (model assuming that the LF between C3–C6
was resected during surgery). The models were subjected to physiological loading, and the range
of motion (ROM), intervertebral nucleus stress, and facet contact forces were analyzed under flex-
ion/extension, lateral bending, and axial rotation. The maximum change in ROM was observed
under flexion motion. Under flexion, ROM in the laminoplasty-pre model increased by 100.2%,
111.8%, and 98.6% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The
ROM in laminoplasty-res further increased by 105.2%, 116.8%, and 101.8% compared to the intact
model at C3–C4, C4–C5, and C5–C6, respectively. The maximum stress in the annulus/nucleus was
observed under left bending at the C4–C5 segment where an increase of 139.5% and 229.6% compared
to the intact model was observed for laminoplasty-pre and laminoplasty-res model, respectively. The
highest facet contact forces were observed at C4–C5 under axial rotation, where an increase of 500.7%
and 500.7% was observed compared to the intact model for laminoplasty-pre and laminoplasty-res,
respectively. The posterior ligaments of the cervical spine play a vital role in restoring/stabilizing the
cervical spine. When laminoplasty is performed, the surgeon needs to be careful not to injure the
posterior soft tissue, including ligaments such as LF.

Keywords: laminoplasty; finite element method; ligamentum flavum

1. Introduction

Cervical laminoplasty is a decompression procedure of the lamina for asymptomatic
patients of cervical spondylotic myelopathy (CSM), cervical disc herniation (CDH), and
cervical ossification of the posterior longitudinal ligament (C-OPLL) [1–4]. The primary
purpose of laminoplasty is to decompress the cervical spinal cord by widening the spinal
canal, preserving the posterior anatomical structures as much as possible, and preserving
the widened space stability [1]. It is a technique with excellent clinical and mechanical
results [1,5,6]. Laminoplasty is divided into two types based on osteotomy: (1) Double-
door laminoplasty and (2) open-door laminoplasty [1]. In double-door laminoplasty, the
osteotomy is performed at the central lamina. In open-door laminoplasty, the osteotomy
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is performed at one side of the lamina. Both techniques are associated with reasonable
clinical outcomes [7].

However, some authors have reported increased kyphosis and axial pain postopera-
tively [8–10] due to the damage to the posterior cervical muscles and ligaments during the
surgical procedure [8–11]. Concerning these papers, few reports have examined the extent
of biomechanical changes when laminoplasty with/without LF is performed on the cervical
spine [12–14]. The LF was reported to restrain flexion equally in a porcine model [15]. In the
biomechanical study, none of the studies reported the effect of preserving/resecting the LF.
In a clinical study, Duetzmann reported postoperative axial pain as prevalent in up to 30%
of the patients by injured LF [11]. The development of techniques to preserve the posterior
ligaments has been reported [16–19]. We hypothesize that when laminoplasty is conducted
on the cervical spine model, the range of motion (ROM) and stress concentrations on the
cervical spine may change with/without the LF, and the importance of posterior ligament
for restoring/stabilizing the cervical spine will become evident.

For this purpose, the C2–C7 three-dimension (3D) finite element (FE) model of the
cervical spine was developed using CT scans of a healthy subject. The 3D FE model of the
cervical spine was validated for ROM, intervertebral nucleus stress, and facet contact forces
by comparing data with in vitro experiments. Later, the validated model was modified to
simulate laminoplasty with and without LF.

2. Material and Methods
2.1. Model Development

A 3D FE model of the cervical spine (C2–C7) was created based on the computed
tomography (CT) of a 22-year-old healthy adult subject. The ethics committee approved
the use of these images at the Center for Clinical Research of the corresponding author’s
hospital, and written informed consent was obtained. The geometry of the vertebrae was
reconstructed using the CT scans which were used for reconstructing the geometry of
intervertebral discs. The 3D reconstruction of cervical spine geometry from CT scans was
carried out using the image segmentation software MIMICS 15. 0 (Materialise, Leuven,
Belgium). The reconstructed geometry of hard and soft tissues was meshed with the
hexahedral elements using the IA-FE MESH software (Iowa, United States). The meshed
vertebrae/discs were exported to the ABAQUS software 6. 14 (Dassault Systèmes, Simulia
Inc., Providence, RI, USA) to assemble the C2–C7 cervical spine. The following ligaments
were added to the model, anterior longitudinal ligament (ALL), posterior longitudinal
ligament (PLL), interspinous ligament (ISL), supraspinous ligament (SSL), capsular lig-
ament (CL), and LF using connector elements in ABAQUS. The outer 0.5 mm layer of
the vertebrae represented a cortical shell, and the inside represented a cancellous bone.
The intervertebral discs were composed of annulus fibrosus (50%) and nucleus pulposus
(50%). The annulus consisted of a ground substance along with embedded fibers oriented
at ±25◦ [20]. The facet joints in the model were represented using the surface-surface
sliding contact, whereas the Lushka’s joints in the lower cervical intervertebral discs were
modeled using GAPUNI elements [21]. The material properties for all the structures in the
FE model were taken from the literature summarized in Table 1 [22,23].

Figure 1 represents the intact model having 213,165 elements and 173,215 nodes.
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Table 1. Material properties assigned to the finite element model [21–25].

Component Material Properties Constitute Relation Element Type Area (mm2)

Bone [25]

Vertebral cortical bone
E = 10,000 MPa Isotropic, Elastic C3D8 -

v = 0.3

Vertebral cancellous bone
E = 450 MPa Isotropic, Elastic C3D8 -

v = 0.25

Vertebrae-Posterior
E = 3500 MPa Isotropic, Elastic C3D10 -

v = 0.25

Artificial bone
E = 10,000 MPa Isotropic, Elastic C3D8 -

v = 0.3

Intervertebral Disc [24]

Ground substance of
annulus fibrosis

C10 = 0.7 Hyper-elastic, Mooney-Rivlin C3D8 -
C01 = 0.2

Nucleus pulposus
C10 = 0.12 Incompressible Hyper-elastic,

Mooney-Rivlin C3D8 -C01 = 0.03
D1 = 0

Ligaments [23]

Anterior Longitudinal
Ligament

15.0 (<12%), 30.0 (>12%) Non-linear, Hypo-elastic T3D2 6.1v = 0.3

Posterior Longitudinal
Ligament

10.0 (<12%), 20.0 (>12%) Non-linear, Hypo-elastic T3D3 5.4v = 0.3

Capsular Ligament 7.0 (<30%), 30 (>12%) Non-linear, Hypo-elastic T3D4 46.6v = 0.3

Ligamentum Flavum 5.0 (<25%), 10.0 (>25%) Non-linear, Hypo-elastic T3D5 50.1v = 0.3

Interspinous Ligament 4.0 (20–40%), 8.0 (>40%) Non-linear, Hypo-elastic T3D6 13.1v = 0.3

Facet Joints [21]

Apophyseal Joints Non-linear
Soft contact,

GAPPUNI elements
- - -
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2.2. Model Validation

The intact C2–C7 model was validated using the in vitro loading protocol documented
by Finn et al. [25]. A pure moment of 1.5 Nm was applied to the odontoid process of the
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C2 vertebra in flexion/extension, lateral bendings, and axial rotations [25]. Furthermore,
the caudal endplate of the C7 vertebra was fixed by suppressing all six degrees of freedom.
The effects of muscular contractions and the weight of the skull were replicated using the
follower load method by applying a connector force of 100 N. The ROM, intervertebral
nucleus stress, and facet contact forces were computed for each level in flexion/extension,
lateral bendings, and axial rotations and were compared with the published in vitro data in
the literature by Finn et al. [25], Pospiech et al. [24], Kretzer et al. [26], and Patel et al. [27].

2.3. Cervical Laminoplasty

Clinically, both laminoplasty (double-door and open-door) methods have shown
similar results [7]. However, authors practice double-door laminoplasty clinically, thus they
opted to simulate it. Double-door laminoplasty was simulated by performing osteotomy at
the central spinous process and lamina. First, the ISL and SS were resected. Afterwards, the
spinous process was partially resected, about 4 mm of bone from the center of the lamina
was cut, the medial side of both the facet joints was shaved so that the lamina could be
opened. The LF of C2–C3 and C6–C7 was resected since these interfered with the opening
of the lamina. However, the LF of C3–C6 segment was preserved. The lamina was opened
to the right and left sides. Moreover, it widened the narrow canal and decompressed the
spinal cord region posteriorly.

The artificial bone with 4 mm height and 8 mm depth was then placed to fit the
opened lamina (Figure 2). The material properties of the artificial bone were the same as
the cortical bone. The artificial bone was connected to the lamina using the “TIE” constraint
in Abaqus software.
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from C3–C6.

This model, in which the LF of C3-C6 segment was preserved, was used as the
laminoplasty-pre model (C3-C6 laminoplasty with LF preserved). The model, in which
the LF of C3–C6 segment of laminoplasty-pre model was resected, was then created as the
laminoplasty-res model.

2.4. Loads and Boundary Conditions

The pure moment of 1.5 Nm was applied to the C2 odontoid process to simulate
flexion/extension, lateral (left and right) bendings, and axial (left and right) rotations.
Additionally, the inferior endplate of the C7 was fixed. The model was subjected to the
compressive follower load of 100 N to represent the weight of the head and cervical
muscle contractions.

2.5. Data Analyses

The ROM, intervertebral nucleus stress, and facet contact forces were calculated for
the intact, laminoplasty-pre, and laminoplasty-res models. The ROM for each functional
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spinal unit (FSU) was quantified by subtracting the absolute rotation of the upper vertebra
from the lower vertebra. For nucleus stress, the highest value for maximum von Mises
stress was observed on the nucleus to analyze the effect of surgery on the nucleus of the
intervertebral disc as done by Tsuang et al. [28]. For the facet joint contact force, the data
for facet forces were averaged for the left/right facets.

3. Results
3.1. Model Validation
ROM

The intact cervical spine model demonstrated ROM in flexion/extension, lateral
bending, and axial rotations within the range of the in vitro ROM data published by
Finn et al. (Figure 3) [25].
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Figure 3. (a) Comparison of the flexion-extension motion between the FE model results and the
results reported in the literature [25]. (b) Comparison of the lateral bending motion between the
FE model results and the results reported in the literature [25]. (c) Comparison of the axial rotation
motion between the FE model results and the results reported in the literature [25].
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3.2. Intervertebral Nucleus Stress

The intact C2–C7 cervical spine model demonstrated intervertebral nucleus stress in
flexion/extension, lateral bending, and axial rotations within the range of the in vitro data
documented by Kretzer et al. and Pospiech et al. [24,26]. Unfortunately, no documented
in vitro intervertebral nucleus stress data were available for comparison for the C4–C5
level in the published literature (Table 2; Figure 4).

Table 2. Comparison of the intervertebral nucleus stress between the FE model results and the in vitro results reported in
the literature [24,26].

Segment
Intervertebral Nucleus Stress (MPa)—FE Model

Flexion Extension Left Bending Right Bending Left Rotation Right Rotation

C2–C3 0.26 0.35 0.23 0.22 0.27 0.26
C3–C4 0.17 0.14 0.14 0.15 0.19 0.24
C4–C5 0.21 0.16 0.11 0.17 0.22 0.21
C5–C6 0.17 0.12 0.1 0.14 0.18 0.18
C6–C7 0.11 0.14 0.09 0.11 0.1 0.13

Segment
Intervertebral Nucleus Stress (MPa)—In Vitro

Flexion Extension Left Bending Right Bending Left Rotation Right Rotation

C2–C3 0.08–0.36 0.08–0.36 0.12–0.36 0.12–0.36 - -
C3–C4 0.12–0.43 0.12–0.43 0.08–0.31 0.08–0.31 0.14–0.36 0.14–0.36
C4–C5 - - - - - -
C5–C6 0.01–0.56 0.01–0.56 0.01–0.38 0.01–0.38 0.04–0.49 0.04–0.49
C6–C7 0.01–0.17 0.01–0.17 0.01–0.11 0.01–0.11 - -
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3.3. Facet Contact Force

The C2–C7 cervical spine model exhibited facet forces in extension, lateral bending,
and axial rotations for those levels in the range of in vitro facet contact force data published
by Patel et al. (Table 3; Figure 5). Unfortunately, no in vitro data for facet forces for C2–C3,
C5–C6, and C6–C7 levels were available for comparison.

Table 3. Comparison of the facet contact forces between the FE model results and the in vitro results reported in the
literature [27].

Segment
Facet Contact Forces (N)—FE Model Facet Contact Forces (N)—In Vitro

Extension Lateral Bending Axial Rotation Extension Lateral Bending Axial Rotation

C2–C3 50.9 45.6 21.3 - - -
C3–C4 42.6 34.2 36.2 12.5–62.5 29.5–81.2 34.5–88.1
C4–C5 31.4 35.8 20.7 13.9–43.9 36.2–74.8 34.7–88.2
C5–C6 32.4 34.6 34.7 - - -
C6–C7 24.6 31.9 28.4 - - -
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3.4. Comparison of Intact and the Laminoplasty Models
ROM

In the extension, both laminoplasty-pre and laminoplasty-res models show similar
ROM results for C3–C4 and C4–C5 levels. ROMs were significantly decreased by 54.3%
and 8.2%, respectively at C3–C4 and C4–C5 levels than the intact model. At the same
time, for flexion motion at C3–C4 and C4–C5 levels, the laminoplasty-pre model increased
ROMs by 100.2% and 111.8%, respectively than intact. While for the laminoplasty-res
model, it was increased by 105.2% and 116.8%, respectively for C3–C4 and C5–C6 levels
than intact. In left bending and the laminoplasty-pre and laminoplasty-res models, ROM
significantly reduced at the C3–C4 and C4–C5 levels by 77.2% and 9.7%, respectively than
intact. In contrast, for right bending, the ROM at the C2–C3 level increased by 135.3% and
decreased at the C4–C5, C5–C6, and C6–C7 levels by 87.1%, 90.5%, and 12.4%, respectively
than the intact model. For left and right rotation, the ROM of C4–C5 was decreased in
laminoplasty-pre and laminoplasty models-res than in the intact model by 86.1% and 76.9%,
respectively than intact (Figure 6).
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3.5. Intervertebral Nucleus Stress

In extension, intervertebral nucleus stress between C4–C5 was significantly increased
in laminoplasty-pre and laminoplasty-res models than in the intact model by 114.2%.
For flexion, intervertebral nucleus stress between C4–C5 was significantly increased in
laminoplasty-pre and especially laminoplasty-res models than in the intact model by
101.8% and 105.3%, respectively. In lateral (left and right) bending and right rotation, the
intervertebral nucleus stress of the nucleus between C4–C5 was significantly increased in
laminoplasty-pre by 139.4%, 111.5%, and 123.3%, respectively and laminoplasty-res models
by 139.5%, 111.7%, and 123.4%, respectively than in the intact model (Figure 7).
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3.6. Facet Contact Forces

In extension, facet contact forces of C3–C4 and C4–C5 levels were increased by 133%
and 361.7%, respectively in laminoplasty-pre and laminoplasty-res models compared to
the intact model.

In lateral bending, facet contact forces of C3–C4 and C4–C5 levels were increased by
131% and 256.3%, respectively in laminoplasty-pre and laminoplasty-res models compared
to the intact model.

In axial rotation, facet contact forces of C3–C4 and C4–C5 levels were increased
by 140.7% and 500.7%, respectively in laminoplasty-pre and laminoplasty-res models
compared to the intact (Figure 8).
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4. Discussion

This study aimed to investigate the laminoplasty with/without LF of posterior liga-
ments on the cervical spine biomechanics using a validated model of C2–C7 spine.

There are two types of spinal cord injuries for CSM, CDH, and C-OPLL: Static and
dynamic compression. The causes for static damage include congenital spinal stenosis,
cervical disc herniation, osteophytosis, and ligamentous hypertrophy [29,30]. The causes
for dynamic compression injury include translation and angulation of the spinal column or
overlapping of the lamina (pincer mechanism) and buckling of the ligamentum flavum
(LF) [31–33]. Laminoplasty as extensive posterior decompression is suitable for cervical
spinal cord myelopathy resulting from static and dynamic compression.

Modifications in the current procedures are being suggested by clinicians to address
the current surgical complications for the increased kyphosis and axial pain. In recent
years, minimally invasive methods for laminoplasty, such as selective laminoplasty, skip
laminectomy, and endoscopic laminectomy, have been reported and have shown promising
clinical outcomes [17–19,34–36]. Hirabayashi reported on the development of double-door
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laminoplasty. At first, a pyramidal-shaped osteotomy is made at the cranial base of the
spinous process to obtain a good visual field. Next, the remaining part of the spinous
process is split centrally from its surface, and the split portion is connected to the pyramidal-
shaped dome [16]. Minamide conducted articular segmental decompression surgery using
endoscopy (cervical microendoscopic laminotomy) for cervical spondylotic myelopathy
and reported patients to have similar neurological outcomes to conventional laminoplasty,
with significantly less postoperative axial pain and improved subaxial cervical lordosis [17].
Shiraishi proposed a skip laminectomy method that preserved the attachments of the
semispinalis cervicis and multifidus muscles on the cervical spinous processes and limited
the damage to the attachments of the interspinous and rotator muscles [18]. Kanchiku
proposed performing selective laminoplasty on subjects diagnosed with CSM at a single
intervertebral level or two consecutive intervertebral levels based on preoperative neu-
rological symptoms and imaging findings. They concluded that the clinical outcomes
of selective laminoplasty were similar to the C3–C7 laminoplasty with significantly less
operation time and blood loss, compared with conventional C3–C7 laminoplasty [19]. The
fundamental purpose of these techniques is to figure out ways on how to avoid damaging
the posterior soft tissues, including ligaments. The studies of injuring the posterior liga-
mentous structures of the cervical spine indicated that each structure contributes to cervical
stability [14,37]. The SS, IS, and LF were reported to restrain flexion equally in a porcine
model [15]. However, there has been no FE model analysis of the effect of damaging the
posterior ligaments on the cervical spine in laminoplasty.

Studying the biomechanics of laminoplasty of the cervical spine can be divided into the
FE model and cadaver analysis. However, there are few analyses of laminoplasty models in
the literature. Stoner compared intact, laminectomy, and double-door laminoplasty models
for spinal cord [38]. Tejapongvorachai reported that the stabilities of the hinge sides of
plate-augmented open-door laminoplasties based on cutting in a curved or straight line
were compared using a FE model and the potential of the proposed technique to reduce
the risk of hinge fracture and displacement [39]. Khuyagbaatar analyzed biomechanical
changes in the spinal cord and nerve roots following the open-door and double-door
laminoplasty for OPLL [40]. However, none of the studies have reported on the effect of
preserving/resecting the LF ligament.

In cadaver research, there are few papers on cervical laminoplasty. Kubo reported
that 3D kinematics changes after double-door cervical laminoplasty, with and without the
spacer, were studied in a human cadaveric model and the use of hydroxyapatite spacer well
contributes to maintaining the total stiffness of cervical spine [41]. Subramaniam reported
that open-door laminoplasty leaves the spine in a significantly more stable condition than
laminectomy compared with biomechanical stability during flexion and extension [42].
Kode analyzed five human cadaveric specimens with laminoplasty at C5–C6, laminoplasty
at C3–C6, and laminectomy. Laminoplasty was closer to intact than laminectomy, and there
was no significant difference in laminoplasty, but laminoplasty at C3–C6 was associated
with greater motion in lateral bending and axial rotation [43]. However, they did not report
on the role of LF in laminoplasty/laminectomy.

To study the effect of preserving/resecting LF in laminoplasty, the FE model of
cervical spine was developed and validated. The model was considered validated as ROM,
intervertebral nucleus stress, and facet force were all within the range of the experimental
results of the in vitro data. Some differences for average data of cadaver about ROM,
intervertebral nucleus stress, and facet loads, and our results were considered acceptable
due to the higher mean age and possible deformed cervical spine in the cadaver. It will
be necessary to compare the FE model analysis with the experiments of any individual
in the future. In this laminoplasty-pre and laminoplasty-res analysis, the ROM of C2–C7
was decreased except for flexion. Seichi et al. reported that mean mobility decreased from
36 to 8◦ following double-door laminoplasty [44]. Ratliff and Cooper reported that the
range of motion was reduced by 46% for open-door laminoplasty and 50% for double-door
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laminoplasty relative to pre-operation [45]. Thus, these suggest that the laminoplasty
affects stability, and the results of this study were in agreement with the literature.

On the other hand, the increased mobility in flexion suggests that posterior ligament
may be one of the causes of post-operative kyphosis. The intervertebral nucleus stress
and facet force stress were higher at C4–C5 and were elevated in laminoplasty-pre and
laminoplasty-res than the intact model. There are no papers that have experimentally
verified the stress on the disc and facet of laminoplasty. However, the clinical and radiolog-
ical analysis of the ROM of the cervical vertebrae indicate that when the stability of the
caudal vertebrae increases, the mobility and instability of the cranial side (C3–C4, C4–C5)
also increases [46,47]. In the present analysis, the bottom of C7 was fixed, and due to the
increased stability of laminoplasty, the load of the cervical vertebrae was considered to be
concentrated in the cranial side (C3–C4, C4–C5).

There are several limitations to our study. It does not include the trapezius or other
muscles. Spine alignment was lordotic only. This model simulates an immediate postopera-
tive scenario and does not consider conditions such as fusion and non-fusion of the lamina,
and does not fully simulate the long-term condition of laminoplasty. The LF covered the
interlaminar space. In the present model, it is impossible to conclude the mechanical
characteristics of the partial or total resection of LF for laminoplasty [48]. Although there
are several methods of laminoplasty [49], this paper only analyzes double-door lamino-
plasty. This study does not consider the change in material property that may be altered by
osteoporosis or osteoarthritis.

Despite these limitations, this study provides valuable insights on the effect of pre-
serving/resecting the LF during laminoplasty.

5. Conclusions

The FE model created from medical images was used to analyze the effects of preserv-
ing/resecting LF in the laminoplasty procedure. This study concluded that laminoplasty
alters the intervertebral mobility. Moreover, the cranial cervical level load increases signifi-
cantly when the LF is injured, which leads to hyper flexion. In light of the current study,
the surgeon should be mindful of the role of LF as well as pay attention to LF resection or
injury during laminoplasty.
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