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Abstract: Increasing the bearing capacity of reinforced concrete structures, reducing material con-
sumption, and ensuring quality are critical in modern construction. The article presents an experi-
mental study of the ultimate compressive strains of short fiber basalt reinforced concrete columns
and provides recommendations for increasing the bearing capacity using steel reinforcement bars
with greater strength. The columns were tested in an upright position using a hydraulic press. Strains
were measured with dial indicators and a strain gauge station. It was shown that the addition of 10%
coarse basalt fiber increased the ultimate compressibility of concrete on ordinary crushed stone by
19.8%, and expanded clay concrete by 26.1%, which led to the strain hardening of concrete under
compression by 9.0% and 12%, respectively. Ultimate compressive strains in fiber-reinforced concrete
short columns with combined reinforcement increased 1.42 times in columns on a lightweight ag-
gregate and 1.19 times on heavy aggregate. An increase in the ultimate compressibility of concrete
makes it possible to use steel reinforcement with greater strength in compressed elements as the
concrete crushing during compression occurs primarily due to the reaching of critical values by
tensile stresses in the transverse direction. This makes it possible to manufacture structures with a
higher load-bearing capacity and less material consumption. A practical example of the application
of the proposed approach is given.

Keywords: fiber concrete; ultimate deformability; basalt fiber; load bearing capacity; compressed
elements

1. Introduction

Modern trends in the construction industry are based on innovative technologies and
development of new materials, including an increase in the bearing capacity of concrete
structural elements. There is increasing interest in fiber-reinforced concrete (FRC) due
to improvements in FCR mechanical properties (e.g., enhanced adhesion of concrete).
Mayilyan L. et al. investigated the influence of different fibers on the strength and crack
resistance of reinforced concrete beams [1]. Experimental studies were carried out by
varying the types of steel reinforcement, the degree of prestressing of the reinforced zone,
and fiber inclusion. Fiber-reinforced concrete had a significant impact on the theoretical
strength and crack resistance of reinforced concrete elements, regardless of the presence or
absence of prestressing of steel reinforcement.
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One of the most beneficial trends in construction is the use of natural materials
and recycled aggregates. Jing Xie et al. [2] compared recycled aggregate concrete with
natural aggregate. Results showed that the addition of fiber could improve the mechanical
properties and durability of FRC due to better fracture toughness. In addition, compared
to other fibers, steel fiber plays a better role in improving the mechanical properties of
concrete, but basalt fiber has better sustainability.

Liang Fang et al. investigated the bearing capacity of corroded reinforced concrete
slabs reinforced with textile and basalt fiber reinforced polymers [3]. The bending and
deflection properties of reinforced concrete slabs reinforced with fibers and textiles sig-
nificantly increased by 27.81~61.85% under moderate corrosion conditions. In a severe
corrosion state, the increase in bending strength of the reinforced slabs was insignificant,
but the increase in flexibility ranged from 18% to 35% compared to the control slabs. Anan-
dan et al. tested the effectiveness of the reinforcement of plastic fibers [4]. Plastic fibers (up
to 0.15%) were added to the concrete mix to evaluate the improved bearing capacity. The
test results showed that the plastic fibers added to the tensile zone showed higher flexural
strength compared to homogeneous concrete without fiber.

Manufacturing technologies of FRC structures are crucial to ensuring load-bearing
capacity. Research by Shcherban’ et al. [5] revealed technological features, in regard to
changes in strength and the elastic modulus of vibration-centrifuged FRC columns of the
tubular section. The authors found that the outer layer of the structure, on which the
peak centrifugal load acts, has the highest strength, and the inner layer has the lowest.
The three-layer structure of a vibration-centrifuged FC was experimentally confirmed.
Stel’makh et al. improved the technology of centrifuged-reinforced concrete structures [6,7]
used in the construction of building columns and overpasses. Shuyskiy et al. increased
the bearing capacity of concrete via centrifugation technology [8]. They found that the
use of dispersed-reinforced fibers led to an increase in the ultimate strength of bending, a
decrease in shrinkage, an increase in crack resistance, and resistance to cycle alternations of
freezing and thawing, drying, and moistening.

Dynamic forces are dangerous types of loading and have a significant effect on a
structure’s durability. Belyakov et al. studied the response on dynamic loading and damage
accumulation in underground FRC structures and tunnel linings [9]. The mechanical
properties were estimated experimentally, and the fracture mechanisms of FRC, with
different reinforcement parameters, was studied. Calculations show that 7 kg/m3 of the
fiber reduces the level of damage to the lining structure after a seismic impact. This can be
explained by the fact that the fiber increases the total energy spent on concrete crushing in
comparison to unreinforced concrete of the same compressive strength class. Mina et al.
studied the characteristics of concrete slabs reinforced with ultra-high-performance fiber
at the impact [10]. The efficiency of the FRC under shock loading was investigated using
bullets, with a diameter of 7.62 mm and an initial velocity of 800 m/s. Experimental
results showed that FRC with a combination of 3% steel fibers (6 mm long) and 3% steel
fibers (13 mm long) showed the best resistance to projectile impact. As a composite
material, basalt fiber allows the damping of dynamic loads. Guo investigated the damping
mechanism and energy consumption of a polymer-reinforced concrete structure [11]. The
numerical model of FRC columns with adhesion-slippage for steel bars was applied to
simulate non-linear elements of a beam-column in the OpenSees software.

Dong-Hee Son et al. experimentally investigated the bending characteristics of struc-
tural slabs made from macro synthetic FRC [12]. In the FRC test results, the compressive
strength and the modulus of elasticity increased compared to conventional concrete. Flexu-
ral tensile tests showed that the slabs had sufficient residual power to failure after reaching
peak strength.

Xiong et al. investigated the adhesion characteristics of fiber-reinforced polymer bars
to concrete, affecting the load-bearing capacity of structures [13], to improve corrosion
resistance and bearing capacity. The authors analyzed the fracture mode and studied the
development of damage at the interface between concrete and rods made of a polymer
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reinforced with basalt fiber. The results of the linkage mechanism and the characteristics of
the stress-slip curves of the link were obtained.

New generation polymer composites provide good ductility properties and exclusive
crack control properties. However, they lose their high flexibility when exposed to fire. An
experimental study of high-performance basalt fiber and thick polypropylene fiber with
various bulk additives on compression, tension, and bending was carried out by Xu M. et al.
in [14] and Xiangrui Feng et al. in [15]. The results show that basalt fiber reinforced concrete
(BFRC) structures exhibit unique strain-hardening and multi-cracking resistance properties
compared to typical composites due to the bridging properties of basalt fibers. Moreover,
basalt fibers have shown remarkable resistance to elevated temperatures compared to other
industrial fibers. Haido et al. investigated the effect of basalt fibers on the workability
of fresh self-compacting concrete [16], using J-ring flow and V-funnel flow. Experimental
results showed that raising the temperature to 500 ◦ C reduced the tensile and compressive
strength of the self-compacting concrete by more than 20%.

Beskopylny et al. [17,18] observed the behavior of the FRC under dynamic loads, by
considering the bimodularity; that is, the different moduli of elasticity of the FRC under
compression and tension. It was shown that FRC has a pronounced bimodularity property,
which allows one to significantly reduce the consumption of material in the manufacturing
of structures. This opens up possibilities for optimizing the design (Litvinov et al. [19])
from a strength and efficiency point of view.

Fanaradelli et al. studied the design parameters to evaluate the ultimate axial com-
pression strain of reinforced concrete columns reinforced with polymer fiber [20,21]. The
authors created a hybrid 3D FEM model that included several critical FRC strains and
steel strains. The predicted characteristics of the stress–strain state of reinforced concrete
columns under cyclic compression significantly improved compared to other existing
model features. Erfan et al. investigated the flexural characteristics of a BFRC slab [22].
Experimental test results showed that the ultimate bending loads and behavior of BFRC
slabs improved compared to steel-reinforced concrete slabs.

Zhe Huang et al. investigated the influence of technology disruption on the mechanical
properties of BFRC, in the period from the initial to the final setting, and the mechanism
of action [23]. The influence of this violation on the process of sulfate erosion of concrete
was assessed via a test for sulfate erosion, obtaining ultrasonic data on the process of
its damage.

Anysz H. et al. [24–26] proposed ANN artificial neural network algorithms to optimize
cement stabilization technology for reinforced earth, which uses inorganic soil, usually
taken directly from the construction site, with a small addition of Portland cement as
building material. The authors proposed using artificial neural networks (ANNs) to
determine the correct proportions of soil, cement, and water in a cement-stabilized rammed
earth blend to provide sufficient compressive strength. The developed algorithms allow
using relatively simple soil tests to determine the composition of the mixture that provides
compressive strength at a level that enables the use of this material in construction.

Wu et al. investigated load-bearing structures made of basalt-fiber granular con-
crete, deeply buried high-stress roadways [27], based on triaxial compression tests. The
results of the compression tests show that the yield point of FRC with basalt fiber in-
creases significantly when the mass fraction of basalt fiber is more than 0.4%. The use
of basalt fiber can effectively restrain the development of cracks under the influence of
three-dimensional stress.

Yang et al. studied the effect of basalt fiber content on the mechanical properties and
damage of concrete under uniaxial compression [28]. Their research results showed that an
appropriate amount of basalt fiber (6 kg/m3) could improve the compressive strength of
concrete and reduce the risk of crack propagation in the structure. With an increase in basalt
fiber content, acoustic emission events are dispersed in concrete, effectively weakening
local damage.
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An experimental study by Kar et al. [29] studied the effectiveness of basalt fiber as
a material to improve shear strength. Ten reinforced concrete beams were tested under a
four-point loading system. The results of the experiments showed that the breaking load of
the reinforced beams increased by 17–50%, and the impact toughness increased 2.74 times
compared to the reference sample.

This review shows that, with many experimental studies, the strain compatibili-
ties of reinforcement bars and concrete with basalt fiber remain unexplored. The use of
high-strength reinforcement in ordinary concrete is inefficient due to limitations of the
compressed concrete deformability. The addition of coarse basalt fiber to the concrete
composition increases the ultimate tensile strength of the concrete. Concrete crushing in
compression occurs primarily due to the achievement of tensile stresses in the transverse
direction of peak values. A significant increase in ultimate tensile strength actually leads
to strain hardening of concrete in compression. The collaboration of steel reinforcement
and concrete makes it possible to use higher strength reinforcement, capable of increasing
the bearing capacity of the column with increased deformability. Thus, the purpose of this
article was to study the ultimate compressive strain of short reinforced concrete columns
reinforced with basalt fiber, to increase the bearing capacity, reduce the dead weight of the
structure, and increase the efficiency of compressed elements, by using basalt fiber, with
the possibility of using steel reinforcement of higher strength.

2. Materials and Methods

Two series of experiments were carried out to study the features of the operation of
compressed basalt fiber steel reinforced (BFRC) elements, and to obtain the necessary data
on their strength and deformability.

During the first series of tests, the strength and strain of the fiber concrete (FC) of
cubic and prism specimens in compression were studied. The variable factors were the
type of concrete—heavy [30] and light.

In the second series of experiments, the purpose of which was to study the ultimate
compressive strains in reinforcement and concrete, the samples were made in the form of
short columns. The variable factors, in this case, were: type of concrete, class of longitudinal
reinforcement (A400 and A1000), percentage of fiber reinforcement, and eccentricity of
longitudinal force e0/h = 0; 0.15; 0.6 (e0 is the initial eccentricity of the application of the
compressive force; h is the height of the column section). Ten samples were tested with a
size of 120 mm × 120 mm × 600 mm and 130 mm × 200 mm × 600 mm. Control cubes
and prisms were made simultaneously with the tested samples.

For the manufacturing of laboratory samples from FRC, in the form of cubes, prisms,
and columns, Portland cement of the 500 D 20 grade was used as a binder, according to
GOST 10180-2012 (Russian standard). As aggregates for the preparation of fine-grained
heavy concrete, crushed stone sifting with a fraction of up to 10 mm was used, and light-
sifted expanded clay gravel (GOST 9759-83) with a bulk density of 650 kg/m3, fractions
2.5–10 mm. The porous filler’s compressive strength in the cylinder was 5.8 MPa, and the
water absorption was 14.2%. The main properties of the screening out of crushed stone
and expanded clay gravel are presented in Tables 1 and 2.

Table 1. Granulometric composition of expanded clay gravel.

Diameter, mm 10.0 >10.0 5.0 2.5 Residue Total Weight

Fraction weight, kg 0.08 0.98 3.02 0.79 0.12 5

% 1.4 20.3 59.0 18.8 1.5 100

Table 2. Properties of heavy aggregate from crushed stone screenings.

Size, mm Humidity, % Strength, MPa Volume Weight, kg/m3

2.5–10 1.0 140 1420
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Quartz sand (GOST 8736-77) with a size modulus of 1.8 and an average bulk density
of 1450 kg/m3 was used as a fine aggregate to prepare heavy and light concrete. The
prototype columns were reinforced with hot-rolled bar steel of class A400, with a diameter
of 8.0 mm and high-strength steel, class A1000, with a diameter of 10.0 mm. To determine
the actual mechanical properties of steel reinforcement, tensile tests were performed on
samples, 5 pieces from each class. The tests were carried out on a GRM-20 universal tensile
testing machine no. 1837 (Armavir, Russia), in accordance with GOST 12004-81. A strain
gauge station measured longitudinal deformations, based on 100 mm, with a scale division
of the indicators equal to 0.01 mm. The average test results of rod reinforcement of class
A400 and A1000, and wire with a diameter of 6.0 mm are presented in Table 3.

Table 3. Strength and strain characteristics of steel bar reinforcement used for short columns.

Steel Class Nominal Diameter, mm As
cm2

ft
MPa

fy
MPa δ 5,%

A240 6.0 0.283 373 235 25.0
A400 8.0 0.503 590 392 14.0

A1000 10.0 0.785 1230 980 6.0

Table 3 uses the following designations: As—a cross-section of the reinforcement bar, cm2; ft—tensile strength of reinforcement, MPa;
fy—yield strength of reinforcement, MPa; δ 5—elongation, %.

Coarse basalt fiber was used to manufacture dispersed-reinforced FRC, the properties
of which are shown in Table 4.

Table 4. Main characteristics of the coarse basalt fiber.

Density, g/sm3 Tensile Strength, MPa Elasticity Modulus, MPa Diameter, µm Tensile Elongation, %

2.65 4000 92,750 160 . . . 260 0.27

The photo of coarse basalt fiber is shown in Figure 1.

Figure 1. Coarse basalt fiber: (a) Normal view; (b) Increased view.

In the technology of FRC preparation, the most important moment is the addition
of fiber into the concrete mixture, ensuring its uniform distribution throughout the entire
volume. First, the dry mortar part with fiber was prepared. Second, mixing of the incoming
mixer for water and coarse aggregate, simultaneously, was conducted.



Appl. Sci. 2021, 11, 7634 6 of 22

Cement and sand were first poured into an operating mixer with a capacity of 0.085 m3

and a rotor speed of 500 rpm, which were mixed for 1.5 min with the simultaneous supply
of fiber. Only then was the water and coarse aggregate fed. Uniform supply of fiber was
provided by a special vibrating chute, through which pre-dosed coarse basalt fiber was fed
into the concrete mixer.

The total mixing time of the FC mixture with heavy crushed stone did not exceed
3.5 min, and with expanded clay gravel, 4 min. Compaction of the concrete mixture was
carried out on a laboratory-vibrating platform, providing vertical-directional vibrations
(up to 300 vibrations/min) with an amplitude of 0.5 mm. The vibration time for a mixture
of conventional samples and FRC did not exceed 10 s.

Before the manufacturing of experimental BFRC columns, trial mixes were performed,
providing the strength of heavy and structural expanded clay concrete equal to 25 MPa
on the 28th day of hardening. Consumption of materials by weight for the preparation of
1 m3 of a concrete mixture is shown in Table 5.

Table 5. Materials consumption for the heavy and light FRC preparation with a strength of 25 MPa.

N Concrete Type Consumption of Materials by Weight per 1 m3 of Concrete Density γ, kg/m3

C S EC CS W CBF

1 Heavy concrete 395 470 - 1400 201 - 2420

2 Heavy FRC 395 470 - 1320 210 90 2395

3 Expanded clay concrete 430 480 645 - 230 - 1600

4 Basalt fiber EC concrete 430 480 560 - 245 90 1570

Designation in Table 5: C is cement, S is sand, EC is expanded clay, CS is crushed stone, W is water, CBF is coarse basalt fiber.

The experiments were carried out on cubes 150 mm × 150 mm × 150 mm and prisms
with sections of 150 mm × 150 mm and a length of 600 mm. For each type of concrete,
10 cubes and 5 prisms were made and tested for compression. A total of 40 sample cubes and
20 prisms were made. Tests were carried out on hydraulic presses, P-50 and P-125, following
GOST 10180-2012. The sample stresses increased at a constant rate of 0.05–0.06 MPa per
second until the moment of crushing. Longitudinal and transverse strains in the prisms
were measured using an automatic strain gauge AID-4M, using strain gauges with a base
of 50 mm, glued to all four lateral surfaces of the sample.

Experimental studies of ultimate compressive strains in reinforcement and concrete
under central and eccentric compression were carried out on short reinforced concrete racks
of two standard sizes 120 mm × 120 mm × 600 mm and 130 mm × 200 mm × 600 mm.

The first group of specimens, which was tested for axial compression, was reinforced
symmetrically by four rods with a diameter of 10 mm with high-strength bar steel of class
A1000 (reinforcement percentage 1.3%), and in the transverse direction with stirrups made
of A240 steel, with a diameter of 6 mm, with a pitch of 150 mm (code racks T-1, TF-2, K-3,
Kf-4). The second group was loaded with a relative eccentricity of the longitudinal force
e0/h = 0; 0.15 and 0.6, and was reinforced symmetrically with four rods, with a diameter of
8 mm with rod steel of class A400 (percentage of reinforcement 1.4%), and in the transverse
direction with stirrups made of steel A240, with a diameter of 6 mm, with a spacing of
150 mm (code racks KK-0, KK-0.15, KK-0.6, KKF-0, KKF-0.15, KKF-0.6).

The design and test scheme for samples of the second series is shown in Figure 2.
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Figure 2. Design and test scheme of racks of the second series: (a) a rack measuring 12 cm × 12 cm
× 60 cm; (b) a rack measuring 13 cm × 20 cm × 60 cm.

Testing of short reinforced concrete columns was carried out on a P-125 hydraulic
press. To prevent the fall of the samples after crushing, the struts were attached in the
upper part with flexible ties to the guides of the traverse of the hydraulic press (Figure 3).

Figure 3. Tests of prototypes on a power stand: (a) general view; (b) measuring sensors (T14-T16 transverse deformation
sensors, T17-T20 longitudinal deformation sensors).

During the test, the loading of the samples was carried out in steps of 0.1 of the
breaking loads. At each loading stage, the column’s deflections in the middle and in the
support sections were measured. Longitudinal deformations in the middle section of the
column were estimated using chains of strain gauges with a base of 50 mm, glued to the
compressed and tensile (less compressed) faces, as well as lateral surfaces. On the edges of
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the column, the chains of strain gauges were glued in one row, and on the side surfaces—
3 rows each with a distance between rows of 4 cm. In the middle section, indicator strain
gauges with a measurement base of 20 cm were additionally installed on the reinforcement
(on external benchmarks), as well as on the side surface columns as indicated (Figure 3).

When testing columns with an eccentricity (e0/h= 0.15; 0.6), steel inventory heads
were put on the end sections of the columns, on the endplates of which there were slots for
hinged knife supports.

For each stage of loading, the formation of cracks, the width, and height of their
opening were recorded.

According to the test results, graphs of dependence were built σc = f (εc) and
σs = f (εu) where σc is compressive strength of the concrete, σs is stress in reinforce-
ment, εc is compressive strain in the concrete, and εs strain in reinforcement.

The peak values f c (with the crushing of the columns) and the peak value σs max
according to the graph σs = f (εs) were also determined.

Additional control of strain was recorded by dial indicators with scale divisions
of 0.01 and 0.001 mm. The experimental results were processed using mathematical
statistics methods.

3. Results of Testing Cubes and Prisms from Heavy and Light Expanded Clay BFC

The change in the strength of the concrete, of experimental compositions on light and
heavy aggregates, with and without fiber, was determined by the results of the testing
cubes at 28 days of age (Table 6).

Table 6. Cubic compressive strength of fine-grained concrete class.

Concrete Type Fiber Percentage,% Concrete Age, (Days) Actual Strength, MPa
R (Rf)

Rf/R

Heavy µ f = 0 28 24.1
1.06

µ f = 10 28 25.6

Lightweight expanded clay concrete µ f = 0 28 21.3
1.10

µ f = 10 28 23.4

The test results for cubes shown in Table 6 show that fiber reinforcement has a positive
effect on increasing the strength of concrete on heavy- and lightweight aggregates. All
else being equal, on the 28th day of hardening, the average strength indicators of heavy
concrete was R = 24.1 MPa, and for fiber-reinforced concrete was Rf = 25.6 MPa. Thus, the
actual increase in strength was 1.5 MPa or 6%.

The effect of fiber on increasing the strength of concrete on a lightweight aggregate
was more noticeable. The average strength of concrete without fiber was 21.3 MPa, and
fiber-reinforced concrete cubes showed strength of 23.4 MPa. The actual increase in strength
was 2.1 MPa or 10%. This effect is due to the fact that, when mixing the concrete mixture,
rounded expanded clay grains damage fibers to a lesser extent than gravel grains.

The measurement of the deformability of concrete on light and heavy aggregates
under compression was determined by the results of testing prisms at 28 days of age
(Table 7).
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Table 7. Results of short-term tests of prisms with a size of 10× 10× 40 cm from light and heavy BFRC for axial compression.

Indicator Name
Concrete Type

Expanded Clay Concrete Expanded Clay FRC Heavy Concrete Heavy BFRC

1 2 3 4 5

Average density D, kg/m3 1600 1570 2420 2395
Cubic strength R, MPa 21.3 23.4 24.1 25.6

Prismatic strength Rb, MPa 18.5 21.8 18.3 21.3
Rb/R 0.87 0.93 0.76 0.83

Initial modulus of elasticity
Eb · 10−3, MPa 17.3 16.38 24.8 23.8

Concrete strains:
ultimate εcu

. 10−3 2.26 2.85 1.87 2.24
peak εcu

. 10−3 3.2 4.34 2.5 3.6
The coefficient of transverse

strains at σ/Rb = 1 0.22 0.27 0.20 0.22

Coefficient of elastic–plastic
deformations at σ/Rb = 1 0.59 0.72 0.52 0.58

The test results of the prisms (Table 7) show that fiber reinforcement has a positive
effect on increasing the strength and deformability of concrete on heavy and light aggre-
gates. On the 28th day of hardening, the average values of the prismatic strength of heavy
concrete were 18.3 MPa, and for fiber-reinforced concrete, 21.3 MPa. Thus, the actual
increase in prismatic strength was 3.0 MPa, or 16%. Ultimate strains corresponding to the
ultimate compressive strength of concrete were 1.87 × 10−3 and 2.24 × 10−3 in FRC (the
increase in ultimate deformability was 19.8%).

In concrete on lightweight aggregate, the average value of the prismatic strength of
heavy concrete was 18.5 MPa, and in fiber-reinforced concrete 21.8 MPa (an increase in
prismatic strength by 3.3 MPa or 18%). Ultimate strains corresponding to the ultimate
compressive strength of concrete were 2.26 × 10−3 and 2.85 × 10−3 in FRC (the increase in
ultimate deformability was 26.1%).

The coefficient of transition from cubic strength to prismatic Rb/R (Table 7) for ex-
panded clay FRC was higher than that of specimens not reinforced with fiber. The actual
values of Poisson’s ratio in the lightweight FRC ranged from 0.22 to 0.27, exceeding the
normalized value.

The change in the ratio between an elastic and total strain with increasing stresses is
presented in Figure 4, which shows the dependence coefficient of elastic–plastic on the
stress–strain level σ/Rb. The coefficient of elastic–plastic strain is the ratio of the elastic
strain of concrete to the total strain, measured at different loading levels.

In contrast to heavy concrete, the non-linear nature of strain in lightweight concrete
appears earlier. Thus, the coefficient of elastic–plastic strain becomes less than one at a ratio
σ/Rb in the range of 0.26–0.35, and upon further strain, it decreases relatively uniformly
with an increase in stresses, i.e., almost linearly until crushing. In heavy concrete, with
an increase in stresses and the development of microcracks, the rate of growth of plastic
strains increases sharply, the proportion of elastic strains decreases, while in lightweight
concrete, this process is less intense. The coefficient of elastic–plastic strains νb at a load
level of 0.8–0.9 changed for expanded clay FRC within 0.88–0.79, significantly exceeding
the value adopted in SNiP 2.03.01.84. To the greatest extent, the features of the elastoplastic
properties of FRC manifested during crushing at σ/Rb. The ultimate coefficient of elastic–
plastic strains, values increased in heavy FRC by 6–8%, and in expanded clay FRC, ranged
from 11 to 27%.
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Figure 4. Dependence of the coefficient of elastic–plastic strains νb on the growth of stresses in
expanded clay concrete (1) and expanded clay FRC (2). νb = εe/εb—coefficient of elastic–plastic
strains of concrete, εe—elastic concrete strain; εb—total concrete strain.

Fiber reinforcement significantly affected the value νb. Thus, the coefficient of elasticity
at a load level from 0.75Rb to 0.8Rb varied in elements made of structural expanded clay
concrete within 0.83–0.7. To the greatest extent, the features of the elastoplastic properties
of FRC were manifested during crushing; that is, at σ/Rb = 1. Therefore, the coefficient of
elastic–plastic strains of samples with fiber was of greater importance than unreinforced
(Table 7). In general, for FRC with a strength of 20–25 MPa, both on a conventional
aggregate and on a lightweight expanded clay aggregate, higher values of the coefficient of
elastic–plastic strains νb are characteristic than for concrete without fiber.

Figure 5 shows that the strain diagrams of heavy concrete and expanded clay concrete
were different, although they had approximately the same strength. The curves are plotted
in relative values for easy comparison of the deformability of the samples.

Thus, in the calculation and design of expanded clay concrete elements, the increased
deformability of the FRC should be taken into account. In particular, the ultimate com-
pressibility of expanded clay FRC at µ f = 10% can be increased by 1.3 times; that is, it can
be taken at short-term loading equal to 2.6× 10−3, and the limiting elongation can be taken
equal to 0.5 × 10−3; that is, 2 times more than for concrete without fibers.
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Figure 5. The stress–strain diagram (compression test results for prism specimens): 1, 3—heavy
concrete and expanded clay concrete; 2, 4—also with fiber.

4. Results of Testing Short Columns
4.1. Load Bearing Capacity

All 10 samples of short columns, following the experimental studies program (series
of tests no. 2), were tested by short-term loading until fracture. Six columns were tested
for axial compression, two with relative eccentricity e0/h = 0.15, and two with eccentricity
e0/h = 0.6.

The failure of specimens without fiber reinforcement under axial application of an
acting force was caused by the concrete crushing in compression in the middle of the
columns. Immediately before the destruction of the concrete in the compressed zone, the
formation of cracks was observed. Longitudinal cracks appeared, and the concrete cover
was punctured in the middle part of the sample. In specimens reinforced with fiber with a
centrally applied force, the nature of the destruction was identical. However, the moment
of appearance of cracks in concrete along the longitudinal reinforcement corresponded
to higher compressive stresses N/Nu = 0.88–0.92, and the width of their opening was
significantly smaller.

Figure 6 shows the fracture of two samples tested for the action of a compressive force
with eccentricities e0/h = 0.15 and e0/h= 0.6 (codes KKF-0.15 and KKF-0.6)

Under the action of a longitudinal force with a small relative eccentricity e0/h = 0.15,
the section of the element had an insignificant tensile zone. Accordingly, the reinforcement
A1

s was subjected to compression, and the reinforcement As, located at the face further
from the longitudinal force, was subjected to tension. The element crushing, in this case,
began from the side of the compressed zone, while the second case was observed when
the condition ξ > ξR was met (where ξ = x/h0 is the relative height of the concrete
compression zone, x is a coordinate and h0 is the cross-sectional height, and ξR = xR/h0
is the boundary value of the relative height of the concrete compression zone, xR is a
coordinate in tensile zone).
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Figure 6. Photo of failure specimens: (a) KKF-0.15; (b) KKF-0.6.

With an eccentric application of a force with small eccentricities, the crushing of
expanded clay basalt fiber reinforced concrete (BFRC) of short columns, as well as in the
samples described above, occurred from the concrete crushing in compression zone, while
the stress in the reinforcement further from the line of action of the external force did
not reach the yield point. A general view of the prototype during testing is shown in
Figure 1. Actual strains (both compression and tension) in specimens with conventional
reinforcement varied from 7.0 to 13%, and in models with combined reinforcement, from
11.7 to 28%.

The columns tested with a relative eccentricity e0/h = 0.6 failed due to reaching the
ultimate stresses in the tensile reinforcement. The achievement of ultimate stresses in the
compressed zone of concrete was observed almost simultaneously.
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The theoretical bearing capacity of the columns under axial compression was deter-
mined by the formula:

Ntheor
u = Rb Ab + Rsc Astot (1)

where Rb and Rstot are the calculated resistance of concrete and reinforcement; Ab and
Astotb are the cross-sectional area of the sample and the total area of the longitudinal
reinforcement.

The theoretical bearing capacity of the racks tested with the applied force eccentricity
was determined by solving the system of equations:

Ntheor
u ·e = Rb·b·x·(h0 − 0.5x) + σ′s·A′s·(h0 − a) (2)

Rb·b·x + σ′s·A′s − σs·As − Ntheor
u = 0 (3)

where e is eccentricity of the external force application relative to the center of gravity of
the stretched or least compressed reinforcement; x is the height of the compressed zone
of concrete; h0 is working height of the section (distance from the extreme compressed
concrete fiber to the center of gravity of the stretched or least compressed reinforcement);
σ′s—stresses in compressed reinforcement; A′s—cross-sectional area of compressed reinforce-
ment; a—distance from the center of gravity of the tensioned or least reinforcement to the
extreme tensioned concrete fiber; σs—stresses in tensile or least compressed reinforcement;
As—sectional area of tensile or least compressed reinforcement.

The tests results showed that the bearing capacity of short reinforced concrete racks is
influenced by both factors varied in the experiment; the relative eccentricity of the external
force and the version of the reinforcement of the samples (conventional or combined).

Columns made of expanded clay BFRC showed a higher bearing capacity than
columns made of expanded clay concrete at all external force application eccentricities
(Table 8). With a relative eccentricity of e0/h = 0.15, the actual breaking load for the
expanded clay FRC rack with the KKF-0.15 code was 7.6% higher than for the similar one
made of expanded clay concrete, and at e0/h the noted excess it was 13.5%.

Table 8. Bearing capacity of short BFRC racks.

Sample Title
Strength of

Concrete Prisms
Rb, MPa

Relative Eccentricity
e0/h

Breaking Load kN
Theoretical Experimental

Ntheor
u Nexp

u

Nexp
u

Ntheor
u

T-1 18.4 0 390.6 467.5 1.20
TF-2 22.0 0 442.4 522.5 1.18
K-3 16.6 0 364.6 419.0 1.15

KF-4 20.1 0 415.0 468.0 1.13
KK-0 17.86 0 572.4 672.0 1.17

KK-0.15 17.86 0.15 371.1 448.0 1.20
KK-0.6 17.86 0.6 118.5 140.0 1.18
KKF-0 21.95 0 641.0 750.0 1.17

KKF-0.15 21.95 0.15 444.3 482.0 1.08
KKF-0.6 21.95 0.6 129.1 159.0 1.23

In Table 8, the codes of the experimental specimens are as follows. T-1 is a column
made of heavy concrete, tested for axial compression e0/h = 0 (steel reinforcement 4Ø10
A1000); TF-2 is a column made of heavy fiber-reinforced concrete, tested for axial com-
pression e0/h = 0 (steel reinforcement 4Ø10 A1000); K-3 is column made of expanded clay
concrete, tested for axial compression e0/h = 0 (steel reinforcement 4Ø10 A1000); KF-4 is
a column made of expanded clay-fiber-reinforced concrete, tested for axial compression
e0/h = 0 (steel reinforcement 4Ø10 A1000); KK-0 is a column made of expanded clay
concrete, tested for axial compression e0/h = 0 (steel reinforcement 4Ø8 A400); KK-0.15 is a
column made of expanded clay concrete, tested for eccentric compression e0/h = 0.15 (steel
reinforcement 4Ø8 A400); KK-0.6 is a column made of expanded clay concrete, tested for
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eccentric compression e0/h = 0.6 (steel reinforcement 4Ø8 A400); KKF-0 is a column made
of expanded clay-fiber-reinforced concrete, tested for axial compression e0/h = 0 (steel
reinforcement 4Ø8 A400); KKF-0.15 is a column made of expanded clay-fiber-reinforced
concrete, tested for eccentric compression e0/h = 0.15 (steel reinforcement 4Ø8 A400);
KKF-0.6 is a column made of expanded clay-fiber-reinforced concrete, tested for eccentric
compression e0/h = 0.6 (steel reinforcement 4Ø8 A400).

An increase in the relative eccentricity of the external force in all cases led to a decrease
in the columns’ bearing capacity. At the same time, the degree of reduction in the bearing
capacity slightly depended on the type of concrete, and was 79%.

Analysis of the results of testing short column-pillars for axial compression (T-1 and
TF-2, K-3 and KF-4, KK-0 and KKF-0) oбpaзцыshowed (Table 8) that, other things being
equal, specimens with combined reinforcement had peak load values on average 11–12%
higher than pillars with conventional, traditional reinforcement. Simultaneously, the degree
of increase in the bearing capacity of the test racks did not significantly depend on the type
of concrete.

To compare the experimental and theoretical values of the bearing capacity of short
columns, the latter were calculated according to the norms’ methodology, taking into
account the actual strength of concrete and reinforcement, determined empirically. To
determine the theoretical bearing capacity, the actual stress–strain diagrams for compressed
concrete were used, shown in Figure 5. The calculation results showed that the discrepancy
between the experimental and theoretical values of the peak load is quite large, and the
maximum ratio reaches 23.0% for all tested elements. Thus, the experimental peak load in
expanded clay-reinforced concrete specimens with the KKF-0 code exceeded the theoretical
one, calculated according to the current standards, considering the actual characteristics of
materials by 17%.

In heavy concrete (samples T-1 and TF-2), the indicated difference between the peak
load’s experimental and theoretical values was 20 and 18%, respectively. In our opinion,
the main reason for this is because the norms of the limiting compressive stresses in the
reinforcement of the compressed zone are not considered, which increase as a result of the
fiber reinforcement of the samples.

The specimens crushing without fiber was transient: when the peak value was reached
on the force meter, a rapid decrease in the bearing capacity in the specimens was observed
without a significant increase in the ultimate longitudinal strains. In specimens with fiber,
especially from constructive expanded clay BFRC, the picture of crushing has changed
dramatically. In particular, when the peak load in expanded clay BFRC samples with the
code KF-4, KKF-0, KKF-0.15 was reached, the process of destruction seemed to stretch over
time: the load on the force meter remained practically unchanged (decreasing or increasing
within 1.5–2%), while reinforcement strains increased at a tremendous rate. The absolute
values of strains in such a prolonged stage of fracture were approximately 2–2.5 times
greater than the strains recorded at the moment of reaching the peak load.

4.2. Ultimate Strain of Concrete and Reinforcement in Test Columns

When assigning the design resistances of reinforcement RSC, the current standards take
into account not only the properties of steel, but also the possible ultimate compressibility
of concrete. When testing short columns with high-strength reinforcement class A1000
for axial compression, the strains of concrete in specimens reinforced with fiber exceeded
similar strains of specimens without fiber, not only in the ultimate supercritical stage of
operation, but also over the entire range of increasing load (Table 9).
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Table 9. Strains of concrete and reinforcement in experimental columns from heavy and light BFRC.

Sample Title
Strain of Concrete εc·103

Ultimate Strains of Reinforcement,
εSC·103at

N=0.3Nu

at
N=0.7Nu

at
N=Nu

T-1 0.3 1.3 2.27 2.25
TF-2 0.5 2.0 2.61 2.78
K-3 0.62 1.8 3.18 3.08

KF-4 0.85 2.5 3.74 3.85
KK-0 0.36 1.72 2.92 3.01

KK-0.15 0.48 1.80 3.15 3.12
KK-1 0.51 1.83 3.80 3.84

KKF-0 0.29 1.47 3.87 3.92
KKF-0.15 0.36 1.56 4.10 4.07

KKF-1 0.41 1.73 4.58 4.63

An increase in the value of the peak load during testing led to an increase in the
ultimate compressibility of concrete, which in turn led to an increase in the actual values of
the ultimate compressive stresses in the reinforcement. It was experimentally established
that the ultimate compressive stresses in the reinforcement of reinforced concrete elements
with fiber reinforcement are higher than in similar ones without fiber. In particular, under
axial compression, the discrepancy σsc in the samples of expanded clay concrete with fiber
was 18.1% and 12.3%, respectively. The given curves’ analysis shows that in the specimens-
racks with combined reinforcement, the ultimate compressive strains in reinforcement
and concrete were higher than in the same specimens but without fiber. Thus, the actual
limiting values of strains in samples of heavy concrete with µ f = 0 (code T-1) were 2.85·10−3,
and with fiber 3.08·10−3 (Table 9). Even higher values of ultimate compressive strains were
obtained in expanded clay concrete specimens. In particular, in racks made of lightweight
concrete with the code K-3 (without fiber), the ultimate values were εs = 2.65 ·10−3 and
expanded clay BFRC εs = 3.05 ·10−3.

In expanded clay BFRC specimens reinforced with standard hot-rolled steel grade
A400, the actual ultimate compressive strains in the reinforcement were significantly higher
than the ultimate compressive strains recorded in the columns without fibers. With an
eccentric load application, the limiting compressive stresses in the reinforcement of the
compressed zone increased even more (samples with the codes KK-1 and KKF-1). The
absolute values σsc in the reinforcement class A1000 with forces of 0.98Nu reached 520 MPa,
exceeding the standardized SP 63.13330.2018 [30], up to 30%. At the same time, at the
same load level (the forces perceived by the structures during their operation were taken
N = 0.7Nu as the baseline), the actual stresses in the reinforcement of the FRC of the
samples were lower than in the racks without fibers.

It should be noted that, in quantitative terms, the ultimate compressive strains of
concrete in short columns with combined reinforcement with steel of the A400 class and
fiber were lower than those of similar FRC specimens reinforced with high-strength steel of
the A1000 class. Nevertheless, the general tendency to increase the ultimate compressive
strains in samples with fiber is traced during data processing in all tested racks.

Ultimate compressive strain of concrete in specimens with combined reinforcement ex-
ceeded similar strains in specimens without fiber. In the case of axial compression, the abso-
lute values εcu in the racks made of expanded clay BFRC with a section of 120 mm× 200 mm
were from 2.41 ·10−3 to 2.75 ·10−3, and in the samples without fibers, respectively, from
1.94 ·10−3 to 2.21 ·10−3. With an increase in the longitudinal force’s relative eccentricity,
fiber reinforcement efficiency in this group of samples also increased. Therefore, the ulti-
mate values εsc and εcu in the samples with the code KKF-0.15 and KKF-1 exceeded the
normalized ones by 12–18 and 33–46%, respectively.

Figures 7–9 show strains in concrete of prototypes tested with relative eccentricity
e0/h = 0.6 at load values of 60, 90, and 120 kN, respectively. The y-axis represents the
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coordinate of the section height from one tensile edge y = 0 to another compressed y = 13 cm.
The abscissa represents the longitudinal strains of concrete εc in the cross-section y from 0
to 13 cm. The positive area of the diagram refers to the compression zone, negative to the
zone of tension.

Figure 7. Dependence of longitudinal strains in the cross section in columns KK-0.6 (1) and KKF-0.6
(2) at a load of 60 kN.

Figure 8. Dependence of longitudinal strains in the cross section in columns KK-0.6 (1) and KKF-0.6
(2) at a load of 90 kN.
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Figure 9. Dependence of longitudinal strains in the cross section in columns KK-0.6 (1) and KKF-0.6
(2) at a load of 120 kN.

As can be seen in Figure 7, the longitudinal strains of concrete in the cross-section in
the compressed zone of expanded clay of fiber-reinforced concrete elements (blue graph
in the positive area of the diagram) are greater than similar values for specimens without
fiber (red graph in the positive area of the diagram) at the same external load values. In the
tensile zone, the opposite trend is observed: tensile strains are restrained by the fibers and
are noticeably less than the values in expanded clay concrete without fiber.

Figure 8 shows that the tendency of strain in the compressed zone is the same and the
strain of the fiber-reinforced concrete elements is greater than without fiber. In the tensile
zone, it can be seen that, at a given load level, the concrete without fiber has a crack (solid
horizontal red line), while the sample with fiber works without cracks.

Figure 9 shows that at a load of 120 kN, both samples work with a crack in the tension
zone (there are no data on strains in the tensile zone on the graphs), but the sample with
fiber has a crack to a height of 5 cm, and without fiber to 8 cm.

4.3. Redesign of Typical Columns Taking into Account the Increase in Bearing Capacity

To determine the effectiveness of the considering the actual stresses in reinforcement
bars and fiber-reinforced concrete, the standard prefabricated RC column was recalculated.
In the calculation, heavy concrete was replaced by expanded clay concrete of equal strength
(variant 1) and using reinforcement with a resistance of 1000 MPa (variant 2). The design
of standard precast concrete columns is shown in Figure 10.

Figure 10. Scheme of a concrete column.
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A typical precast reinforced concrete column has a cross-sectional area of 300× 300 mm,
length L0 = 4500 mm. Longitudinal reinforcement consists of four rods with a diameter of
28 mm, class A400 (4Ø28 A400).

The calculation of the columns (Table 10), carried out considering the proposals,
showed that the addition of fiber from coarse basalt fiber makes it possible to reduce the
consumption of reinforcement compared to a typical column.

Considering the replacement of heavy concrete with expanded clay concrete with
fiber (option 1), and strain hardening, the consumption of working reinforcement can be
reduced by 12.8% (4Ø22 + 2Ø20 A400). When using reinforcement with a resistance of
1000 MPa in a column, its consumption can be reduced by 23.4% (6Ø20 A1000).

Table 10. Steel spread in a reinforced concrete column when using fiber reinforcement.

Column Type Longitudinal Reinforcement Longitudinal Reinforcement Spread, kg Steel Saving, %

Typical,
b*h = 300 × 300 mm,

L0 = 4500 mm
4Ø28 A400 87.01 0

Variant 1
b*h = 300 × 300 mm,

L0 = 4500 mm
4Ø22 + 2Ø20 A400 75.91 12.8

Variant 2
b*h = 300 × 300 mm,

L0 = 4500 mm
6Ø20 A1000 66.58 23.4

Thus, the correct consideration of the compressive stresses in the reinforcement and
concrete of compressed columns made using fiber from coarse basalt fiber gives a significant
effect, expressed in a significant reduction in steel consumption and a decrease in the mass
of the structure, which in turn reduces transport and installation costs.

5. Discussion

It should be noted that an increase in the actual value of the ultimate compressibility of
concrete in specimens with dispersed reinforcement influenced the change in the complete
strain diagram, with a record of the descending branch.

The strain diagrams of concrete prisms made of heavy concrete on the ascending
branch had a sufficiently steep rise in both conventional and FRC specimens. The actual
ultimate strains for this group of samples turned out to be slightly higher than the stan-
dardized ones. Therefore, at the ultimate stage, they were within 2.70·10−3–3.60·10−3.
However, in strain at the stage of fracture in the descending section, the curves differed
quite significantly.

Figure 11 shows the dependence of the racks’ bearing capacity on the amount of
eccentricity for columns without fiber and with 10% basalt fiber. It can be seen that in the
considered range of relative eccentricity, structures with basalt fibers have a higher bearing
capacity. Similar results were obtained by Wang et al. [31], in which the properties of the
geopolymer concrete crushing reinforced with basalt fiber are investigated. Tests [30] were
carried out for compression, splitting, and three-point bending. The results show that
the addition of 6 to 12% basalt fiber improves compressive strength, tensile strength, and
fracture toughness. Comparison of our results with studies [31] shows that the combination
of FRC with the effective use of high-strength steel reinforcement will increase the columns’
bearing capacity and reduce material consumption.
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Figure 11. Dependence of the bearing capacity of the racks on the magnitude of the eccentricity; 1—without fiber; 2—with
10% basalt fibers.

Ramesh et al. studied the use of concrete reinforced with basalt fiber with a volume
fraction of 0–2% without steel reinforcement [32]. The authors showed that the inclusion
of basalt fibers in 1.5% increases the modulus of rupture while not significantly affecting
the compressive strength. Compared to the control concrete sample, the mechanical
characteristics of concrete reinforced with basalt fiber by 1.5% increase from 9% to 22%.

Comparison with the results obtained by Polskoy (in [33]) shows that reinforcement
with composite materials in the transverse (at e0 = 0) and longitudinal (at e0 = 0.32 h)
directions demonstrated sufficiently high strength. This made it possible to use external
reinforcement to increase the bearing capacity of compressed elements, despite exceeding
the standard values of the section dimensions b/h = 0.2, which is more than 1.5, and the
flexibility of the elements strengthened λh = 20 > λh = 14.

If, for ordinary samples-prisms, the process of destruction proceeded very quickly,
in particular, in the range of load drop up to 0.8Ntheor

u , for samples without fibers it
sharply decreased, after which complete crushing occurred, then for FRC, this section
had a smoother fall, while the strains increased by 1.87 times. The effect of fiber is even
more noticeable on the total strain diagrams for lightweight concrete specimens. If in
ordinary expanded clay concrete samples, the process of destruction occurred, as in heavy
concrete, very intensively (peak longitudinal strain were within 3.10·10−3–3.20·10−3), then
for dispersed reinforced samples, a much more plastic nature of strain is characteristic. A
distinctive feature of the obtained diagrams is the presence of a plastic strain stage, which is
expressed by rather flat horizontal descending sections in the diagram σ = f (ε). In this case,
the descending section’s slope is primarily determined by the nature of the destruction.

Xu et al. [13] showed the possibility of using basalt fiber to develop cement composites,
similar to our results. The authors show that basalt fiber-reinforced concrete exhibits unique
strain hardening and multiple cracking characteristics. The BFC tensile curve is relatively
smooth, which corresponds to the curves obtained in this work in Figure 3. The average
crack width is less than 10 microns and the distance between the cracks is less than 3 mm.
The unique features of the BFRC are interpreted [13] based on the behavior of basalt fibers
as bridges.
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6. Conclusions

This experimental study was aimed at studying the effect of a particular type of fiber
on the strength and strain properties of concrete. The use of high-strength reinforcement in
ordinary concrete is useless due to the limitations of the deformability of the compressed
zone of concrete. The introduction of coarse basalt fiber into the concrete composition
increases the ultimate tensile strength of the concrete. The condition for the compatibility of
work of concrete and reinforcement bars makes it possible to use reinforcement of a higher
strength class, capable of increasing the bearing capacity of the column with increased
deformability. Simultaneously, for calculating the bearing capacity, it is possible to use
the value of the ultimate stresses in the reinforcement 520 MPa, which is 30% higher than
the standard value in SP 63.13330.2018 [30]. Considering this factor in the calculation and
design will make it possible to achieve greater bearing capacity and efficiency of structures
due to the possibility of using reinforcing steel bars with higher resistance.

The addition of 10% fiber from coarse basalt fiber increased fine-grained concrete’s
actual strength with a design strength of 25.0 MPa on ordinary crushed stone by 9.0%, and
structural expanded clay concrete of the same design strength up to 12%. Dispersed fiber
reinforcement had a positive effect on the scale factor. Thus, the difference in cube strength
parameters made of expanded clay concrete with an edge from 7.07 to 15.0 cm reached 7.2%,
and in similar ones with fiber from 1.9 to 3.6. The “narrowing” of the specified parameter
is explained by the introduction of fiber, which creates a “reinforced” cage around the
expanded clay grains, preventing its premature crushing.

It was found that the load level corresponding to the formation of microcracks when
testing prisms made of structural expanded clay FRC was from 29 to 42% higher than
that of ordinary expanded clay concrete. The increase εb in prism samples with fiber on a
conventional aggregate was 12%, and on expanded clay, 26%.

Ultimate compressive strains in BFRC concrete of columns with combined reinforce-
ment were higher than in similar specimens without fibers. Under axial compression, the
absolute values εbR in the uprights on a light aggregate increased by 1.42 times, and on a
heavy one by 1.19 times. In the case of eccentric compression with a relative eccentricity
of 0.6, the values εbR increased even more, while their absolute values 3.6·10−3 in the
expanded clay FRC samples reached, and in similar ones without fibers 2.4 ·10−3.

Under axial compression, the addition of 10% fiber in the samples of expanded
clay concrete and heavy concrete increases the ultimate stresses in the reinforcement in
compression σsc by 18.1 and 12.3%, respectively. With an eccentric load application, the
ultimate compressive stresses in the reinforcement of the compressed zone increased even
more (samples with the codes KK-1 and KKF-1). The absolute values σsc in high-strength
reinforcement class A1000 at forces of 0.98Nu reached 520 MPa, exceeding the standardized
SP 63.13330.2018 by up to 30%, and in column specimens reinforced with hot-rolled steel of
class A400 increased to 19%. At the same time, at the same load level (the forces perceived
by the structures during their operation were taken N = 0.7Nu as the baseline), the actual
compressive stresses in reinforcement and concrete in FRC samples were lower than in
similar resistant ones without fibers.

Analysis of the results of testing short columns for axial compression showed that
prototypes with fiber reinforcement, all other things being equal, had peak load values
that were 11–12% higher than those with conventional reinforcement. At the same time,
the degree of increase in the bearing capacity of the test racks did not significantly depend
on the type of concrete. With an eccentric load application, the actual bearing capacity, in
short, expanded clay BFRC columns exceeding the calculated one by up to 23%.
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