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Abstract: To secure full benefits without jeopardizing project feasibility, sustainability standards in
high-rise building design should be included at all phases of the decision-making process. How-
ever, there are limited empirical studies on the influence of building information modeling (BIM)
implementation in high-rise buildings. Implementing BIM is a viable technique to improve high-rise
building sustainability performance. Therefore, the aim of this research is to explore the influence
of BIM implementation in high-rise buildings by integrating the exploratory factor analysis (EFA)
and structural equation modeling (SEM) approaches. Following a detailed review of the literature
to identify critical success factors (CSFs) for BIM implementation, empirical evidence was gathered
through a questionnaire survey with 205 stakeholders in construction projects. The EFA revealed five
components, namely, productivity, visualization, coordination, sustainability, and safety improve-
ment, all of which have a significant impact on the long-term construction of high-rise buildings.
Moreover, SEM was conducted to develop the model for high-rise buildings. However, it has been
revealed that awareness and usage level of BIM technology in high-rise buildings still appears to be
limited. This scenario paves the way for future researchers to develop more models in the domain of
high-rise buildings in order to improve sustainable development.

Keywords: high-rise buildings; BIM; structural equation modeling; sustainability

1. Introduction

The construction industry can be seen as one of the most important aspects of envi-
ronmental sustainability, given the importance of high-rise buildings in terms of finance,
sustainability, the environment, and quality of life [1]. High-rise buildings are supposed to
be sustainable if their social, economic, and environmental effects on the community are
adequately addressed and contribute to the sustainable development of society [2]. Social
sustainability refers to the ability of people to stay in line with their needs and the require-
ments of future generations. Society’s long-term interests would be served by addressing
the interests of the people who would be affected by the nature of a built environment [3].

Building information modeling (BIM) is a technology for managing construction
projects. The BIM concept was introduced in 1970 by Professor Charles M. Eastman, and
in the mid-year of 2000, construction industries started to implement BIM in construction
projects. In Malaysia, the public works department (PWD) initiated the concept of BIM
implementation in 2007. This move resulted in increased government awareness, reduced
construction costs, and a reduction in design concerns during the planning process. Further-
more, it has been observed that BIM is a collaborative effort among architects, engineers,
project managers, and contractors [4]. In addition, there are two main ways in which BIM
has the potential to boost social sustainability. In the first place, BIM offers an improved
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social living facility design [5]. BIM helps owners to analyze the design and provide infor-
mation before constructing the facility by evaluating a three-dimensional (3D) building
information model. Secondly, the BIM transforms traditional practice into a much more
collaborative work which improves working relations between project participants [6].

On the BIM platform, team members must share their point of view of knowledge
with other members to provide a clear framework for decision-making on the design of the
facility. Moreover, economic sustainability is somewhat harder to quantify, as there are little
data to identify where the green economy is developing [7]. However, it has been shown
that BIM improves the life-cycle cost savings of the built facility. In the past, high-rise
buildings considered sustainable would have cost about 15% more than conventional
buildings at the outset [8]. However, some reports now show that the initial cost of high-
rise buildings is not higher than that of conventional buildings. These buildings are also
attractive resources for facility owners, including the public and commercial sectors [9].
In addition, environmental sustainability reduces emissions of greenhouse gases into the
atmosphere, enhancing the quality of life [10]. The concept of environmental sustainability
has created positive improvements in the built environment, reducing energy use and
natural resource depletion. BIM can improve spatial design, particularly concerning
the assessment of airflow and the overall building ecosystem. While it can be used to
improve an energy simulation, it can also be used to explore the detrimental effects of the
environment in connection with a green assessment [11]. In addition, a high-rise building is
described as “a multi-story structure with a height of 35–100 m (115–328 feet) or a building
with an unknown height varying from 12–39 floors”. Furthermore, the International
Conference on Fire Safety in High-Rise Buildings described a high-rise building as “any
structure whose height has a significant impact on evacuation” [12].

When BIM and sustainability practices are combined, it is necessary to make use of
BIM technologies such as software and plugins, as well as cloud platforms, in order to
enable the assessment of the sustainability of infrastructure and building projects [13].
However, most countries have not been consistent in their adoption and implementa-
tion of BIM efforts and sustainability, with the United States of America and the United
Kingdom leading the way in terms of BIM adoption and sustainability adoption, respec-
tively. Building sustainability is a complicated problem in the construction industry that
requires finding a healthy balance between the three pillars of sustainable development:
social, economic, and environmental [14]. Bringing technology improvements and rais-
ing awareness of sustainability issues into the construction industry has been proposed
as the most effective approach of assisting the built environment in achieving its goal
towards sustainability [15,16]. BIM is currently being used in sustainability practices
such as lifespan cost assessment, sustainable design, renewable resource selection, sewage
treatment, power usage and efficiency [17]. Furthermore, a recent study also looked into
the possibility of BIM to meet the energy demand and interior environmental quality of
construction facilities [18].

Moreover, some studies have been undertaken to investigate BIM implementation
in sustainable buildings; however, they have some limitations [19–21]. For instance,
Chan et al. [22] undertook a survey to identify BIM implementation barriers, however, they
were only able to collect 44 responses. The current analysis, on the other hand, expands the
scope of the study by increasing the number of survey respondents (n = 205). Chan et al. [23]
conducted another study to investigate BIM implementation critical success factors (CSFs),
although they could only discover eleven CSFs. However, the current study added to the
body of knowledge by evaluating twenty CSFs. Furthermore, Xa et al. [24] conducted the
latest study to highlight the essential techniques for improving BIM implementation, but
only collected 116 effective responses.

As a result, in order to explore the influence of BIM implementation in high-rise
buildings, the exploratory factor analysis (EFA) and structural equation modeling (SEM)
approaches were used. For this reason, the EFA may be employed to simplify and extract
information using a small number of dimensions to represent the original data and illustrate
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the complex interaction between variables. At the same time, SEM is a flexible multivariate
statistical technique that accesses the sequence of interdependent correlations between
dependent and independent variables in a measurable manner. To fulfill the aim of the
study, the research objectives are as follows: (a) to explore the awareness level of BIM
technology in high-rise buildings, (b) to highlight the usage of BIM technology in high-
rise buildings, (c) to investigate CSFs of BIM implementation in high-rise buildings and
(d) to develop the model for high-rise buildings in order to enhance sustainability. This
study would explore and generate fresh knowledge gaps, as well as practical requirements
for BIM implementation in high-rise buildings towards sustainability. It would also act
as a theoretical foundation for boosting sustainable growth in the future for high-rise
building projects.

2. Related Works and Research Gaps

In recent years, the use of technology tools such as BIM for high-rise buildings and
project sustainability evaluations have attracted considerable attention from policymakers,
academics, government agencies, and key stakeholders in the construction industry [25].
Several recent 6D BIM applications (i.e., BIM and sustainability) provide for the possibility
of sustainable material selection in construction projects [26]. Furthermore, to encourage the
selection and procurement of low-cost and environmentally sound building materials for
different designs, a decision support system has also been developed (DSS) [27]. Likewise,
other applications of BIM include: (i) life-cycle cost assessment [28], (ii) simulated building
design efficiency [29], (iii) sustainable design [30,31], (iv) building energy analysis [32], (v)
indoor environmental quality [33]. In addition to acknowledging the advancements made
in the development of building environmental performance evaluation tools, there has also
been some criticism that calls for additional research. Along with complexity and geograph-
ical variances, the design of a sustainability index has been criticized for being difficult
to use during the early stages of a project and for ignoring the economic components of
long-term sustainability [34]. The importance of early adoption of sustainability concepts
in driving project decisions and design iterations has been well-emphasized during the
planning and design stages. In particular, the creation of sustainability appraisal tools to
aid experts in making conceptual design selections among various solutions has proven to
be a difficult task [35].

Research on Smart Market, McGraw-Hill Construction, provided an in-depth dis-
cussion of BIM practices. BIM is considered to achieve sustainability and boost building
efficiency objectives [36]. Due to the international push to encourage the use of BIM in
project execution, the construction industry is becoming more familiar with the term. Over
the years, many BIM literature reviews have been published. Whereas some focus on
unique technical aspects of BIM (e.g., potential for rules to be checked to mitigate design
errors) [37–40], others are more general [41,42], and some focus on green building and
sustainable development [43,44]. Wu and Issa [45] point out the synergy between BIM
and green building used to help achieve green objectives and boost sustainable develop-
ment outcomes. Furthermore, Tran et al. [46] conducted a study on CSFs but limited to
sustainable shipping management.

Similarly, a recent study on CSFs was performed, but it was limited to value man-
agement [47]. A further study on the impact of procurement processes on sustainable
building efficiency was conducted, but it was limited to procurement performance [48].
Furthermore, the investigation of CSFs was accompanied and limited to sustainable, af-
fordable housing [49]. Various research on the barriers to sustainable development was
also performed. For example, the barriers to sustainable construction have been identified
but are limited to the Ghanaian construction industry [50]. A recent study was conducted
by Dalirazar and Sabzi [51] on the strategic analysis of barriers and approaches to the
construction of sustainable buildings. Given the above background, it is found that there
is a lack of comprehensive study on the influence of BIM implementation in high-rise
buildings to boost sustainable development.
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Although BIM has become a popular tool in many developed countries to address
construction problems in high-rise buildings, similar attention still needs to be paid to most
developing nations, including Malaysia. Hence, BIM standards need to be implemented
in the Malaysian construction industry due to the significant importance of sustainable
environmental policies, numerous standards, and initiatives over the years [52]. In addition,
the Malaysian government intends to transform the country into a nation that achieves
sustainable growth by the year 2030 [53]. Hence, there is also a need to explore the influence
of BIM implementation in high-rise buildings by integrating the EFA and SEM approaches.
The CSFs obtained from the current literature are presented in Table 1.

Table 1. Critical success factors of BIM implementation.

Code Critical Success Factors References

CSF1 Enhance safety performance parameters [54–58]

CSF2 Increase productivity and efficiency [59,60]

CSF3 More efficient communications [61–63]

CSF4 Better construction planning and monitoring [63–65]

CSF5 Increase sustainable goals [66,67]

CSF6 Promote Transparency [68,69]

CSF7 Improve monitoring and tracking during construction [70–73]

CSF8 Reduce project duration [73]

CSF9 Enhance project quality [74,75]

CSF10 Improve operational and facility management in projects [76,77]

CSF11 Reduce project cost [78–80]

CSF12 Improve organizational image [81–83]

CSF13 Reduced claims and litigation risks [84–86]

CSF14 Prevent and reduce materials wastage [87,88]

CSF15 Improve the accuracy of as-built drawings [89]

CSF16 Reduce clashes in design [90,91]

CSF17 Support project life cycle data [92,93]

CSF18 Better cost estimates and control [94,95]

CSF19 Automated assembly [96]

CSF20 Enhance collaboration between stakeholders [97,98]

3. Research Methodology

The research methodology comprises an extensive literature review, questionnaire
survey, results, discussion, and model development. Figure 1 provides a detailed picture
of the research methodology flowchart. In the first phase of the study, a detailed literature
review was conducted to explore the CSFs of BIM implementation. In the second phase of
the study, a sampling and questionnaire survey were carried out to fulfill the objectives of
the study. In the third phase of the study, results and discussion were conducted to analyze
the findings with the aid of analysis of questionnaire respondents, reliability analysis,
Spearman’s correlation coefficient, the awareness level of BIM technology in high-rise
buildings, usage of BIM technology in high-rise buildings, mean score rank technique,
and exploratory factor analysis (EFA). In addition, in the third phase of the study, model
development was formulated to highlight the influence of BIM implementation on high-rise
buildings towards sustainability. In the fourth phase of the study, theoretical implications
and conclusion were discussed.
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Questionnaire Design and Responses

A pilot survey was undertaken prior to conducting the questionnaire survey to ensure
that all necessary information concerning BIM adoption in high-rise buildings could be ac-
quired in order to increase sustainability. The pilot study was conducted to collect feedback
from seven participants in order to fine-tune the questions before the final questionnaire
survey. The purpose of this pilot study was to test the significance and comprehensiveness
of the questionnaire data. The seven participants were three assistant professors, three
professors, and one postgraduate student involved in the pilot study.

The final questionnaire consists of four parts: (a) general information of respondents
(b) awareness of BIM technology in high-rise buildings, (c) usage of BIM technology
in high-rise buildings, and (d) CSFs of BIM implementation in high-rise buildings. In
addition, it was proposed that the sample size for the SEM approach be greater than
100 [99]. As this study used the SEM approach, a total of 350 questionnaires were sent
out by e-mail, and 205 responses were gathered, resulting in a response rate of 58 percent
overall. The respondents were targeted based on their working experiences in high-rise
building construction, good knowledge of BIM, and ample experience.

4. Results and Discussion

This section comprises analysis of questionnaire respondents followed by reliability
analysis, Spearman’s rank correlation coefficient, awareness level of BIM technology in
high-rise buildings, usage of BIM technology in high-rise buildings, mean score ranking
technique (MS), exploratory factor analysis (EFA), and model development.
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4.1. Analysis of Questionnaire Respondents

The respondents involved in the questionnaire survey were classified according to
their working experience, organizational role, organization type, education, and posi-
tion. Figure 2 explains the breakdown of 205 returned questionnaires by the (a) working
experience, (b) organizational role, (c) organization type, (d) education, and (e) position.
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4.2. Reliability Analysis

Cronbach’s coefficient alpha is used to determine the reliability of respondents. The
reliability coefficient of Cronbach’s alpha is measured in the range of 0 to +1, with higher
values indicating greater reliability [100]. The Cronbach’s coefficient alpha was the most
commonly used metric for determining internal consistency. While the Cronbach’s al-
pha score in this research study was 0.957, it is regarded as reliable and suitable for
additional research.
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4.3. Spearman’s Correlation Coefficient

The Spearman’s correlation coefficient (rs) is computed by the following equation:

rs = 1 −

6
5

∑
n=1

(
d2
)

n(n2 − 1)


Utilizing the Spearman’s correlation coefficient serves the purpose of demonstrating a

relationship between the perspectives of clients and consultants, as well as the opinions
of contractors. The correlation coefficients between all parties were calculated using the
Spearman’s rank correlation coefficients. The coefficient value between the consultants
and contractors is 0.899. The value of correlation between clients and consultants is 0.818,
whereas between clients and contractors it is 0.849. This means that there is a strong
correlation between consultants and contractors, clients and consultants, as well as clients
and contractors.

4.4. Awareness Level of BIM Technology in High-Rise Buildings

The knowledge of BIM in high-rise buildings in Malaysia still appears to be limited.
Five levels of awareness of participants were evaluated, as shown in Figure 3. However,
level three was considered an appropriate level of awareness (moderately aware). Though
6% were in level one (not at all aware), 33% were in level two (slightly aware), 19% were in
level four (somewhat aware), and 7% were in level five (extremely aware).
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4.5. Usage of BIM Technology in High-RFIGUise Buildings

Similarly, since there is a low level of knowledge of BIM technology in high-rise
buildings, the use of BIM technology in high-rise buildings is also limited. It is illustrated
in Figure 4 that 46% of stakeholders had an experience of using BIM technology in the
last 1–2 years, while 42% had an experience of using BIM technology in the last 3–5 years.
However, 8% of stakeholders had used BIM technology in the previous 6–10 years, and
4% had used BIM technology in the previous 11 years. As a result of the above situation
and data review, there is a need to increase the usage of BIM in high-rise buildings to boost
sustainable growth.
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4.6. Mean Score Ranking Technique

The mean score ranking technique (MS) is used to rank the relative relevance of factors
in a quantitative study in order of importance/criticality [101]. The MS technique has
also been used in a number of previous studies [102–105]. The ranking of CSFs for BIM
implementation is divided into four categories based on the results of the data analysis
using the mean value: (a) overall ranking, (b) ranking from the perspective of contractors,
(c) ranking from the perspective of consultants, and (d) ranking from the perspective of
clients. Table 2 depicts a more complete image of the MS technique in greater depth.

Table 2. Ranking of CSFs of BIM implementation.

Code Critical Success Factors

Overall
Respondents

Contractors’
Perspective

Consultants’
Perspective

Client’s
Perspective

Mean
Value Rank Mean

Value Rank Mean
Value Rank Mean

Value Rank

CSF1 Enhance safety
performance parameters 4.19 1 4.01 2 4.09 2 4.41 1

CSF20 Enhance collaboration
between stakeholders 3.89 2 4.05 1 4.10 1 3.60 3

CSF2 Increase stability and efficiency 3.83 3 4.00 3 3.77 4 3.77 2

CSF4 Better construction planning
and monitoring 3.82 4 3.98 4 3.90 3 2.64 12

CSF3 More efficient communications 3.64 5 3.75 6 3.70 5 3.50 4

CSF7 Improve monitoring and tracking
during construction 3.63 6 3.84 5 3.64 6 3.49 5

CSF5 Increase sustainable goals. 3.07 7 3.13 7 3.20 7 2.90 6

CSF6 Promote transparency. 2.96 8 2.94 16 3.03 10 2.87 7

CSF19 Automated assembly 2.92 9 3.11 8 3.05 9 2.68 10

CSF18 Better cost estimates and control 2.89 10 3.01 13 3.14 8 2.56 13

CSF10 Improve operational and facility
management in projects 2.86 11 3.07 10 2.89 14 2.70 9

CSF8 Reduce project duration 2.85 12 3.09 9 2.80 16 2.74 8

CSF12 Improve organizational image 2.84 13 2.90 17 2.98 13 2.65 11

CSF17 Support project life cycle data 2.82 14 3.03 12 3.00 12 2.52 16
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Table 2. Cont.

Code Critical Success Factors

Overall
Respondents

Contractors’
Perspective

Consultants’
Perspective

Client’s
Perspective

Mean
Value Rank Mean

Value Rank Mean
Value Rank Mean

Value Rank

CSF16 Reduce clashes in design 2.80 15 3.05 11 3.02 11 2.50 17

CSF15 Improve the accuracy of
as-built drawings 2.73 16 2.92 15 2.87 15 2.48 18

CSF9 Enhance project quality 2.76 17 2.98 14 2.79 17 2.58 14

CSF14 Prevent and reduce materials wastage 2.66 18 2.78 18 2.77 18 2.46 19

CSF11 Reduce project cost 2.64 19 2.75 19 2.66 20 2.56 15

CSF13 Reduced claims and litigation risks 2.56 20 2.63 20 2.76 19 2.30 20

According to Table 2, the MS value for ‘enhance safety performance parameters’ is 4.19
and it ranks first among all respondents. The ‘enhance collaboration between stakeholders’
factor has MS value of 3.89 and is ranked second. The MS value for ‘increase stability and
efficiency’ is 3.83, and it is ranked third. However, based on contractors’ feedback, ‘enhance
safety performance parameters’ has MS value of 4.01 and is ranked second. ‘Improve
collaboration between stakeholders’ has MS value of 4.05 and is ranked first. The MS value
for ‘increase stability and efficiency’ is 4.00 and is ranked third. Furthermore, according to
consultants’ feedback, ‘enhance safety performance parameters’ remained second, with MS
value of 4.09. ‘Improve collaboration between stakeholders’ is also ranked first, with MS
value of 4.10. However, with MS value of 3.77, ‘increase stability and efficiency’ is ranked
fourth. Furthermore, based on clients’ feedback, ‘enhance safety performance parameters’
has MS value of 4.41 and is ranked first. ‘Improve collaboration between stakeholders’ has
MS value of 3.60 and is ranked third. The MS value for ‘increase stability and efficiency’
is 3.77, and it is ranked second. According to the findings, the common CSFs among
all respondents are to ‘enhance safety performance parameters’, ‘enhance collaboration
between stakeholders’, and ‘increase stability and efficiency’. Perhaps the most unexpected
aspect of the results is the comparatively low rank of ‘reduced claims and litigation risks’,
which has MS value of 2.56. In fact, there is growing evidence that ‘reduced claims and
litigation risks’ are of major importance in implementing BIM and sustainability practices
in the built environment [106].

4.7. Exploratory Factor Analysis (EFA)

The purpose of EFA is to simplify and extract the information data with the aid
of a small number of dimensions for representation and interpretation of original data
structure. Therefore, the two tests were carried out to know the adequacy of the data (a)
Kaiser–Meyer–Olkin (KMO) test and (b) Bartlett test. To confirm that the initial factors have
strong correlations, the KMO test and the Bartlett test must be performed. The KMO test
essentially focuses on the properly distributed values on the factor analysis measurement
sample, which needs a minimum KMO coefficient of 0.8 [107]. In this study, the value of
the KMO test was 0.945, which means that the results are suitable for further analysis. In
addition, the significance of the Bartlett test was 0.000, which was less than 0.01, indicating
that the findings were sufficient for more exploratory factor analysis. Table 3 summarizes
the results of EFA after varimax rotation. The three CSFs with eigenvalues greater than 1
were extracted, having a variance of 74.235%.
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Table 3. Interpretation of total variance in the exploratory factor analysis.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

CSF18 11.728 58.640 58.640 11.728 58.640 58.640 8.178 40.890 40.890

CSF11 2.118 10.588 69.228 2.118 10.588 69.228 3.119 15.596 56.486

CSF17 1.002 5.008 74.235 1.002 5.008 74.235 2.053 10.264 66.750

CSF3 0.762 3.811 78.047 0.762 3.811 78.047 1.678 8.391 75.142

CSF7 0.630 3.148 81.194 0.630 3.148 81.194 1.211 6.053 81.194

CSF4 0.563 2.815 84.010

CSF16 0.408 2.038 86.047

CSF20 0.401 2.007 88.054

CSF9 0.359 1.794 89.848

CSF1 0.310 1.552 91.400

CSF13 0.281 1.403 92.803

CSF12 0.255 1.273 94.076

CSF2 0.220 1.098 95.174

CSF14 0.205 1.026 96.200

CSF15 0.181 0.907 97.106

CSF19 0.150 0.751 97.858

CSF5 0.138 0.692 98.550

CSF8 0.103 0.516 99.065

CSF10 0.099 0.494 99.560

CSF6 0.088 0.440 100.000

Extraction method: principal component analysis.
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A detailed picture of the factor load matrix after rotation is shown in Table 4, along
with the extraction of five groups. Variables with a load factor above or near 0.50 are
suggested to be kept because they significantly contribute to the analysis of the group of
factors [108,109]. In addition, the variable CSF19 (automated assembly) was excluded due
to cross-loading.

Table 4. Factor loading after rotation in exploratory factor analysis.

Code
Component Loading

1 2 3 4 5

Group 1—Productivity

CSF13 0.868 - - - -

CSF14 0.843 - - - -

CSF9 0.831 - - - -

CSF12 0.793 - - - -

CSF15 0.788 - - - -

CSF16 0.710 - - - -

CSF16 * 0.648 - 0.510 - -

Group 2—Visualization

CSF3 - 0.808 - - -

CSF4 - 0.779 - - -

CSF7 - 0.744 - - -

CSF2 - 0.620 - - -

Group 3—Coordination

CSF20 - - 0.778 - -

CSF8 - - 0.665 - -

Group 4—Sustainability

CSF5 - - - 0.747 -

CSF6 - - - 0.646 -

Group 5—Safety Improvement

CSF1 - - - - 0.589

CSF10 - - - - 0.521
Extraction method: principal component analysis. * Excluded due to cross-loading.

As shown in Table 4, the remaining seventeen independent variables are divided
into five significant groups with six variables of group 1, four variables of group 2, two
variables of group 3, two variables of group 4, and two variables of group 5. To encourage
further discussion, it is important to rename the five extracted groups based on the results
of the analysis. The five underlying groups can therefore be named as follows:

• Group 1—Productivity
• Group 2—Visualization
• Group 3—Coordination
• Group 4—Sustainability
• Group 5—Safety Improvement

Despite an excessive emphasis on BIM in construction in many developed countries,
its presence in developing countries is minimal. Malaysia has experienced difficulties
and discrepancies in the building standards, as have many other developing countries.
This shows that these challenges need to be addressed by BIM principles. Practitioners
would significantly increase the decision of senior management to recognize BIM as an
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integrated platform/feature for their high-rise building projects by implementing BIM. As
the analysis results clearly shown that Malaysia has at level three (moderately aware) for
awareness of BIM. It is an alarming situation because, with more emphasis on the usage of
BIM, the construction of high-rise buildings will become more economical and increase
sustainable development. The following section discusses the five groups derived from
EFA and validated by SEM.

Group 1—Productivity

“Productivity” comprises six variables (CSF13, CSF14, CSF9, CSF12, CSF15, CSF16,),
i.e., reduced claims and litigation risks (CSF13), prevent and reduce materials wastage
(CSF14), enhance project quality (CSF9), improve the organizational image (CSF12), im-
prove the accuracy of as-built drawings (CSF15), reduce clashes in design (CSF16). Govern-
ment bodies such as the Building and Industrial Authorities as well as regulators will be of
vital importance in helping to promote sustainable products and technologies. More gov-
ernment bodies will be expected to incorporate BIM at the design stage, where it currently
finds that the application will be needed to promote the practice of sustainability. [110]. It
can be achieved if authorities collaborate with the customer and senior executive to clarify
the expense of the project and shorten the project time to strengthen the reputation of the
organization. Improvements in the BIM implementation towards sustainability procedures
in high-rise buildings will therefore be recorded. In addition, productivity is an essential
component of encouraging sustainable growth in high-rise building projects in order to
foster the image of the enterprise.

Group 2—Visualization

“Visualization” consists of four variables (CSF3, CSF4, CSF7, CSF2), i.e., more efficient
communications (CSF3), better construction planning and monitoring (CSF4), improve
monitoring and tracking during construction (CSF7), and increase stability and efficiency
(CSF2). Visualization technologies have enhanced construction safety by enabling stake-
holders to visually access construction worksites and recognize construction hazards prior
to the construction phase [111]. Visualization is one of the most important features of
BIM implementation in the direction of sustainability due to the increase in construction
safety in high-rise buildings [112]. The knowledge on the safety of the project is combined
with the visualization in order to support the construction workers and to create coor-
dination. In construction education, therefore, BIM is used for an efficient approach to
visualization teaching [113].

Group 3—Coordination

“Coordination” consists of two variables (CSF20 and CSF8), i.e., enhance collaboration
between stakeholders (CSF20) and reduce project duration (CSF8). There has been a
significant rise in the need for high-rise buildings in the building industry [114]. Firms and
governments are becoming more mindful of the maintenance costs of greener construction
solutions over time, and they all are preparing to take advantage of the lifecycle financial
benefits [115]. Therefore, the appointment of an appropriate design and construction team
at the early stage of the project could ensure the successful completion of high-rise building
projects [105]. In addition, according to [116], the breakthrough prospects in high-rise
buildings usually lie at the very early stage of the project. As a result, engaging stakeholders
from the outset would ensure collaboration and creativity in the process. At the same time,
designers are often supposed to be able to possess the knowledge and creative capacity,
and flexibility. However, collaboration is an integration level where stakeholders share
similar responsibilities and collaborate to achieve the expected target [117]. To foster such
an atmosphere, best practices would recommend that all team members be required to
form a team early in the project [118]. This team should be well aware of green construction
standards, and procurement focused on professional accreditation [118].
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Group 4—Sustainability

“Sustainability” consists of two variables (CSF5 and CSF6), i.e., increase sustainable
goals (CSF5) and promote transparency (CSF6). Sustainability is defined as “building
design and construction using methods and materials that are resource-efficient and that
will not compromise the health of the environment or the associated health and well-being
of the building’s occupants, construction workers, the general public, or future genera-
tions” [119]. Green BIM is considered an instrument using sustainable design and building
strategies for informed decision-making at an early stage in the design process and allowing
greater impact on building project effectiveness and efficiency [120]. The use of ‘green BIM’
should not be limited solely to the building sustainability analysis and management, but
also to the entire building life cycle, including (commissioning and occupation), the repair,
maintenance, and demolition phases [34]. Therefore, to achieve sustainable goals and
enhance transparency, the integration of BIM should be made essential in the production
of the building industry.

Group 5—Safety Improvement

“Safety improvement” comprises two variables (CSF1 and CSF10), i.e., enhance safety
performance parameters (CSF1) and improve operational and facility management in
projects (CSF10). In essence, sustainable development is a holistic approach that takes
account of the impact of the built environment on the natural environment. This strategy
requires a balance between the needs of the present and those of the future. The overall
objective of sustainable development is to balance the resulting effects of existing develop-
ment projects and to conserve future generations’ social and environmental resources. In
order to fulfill the increasing challenges of safety, the building projects are accomplished
to meet the safety demand. For this purpose, BIM is the most promising and ever-lasting
technology. By taking a positive approach to workers’ safety and health, the sustainability
and green building movement could be distinguished. Sustainability will be made more
global and the mechanism would rise because of the adequacy of the safety and health of
construction workers in those projects which met the sustainability criteria. The redesign
of sustainable manufacturing construction processes should include the setting of the
production design criteria for health and safety, environmental safety, as well as workplace
safety in the design and evaluation of building processes. During construction, several
accidents occurred due to insufficient coordination among construction workers, which is
why visualization technology provides a forum for successful safety training [121,122].

4.8. Model Development

Based on the findings, it is shown in Figure 5 that visualization has the highest
influence on BIM implementation, with a factor load of 0.89. However, coordination has the
least influence on BIM implementation, with a factor load of 0.62. This highlights the need
for obtaining particular information from stakeholders throughout the project assessment.
Sustainability, on the other hand, has a factor load of 0.74, followed by safety improvement.
Figure 5 shows that all pathways are statistically relevant at 0.01. Furthermore, since BIM
implementation in Malaysia is still in its early stages, 3D drawings can be made quickly
and easily. There is an urgent need to encourage simulation techniques such as virtual
and augmented reality in Malaysian construction projects. BIM-enabled collaboration
within the project team is made possible by modern technical ways of working. The
advanced features of personal protective equipment (PPE), safety sensors, and drone
technology has made it easier to the improve safety performance of construction projects.
Unfortunately, in Malaysia, there is still a demand for these advanced techniques to enhance
safety performance [123].
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5. Theoretical Implications

The principle of sustainable development has been integral to many companies. The
proposed model prescribes BIM implementation, particularly in the area of high-rise
buildings. The CSFs are useful for successful implementation in the Malaysian building
industry in overcoming current barriers to utilize BIM. As a result, this study will decrease
the gap between BIM practice and theory. However, to our best knowledge, there has
been no research carried out in the Malaysian building sector to explore the influence
of BIM implementation specifically focused on high-rise buildings in order to enhance
sustainability. Furthermore, knowledge of awareness of BIM level and usage of BIM
technology also laid a strong foundation for policymakers in the field of sustainability of
high-rise buildings. The findings provide a starting point for scholars who are interested in
further investigating the impact of BIM in developing nations, particularly those working
in the domain of construction engineering and management. This study will lay the
foundation for applying computer simulation techniques to CSFs in Malaysia and other
developing countries by providing a mathematical model for identifying CSFs that can be
used effectively. From a theoretical perspective, this study provides a mathematical basis
for identifying CSFs of BIM that can be used effectively in Malaysia and other developing
countries. Therefore, this study provides a mechanism that can impartially incorporate
BIM to policymakers who are interns.

6. Conclusions and Future Directions

To execute sustainability in high-rise buildings, the influence of implementing BIM
has gained a high degree of global attention in recent times. In the present work, EFA and
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SEM were proposed to explore the influence of implementing BIM in high-rise buildings
in order to boost sustainable growth. It was found that the awareness and usage level of
BIM technology in high-rise buildings in Malaysia still appears to be limited. The EFA was
carried out to extract components and to reduce the data dimension. The SEM was then
applied to access the relationships between factors to execute the model. It was revealed
that five components were identified by EFA; i.e., productivity, visualization, coordination,
sustainability, and safety improvement have a significant influence on the progress of
BIM in high-rise buildings. This study fills the knowledge gap on high-rise buildings in
developing countries and offers valuable information for policymakers and practitioners
concerned with sustainable development. In addition, this study will be valuable and
helpful in ultimately achieving more sustainable growth for international organizations
and stakeholders interested in promoting sustainability in Malaysia. Therefore, in the
future, there is a need to implement and develop a more detailed comprehensive analysis
in different countries with different cultural backgrounds and then compare their findings
to achieve sustainability effectively. It is anticipated that a more complex BIM model would
necessitate more data for building sustainability management and performance tracking,
resulting in increased total building data storage space. Green BIM usage is expected to
increase in the near future, as the tool is used in the construction development process
in many countries. As time goes on, it appears that the reality of implementing BIM for
high-rise buildings is becoming more evident to everyone. Aside from the incentives
provided by the construction industry, there has been an increase in the amount of research
conducted on various aspects of BIM implementation.
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