
applied  
sciences

Article

A Bayesian Network-Based Information Fusion Combined with
DNNs for Robust Video Fire Detection

Byoungjun Kim and Joonwhoan Lee *

����������
�������

Citation: Kim, B.; Lee, J. A Bayesian

Network-Based Information Fusion

Combined with DNNs for Robust

Video Fire Detection. Appl. Sci. 2021,

11, 7624. https://doi.org/10.3390/

app11167624

Academic Editor: José Carlos

Bregieiro Ribeiro

Received: 3 July 2021

Accepted: 16 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea;
breed213@jbnu.ac.kr
* Correspondence: chlee@jbnu.ac.kr; Tel.: +82-63-270-2406

Abstract: Fire is an abnormal event that can cause significant damage to lives and property. Deep
learning approach has made large progress in vision-based fire detection. However, there is still
the problem of false detections due to the objects which have similar fire-like visual properties such
as colors or textures. In the previous video-based approach, Faster Region-based Convolutional
Neural Network (R-CNN) is used to detect the suspected regions of fire (SRoFs), and long short-term
memory (LSTM) accumulates the local features within the bounding boxes to decide a fire in a
short-term period. Then, majority voting of the short-term decisions is taken to make the decision
reliable in a long-term period. To ensure that the final fire decision is more robust, however, this
paper proposes to use a Bayesian network to fuse various types of information. Because there are
so many types of Bayesian network according to the situations or domains where the fire detection
is needed, we construct a simple Bayesian network as an example which combines environmental
information (e.g., humidity) with visual information including the results of location recognition
and smoke detection, and long-term video-based majority voting. Our experiments show that the
Bayesian network successfully improves the fire detection accuracy when compared against the
previous video-based method and the state of art performance has been achieved with a public
dataset. The proposed method also reduces the latency for perfect fire decisions, as compared with
the previous video-based method.

Keywords: deep learning; fire detection; Faster R-CNN; spatiotemporal feature; LSTM; majority
voting; dynamic fire behavior; Bayesian network

1. Introduction

Fire is an atypical event that can cause significant injury and property damage over a
very short time [1]. According to the National Fire Protection Association (NAPA), in 2017,
the United States fire departments responded to an estimated 1,319,500 fires [2], which
were responsible for 3400 civilian fatalities, 14,670 civilian injuries, and an estimated $23
billion in direct property loss. To reduce the number and degree of these disasters, fire
detection that reliably avoids false alarms and misdetection at an early stage is crucial. To
meet this need, a variety of automatic fire detection technologies are widely deployed, with
new technologies under development.

The fire detection technology falls into two broad categories: the traditional fire alarm
and fire detection using computer vision. Traditional fire alarm technology relies on
proximity-activated smoke or heat sensors. The sensors require human involvement to
confirm a fire once the alarm sounds. These systems also require additional equipment
to determine the size, location, and severity of the fire. To overcome these limitations,
researchers have been investigating the possibilities of computer vision-based methods
in combination with various supplementary sensors [3–7]. This category of technologies
provides more comprehensive surveillance, and allows for less human intervention and
faster responses (as a fire can be confirmed without requiring a visit to the fire location),
and provides detailed fire information (including location, size, and severity). Despite
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these advantages, issues with system complexity and false detection have stymied the
development of these systems. As a result, researchers have devoted a great deal of effort
to address these issues to computer vision technology. Early research on computer vision-
based fire detection was focused on fire color, which varies depending on environmental
conditions such as ambient light and weather. Additional studies looked for supplemental
features in addition to color, including area, surface, boundary, and motion of and within
the suspected region, applying various decision-making algorithms (including Bayes
classifier and multi-expert system) to reach a trustworthy decision. With few exceptions,
however, researchers have focused on flame and smoke detection from either a single frame
or a small number of frames of closed-circuit television (CCTV).

Aside from the static and dynamic characteristics of fire that manifest over a short
period, flame and smoke display long-term dynamic behaviors. These dynamic behaviors,
when identified by their distinct motion characteristics (such as the optical flow), extracted
from consecutive frames of a video sequence, and combined with analysis of static char-
acteristics, can be exploited to improve fire detection. However, it is not an easy task to
explore the static and dynamic characteristics of flame and smoke, and exploit them in a
vision-based system, as doing so requires a large amount of domain knowledge. By using
a deep learning approach, however, exploration and exploitation can be performed by a
properly trained neural network. This approach becomes feasible once a sufficient dataset
of flame and smoke images and video clips has been built.

The paper proposes a deep learning-based fire detection method, known as detection
and temporal accumulations (DTA), which imitates the human fire detection process [3].
In DTA, the suspected region of fire (SRoF) is detected by the Faster Region-based Convo-
lutional Neural Network (R-CNN) using the fire’s spatial features as they appear against
non-fire objects. Next, features summarized by the object detection model across successive
frames are accumulated by long short-term memory (LSTM), which classifies images based
on whether there is a fire or not across a short-term period. The decisions for successive
short-term periods are then combined in the majority voting for the decision in a long-
term period. SRoF areas, including both flame and smoke, are then calculated, and their
temporal changes are reported to incorporate the dynamic fire behavior into the final
fire decision.

However, the DTA assigned no role to environmental information (such as humidity,
weather conditions, fire location) in improving the performance of fire detection. Some
information, such as fireplaces location and the existence of smoke, can be obtained from
the same visual sources as used by Faster R-CNN, but other environmental information,
such as humidity or weather conditions, must be obtained from other sensors. This paper
proposes to use Bayesian network to combine all of this information to improve the accuracy
and the latency of perfect fire detection. This extended version of DTA is called Detection
and Temporal Accumulation with Information Fusion (DTAIF).

Experiments show that a simple Bayesian network can improve the fire detection
accuracy when compared with the prior exclusively video-based method, and results in
the state of art performance when applied to the public dataset. The proposed method
with the simple Bayesian network also reduces the time to reach (latency for) a perfect
fire decision as compared to the prior video-based method. Although a simple Bayesian
network is designed here only to show the potential, we believe such systems that combine
all sensor information by Bayesian net are useful for improving fire detection performance.
In addition to DTA-based fire decision approach, our contributions can be summarized
as follows.

The Bayesian network-based information fusion combined with deep neural net
(DNNs) goes one step further than previous DTA, whereby SRoFs were detected in a scene
and the temporal behaviors were continuously monitored and accumulated to ultimately
decide whether a fire existed. Humans, however, do not determine the existence of fire,
based solely on the localized visual behavior within a fire-like region. In addition to location
of the scene, people account for environmental information, such as humidity and weather
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conditions, to make robust decision. In order to further emulate this human approach, this
paper proposes to use a Bayesian network that fuses various kinds of information (DTAIF).
To verify the proposition, a simple Bayesian network is designed as an example and its
effectiveness is shown in terms of accuracy and latency for fire decision in the experiments.

The remainder of this paper is organized as follows. Related work is introduced in
Section 2, the details of our proposed method are given in Section 3, and our experimental
results and discussions are presented in Section 4. In Section 5, we offer our concluding
remarks.

2. Related Works

As the conventional computer vision techniques, the traditional vision-based fire de-
tection is decomposed into two parts: exploration of appropriate features and exploitation
of them for fire decision. Colors of flame and smoke are important for identifying fire region
in a still image even though they generally vulnerable to a variety of environmental fac-
tors [6–9]. Borges and Izquierdo [10] adopted the Bayes classifier with additional features,
including area, surface, and boundary of the fire area. Mueller proposed to use optical flow,
a simple type of short-term dynamic feature, for the fire area and the neural network-based
decision method [11]. Foggia [12] proposed a multi-expert system for reliable decision
that combined the results of an analysis of a fire’s color, shape, and motion characteristics.
Although they were insufficient to detect a fire on their own, supplementary features, such
as texture, shape, and optical flow, were helpful to reduce false detections.

Dimitropoulos et al. [13] modeled the fire behavior by employing various spatial-
temporal features, such as color probability, flickering, spatial, and spatial-temporal energy.
Lin et al. [14] used several general volume local binary patterns to extract dynamic texture,
including LBPTOP, VLBP, CLBPTOP, and CVLBP. Furthermore, dynamic texture descriptors
were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP) [15].
All these conventional dynamic texture analyses require domain knowledge of fires on
captured images. Moreover, almost all methods account for the short-term dynamic
behavior of fire, while a fire has longer-term dynamic behavior.

In recent years, deep learning has been successfully applied to diverse areas such as
object detection/classification in images, and researchers have conducted several studies on
fire detection to explore whether and how deep learning can improve performance [16–19].

The DNN-based approach has several differences from conventional vision-based fire
detection. Because the visual features of fire are automatically explored in the multi-layered
convolutional neural network (CNN) by training, the effort to identify proper handcrafted
features is unnecessary. In addition, the detector/classifier can be obtained by the training
simultaneously in the same DNN. Therefore, the appropriate network structure becomes
more important with an efficient training algorithm. In addition, DNN training requires
a large amount of data for exploring features and determining classifier/detector that
exploits them.

Sebastien [17] proposed a fire detection method based on CNN feature extraction,
and followed by a multilayer perceptron (MLP)-type classifier. Zhang et al. [18] also
proposed a CNN-based fire detection method operated in a cascaded fashion; at first, the
global image-level fire classifier was used, then a fine-grained patch classifier for precisely
localizing the fire. Muhammad et al. also proposed a fine-tuned CNN fire detector [19],
and recently developed an efficient CNN architecture for fire detection, localization, and
semantic understanding of the scene of the fire [20].

Xie et al. [21] exploited a simple region of interest (ROI) detection method using
motion-flicker-based dynamic features to try to finely decide the ROI whether it is a fire or
not by a CNN-based classifier. Yang et al. [22] proposed a lightweight fire detection inspired
by MobileNet. Li et al. [23] also adopted object detection models including Faster R-CNN,
R-FCN, SSD, and YOLO v.3 for fire detection. Furthermore, Jadon et al. [24] proposed
another lightweight real-time fire and smoke detection model, which they named Firenet.
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Even though DNN showed superior image-level fire classification performance against
traditional computer vision approach, locating objects has been another problem as, for
example, in Zhang’s cascade approach. The deep object detection model is the right way to
simultaneously solve both problems of fire classification and localization, as evidenced by
Li’s method.

In DTA [3], a Faster R-CNN object detection model was also adopted to localize SRoFs.
Then, the dynamic behavior of fire extracted by long short-term memory (LSTM) [25] in
the localized regions was exploited in the short-term fire decision. Thereafter, to make the
decision reliable, the short-term decisions were then combined for a final fire decision over
a long-term period by majority voting. Note that the DTA method exploits both spatial
and short-term temporal features, and uses them for fire decision in an ensemble fashion.
However, it was not enough because only a limited amount of visual information included
in video clips was exploited, and the environmental information from other sensors for
fire decision was not included. In addition, the specific domain knowledge where the fire
detection system operates was hard to incorporate with the previous DTA method.

3. Proposed Method
3.1. Network Architecture and Timing Diagram

We proposed a deep learning-based fire detection method, which imitates the human
fire detection process, called DTA [3]. Using this method, we could discriminate fire or
smoke from an evening glow, clouds, and chimney smoke, which are difficult to differenti-
ate from still images. In this paper, the new extended architecture (DTAIF) can be divided
into five components as shown in Figure 1.

The first three sections are identical to DTA, i.e., Faster R-CNN for fire object detection
in the video frames in the first section (Refer Section 3.2), the learned spatial features
accumulation by LSTM and short-term fire decision in the second section, and the majority
voting stage for long-term fire decision in the third section (Refer Section 3.4).

In the extended approach of DTAIF, we added a location classifier (Refer Section 3.3)
and smoke detector as the fourth component. The location classifier was based on the
extracted features from the backbone ResNet152 structure of Faster R-CNN, which also
provides smoke detection results. The categories of the locations examined are “building,”
“traffic (car, train, ship),” “street,” “forest or mountain,” “other places (bonfire, garbage,
and so on),” and “irrelevant place for fire (sky, sea, and so on).” Once it was established
that the location was one that has a probability of fire (i.e., all locations except “irrelevant
place for fire”), the input was treated as a dangerous place in the corresponding node of
the Bayesian net.

Location identified in every frame but the averaged probability of each location was
taken throughout the video. The smoke detection state was “yes” if more than half the
frames include smoke objects during the period. In the fifth section of Bayesian net (Refer
Section 3.5), all available information was combined to make the final decision regarding
the presence of fire.

There were two groups of information sources in this section of the Bayesian net: visual
analysis of a video clip and other sensors. The results of the majority voting for a long-term
decision, the location classifier, and the result of the smoke detector from Faster R-CNN
were based on the information obtained from video analysis. Many different sensors may
have aided in fire detection, measuring temperature, wind speed, and humidity. However,
the temperature is weakly related with the fire occurrence, and the wind speed affects the
spreading of a fire after breaking. Therefore, we only considered humidity in our simple
Bayesian network. Note that the humidity is not only a critical factor of a fire, but also gives
an important clue to prevent false fire-decision from cloud, haze, mist, or fog. Because
we did not gather enough concurrent data to learn the Bayesian net, the structure and
its associated conditional probability tables were reasonably presumed. Additionally, the
specific domain knowledge where the fire detection system operates could be successfully
considered in the Bayesian net.
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Figure 1. The proposed network architecture [26].

The timing of the proposed method was important to install in a real system and
could be adjusted depending on the situation where it operates. Figure 2 presents a timing
diagram that shows the decision period for each block. All timing periods were the same
as in the previous paper [3], except the timing for Bayesian inference. The fire objects
with smoke were detected for each frame of video, and the CNN spatial features of Faster
R-CNN were temporally accumulated for a period to make a short-term decision. (Refer
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Section 3.2) The short-term fire decision for every TLSTM was involved in the majority
voting process for every time-period Tvot., which implies that the fire decision based only
on visual analysis of a video clip was repeated for every Tvot. Because all results of the
averaged location classifier and the long-term smoke detector were available at every Tvot,
the final decision in our Bayesian net was made at the same time interval as Tvot. In other
words, Tvot = TBayes.
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Figure 2. Timing diagram of fire detection [26].

In addition, the areas of flame and smoke were calculated for each frame and smoothed
by taking the average over Tave. Changes in the average area in video frames were reported
with other additional information at every time instant Trep. For convenience, we assumed
that Trep = Tvot = TBayes. The details of this interpreter of long-term dynamic behavior
were identical to our previous method [3], except that here the identified location was
accounted for [26]. The exact timing for each block depended on the situation where the fire
detection system with our proposed method operates, and could be adjusted accordingly.

3.2. Faster R-CNN for Fire Object Detection

As in DTA, Faster R-CNN results in the bounding boxes of flame, smoke, and non-fire
regions in an image, as shown in Figure 3. The ConvNet backbone ResNet152 extracts
visual features for location classification of the fire scene. The samples of training images
are shown in Figure 3, which includes flame, smoke, and non-fire objects. As in Figure 4,
there are some hard-negative examples included in non-fire objects that resemble real
fire objects, such as sunset, misty street, and cloud. The bounding boxes enclosing flame
and smoke objects were treated individually as SRoFs. A non-fire object may have been
enclosed by a bounding box if it was a hard-negative example, otherwise, it included the
whole frame as a bounding box.
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Figure 4. Sample images for training Faster R-CNN; (a), (b), and (c) are fire, smoke, and non-fire
images, respectively [3].

Smoke objects were detected at every frame and merged to decide the state of smoke
during TBayes.. The smoke detection result was “S = yes” if the number of frames which
detect the smoke object with a threshold of confidence of 0.5 was more than half of the total
frames during TBayes..

3.3. Spatiotemporal Feature Extraction and Place Classifier

The coordinates of the bounding boxes that enclose flame, smoke, and non-fire objects
were projected on the n× n× d activation map to extract the spatial features. Here, we
extracted them in the last layer of ResNet152 which is a backbone of object detector (Here,
d = 1024) [3]. For detected object regions of SRoF the weighted global average pooling
(GAP) was taken on the bounding boxes, but just GAP was taken on the whole image when
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there is no SRoF. The d-dimensional feature for successive frames were fed into LSTM to
explore temporal behavior of video clip.

As previously mentioned, the place classification for location identification shares
the same feature maps of the last layer of ResNet152. Because the location could be
captured in a whole image, however, we took GAP for each feature map and constructed
a d-dimensional feature to classify the location of the fire, as shown in Figure 5. The
SoftMax classifier was used for every frame and the average probability of a particular
location among six categories was calculated for a given set of video frames to make a
stable scene-level decision. In our Bayesian net, we did not use all six classes of locations,
but classified them into fire-prone or fire-irrelevant locations. Note that the place classifier
was constructed efficiently by sharing the feature maps of Faster R-CNN and could provide
stable classification by taking ensemble averages over consecutive frames in a scene.
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3.4. LSTM for Short-Term and Majority Voting for Long-Term Fire Decision

We aggregated the changes in the extracted spatial features using two-stage LSTM
network in a short period, and determined whether it was a fire or a non-fire object at every
TLSTM [3]. Figure 6 shows the part of LSTM network used to accumulate and decide a fire
in a short-term period.

Because the data for training the LSTM network should be videos clips differently
from those for Faster R-CNN. We collected video clips of fire and non-fire, and constructed
a dataset, from which many frames were extracted and added for training Faster R-CNN.
The consecutive d-dimensional spatial features calculated from the trained Faster R-CNN
for a video clips were prepared as input streams for the LSTM training.

As the same way as in DTA [3], the LSTM network reflects a temporal behavior in
a short-term period, such as a person’s quick glance, and its decisions are integrated by
taking majority voting to make a reliable fire decision in a long-term period Tvot. The fire
decision in this stage was made by the ratio of fire to non-fire decisions during the time
window Tvot, and fed into Bayesian net as a prior probability of fire P(F).
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3.5. Bayesian Network for Incorporation of all Information into Final Decision

In general, people determine the existence of a fire not only based on its spatial and
temporal behavior, but also about the place where it happens and environmental factors
such as humidity and other weather conditions. For robust fire decisions, various types of
data measured from diverse sensors can be combined with video data. We propose to use
a Bayesian network to combine all this information to improve fire decisions.

According to the types of sensors and the situations where they operate, however,
there could be many domain-specific Bayesian networks. Therefore, we confined to the
outdoor fires where only crude humidity information was assumed to be known. Due
to the lack of domain-specific data, we tried to extract all visual information from video
frames as much as possible, including the long-term fire decision, the place category, and
the existence of smoke. If there was a sufficient number of concurrent data, the Bayesian
network could also be trained by the machine learning algorithm. Unfortunately, we did
not have such data, so a simple Bayesian net was constructed as an example to validate our
suggestion.

In general, the Bayesian network can also reflect the domain-specific knowledge that
is essential to an accurate determination of fire. In addition, location can be finely identified
at the point of interest (POI) level within the specific scene where a fire-like event always
occurs. For example, a factory chimney that produces smoke can be visually identified and
properly reflected in the construction of a domain-specific Bayesian network.

In this paper, however, we should have exploited generic domain knowledge to design
a simple Bayesian net with four nodes, as an example shown in Figure 7. The nodes were
“Fire (F),” “Cloud/Smoke (S),” “Dangerous Place (D),” and “Humidity (H).” Here, to
simplify the conditional probability table, we assumed that nodes F, S, and D, has binary
states, such that “F = yes or no,” “S = yes or no,” and “D = yes or no”. The exception is H,
which has ternary states, including “Wet, Normal, or Dry”.

A priori probability of fire, P(F) is decided from the ratio of majority voting. Note
that the ratio of the summed probability of SoftMax at the end of the LSTM stage could be
alternatively taken for P(F).

If the maximum averaged probability of location is for “building,” “traffic (car, train,
ship),” “street,” “forest or mountain,” “etc. (bonfire, garbage, and so on),” then D = yes. In
general, almost all location categories are prone to fire except “irrelevant place for fire (sky,
sea, and so on).” If the Faster R-CNN detects smoke in more than half the frames during
tvot, then S = yes. All these state values are obtained from video analysis. One may obtain
the state value from a humidity sensor, but there was no concurrent sensor data to the
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video in our experiment. So, the state of H was set to “Normal” whenever no additional
description is given in the experiment.
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Figure 7. Example of Bayesian Network [26].

Examples of conditional probability tables are assumed as in Tables 1–3. We attempted
to set reasonable conditional probabilities according to the general situations where it
happens. Tables 1 and 2 show the probabilities of humidity and location conditioned on
the fire decision based on the analysis of visual input from a video clip. Table 3 shows the
conditional probability of smoke. In the table, the fog on the sea or lake is imagined, and
the fire in wet conditions well produces smoke in rows (1) and (2), respectively, as examples.
If the situation is ambiguous, then the equal probabilities are assumed in the table. Note
that if the concurrent data were sufficiently collected, the structure and corresponding
conditional probability table could be determined by training.

Table 1. Conditional Probability P(H/F) [26].

H/F Dry Normal Wet

No 0.2 0.3 0.5
Yes 0.5 0.3 0.2

Table 2. Conditional Probability P(D/F) [26].

D/F No Yes

No 0.7 0.3
Yes 0.3 0.7

Table 3. Conditional Probability P(S|F, D, H) [26].

F H D S = No S = Yes

No

Dry No 0.9 0.1
Dry Yes 0.5 0.5

Normal No 0.7 0.3
Normal Yes 0.5 0.5

Wet No 0.4 0.6
Wet Yes 0.1 0.9

Yes

Dry No 0.8 0.2
Dry Yes 0.5 0.5

Normal No 0.6 0.4
Normal Yes 0.5 0.5

Wet No 0.4 0.6
Wet Yes 0.3 0.7
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Once the state of each node was determined, the posterior probability of root node
“fire” could be calculated by

P(F|H, D, S) =
P(F, H, D, S)

P(H, D, S)
=

P(F, H, D, S)
∑F=yes/no P(F, H, D, S)′

(1)

where
P(F, H, D, S) = P(H|F)P(D|F)P(S|F, H, D)P(F) (2)

where represents the probability of “Fire” determined from the ratio of majority voting.
Our simple Bayesian network is designed merely to show the effectiveness of information
fusion for better fire decision.

4. Experimental Results and Discussions

Our method cannot use end-to-end training, because there are non-differentiable
operations such as majority voting in the composite network. The Faster R-CNN, place
classifier, and LSTM stages should be separately trained in the method. We used the
libraries of ‘Python 3.5’, ‘OpenCV 3.0’, and ‘TensorFlow 1.5’ for designing deep learning
models, and ‘pgmpy’ for constructing Bayesian net.

4.1. Training Faster R-CNN and Its Performance

The dataset for training and test the Faster R-CNN was constructed by 81,810 still
images, including 25,400 flame images and 25,410 smoke images collected from several data
sources including YouTube video clips, the previous works [7,27–29], and the Flickr-fire
dataset. There were 31,000 non-fire images included in the dataset. The images were
divided into 70% for training, 10% for validation, and 20% for test data. For training, the
positive data were augmented by a horizontal flip of bounding a bounding box. Note that a
fire should have the consistent shape after taking augmentation. Table 4 shows the training
parameters for Faster R-CNN.

Table 4. Training Parameters of Faster R-CNN [26].

Parameter Method

Iteration 250,000
Step size 70,000/150,000

Weight decay 0.0004
Learning rate 0.001

Learning rate decay 0.1
Batch size 1

Pre-train weight ResNet152(ImageNet)
RPN mini-batch size 256
OHEM sample size 256

The performance of the Faster R-CNN was measured by mean average precision
(MAP) and is shown in Table 5, which is a better result than the previous paper due to the
elaborate training method such as hard negative example mining. These include several
false positive detections for clouds, chimney smoke, lighting lamp, steam, etc., which are
almost undetectable without considering the temporal characteristics as shown in Figure 8.

Table 5. mAP of Faster R-CNN [26].

mAP Flame Smoke Non-fire

88.76 88.92 88.75 88.61
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4.2. Training LSTM and Its Performance before and after Majority Voting

For the training of LSTM following Faster R-CNN, we collected 1709 video clips from
YouTube, comprising 872 clips of fire, and 837 of non-fire, where a huge number of positive
and negative frames were included. Figure 9 shows sample still shots of the video dataset.
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LSTM training [26]. The (a) images are taken from videos of fire accident, while the (b) images are
from non-fire video clips.

For training the LSTM network the video clips were divided into 60 consecutive
frames with 30 frames of overlap, which implies that the LSTMs captured every 2 s of
dynamic behavior of successive frames, but the decision in LSTM network was made for
every second, i.e., TLSTM = 1 s, if 30 frames per a second were assumed. As the same
way as the training of Faster R-CNN, 70% of the data were selected for training, 10% for
validation, and 20% for testing. From each video clip, we obtained d-dimensional feature
for every consecutive frame as stated in Section 3.3, and fed into LSTM. Note that Faster
R-CNN may not properly detect fire objects in some frames even though the frames are
from a fire video sequence. In such cases, instead of WGAP, the GAP was taken for the
undetected frames and used to make the d-dimensional feature for LSTM input, just as it
would have been in a “non-fire” scenario.

Table 6 shows the parameters of LSTM training, and the performance of the test data
is shown in Table 7 depending on the number of memory cells in LSTM.
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Table 6. Training Parameters of LSTM [26].

Parameter Method

Input size 1024
Time Step 60

LSTM cell unit 128/256/512/1024
Learning rate 0.0001
Weight decay 0.0004

Batch size 256
Epoch 200

Weight initialization Xavier
Dropout 0.5

Table 7. Performance of test video clips for LSTM hidden cell unit [26].

Method Accuracy (%)

Hidden cell unit = 128 95.36
Hidden cell unit = 256 96.52
Hidden cell unit = 512 97.43
Hidden cell unit = 1024 97.07

To compare the performance with other methods, we evaluated the results on the
public dataset in [12]. Unfortunately, however, the Foggia dataset includes a video clip that
lasts only 4 s, which made it hard to completely validate the proposed method that works
well for long video clips. So, there were only three times of fire decision in LSTM to take
the majority voting due to the short clip, i.e., Tvot = 3TLSTM.

Table 8 compares our model’s performance against other methods. Our method
provided the most accurate fire detection when there were 512 memory cells in the LSTM
network.

Table 8. Performance comparison with other methods [26].

Methods False
Positive (%)

False
Negative (%) Accuracy (%)

Proposed method
(hidden cell unit = 512) 3.04 1.72 95.00

Proposed method
(Tvot = 3TLSTM) 2.46 1.45 97.68

Khan Muhammad et al. [19] 0.00 0.14 95.86
Foggia et al. [12] 11.67 0.00 93.55
De Lascio et al. [30] 13.33 0.00 92.86
Habibugle et al. [31] 5.88 14.29 90.32
Rafiee et al. (YUV) [32] 17.65 7.14 74.20
Celik et al. [6] 29.41 0.00 83.87
Chen et al. [8] 11.76 14.29 87.1
Yakun xie et al. [22] 2.33 0.84 97.94
Arpit Jadon et al. [24] 1.23 2.25 96.53

In Table 8, the proposed method after majority voting results in 97.68% of accuracy,
2.64% of the false-positive rate, and 1.45% of false-negative rate, is inferior to other CNN-
based methods proposed by Khan Muhammad et al. [19], Yakun xie et al. [21], and Arpit
Jadon et al. [24]. The result implies the majority voting after LSTM fire decisions in this
Foggia dataset is not proper to improve the performance due to the short duration of
video clip.

4.3. Training Place Classifier and Its Performance

For training and testing of the location classifier, we selected data from well-known
datasets, including the Intel scene classification challenge dataset [33], the scene under-
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standing (SUN) dataset [34], the ImageNet dataset [35], among others [36–38]. We also
included frames from 70 video clips from YouTube that contained a sunset, a bonfire, and a
dumping ground. The total number of images was 330,000, of which about 55,000 images
were included for each place category. For the place classifier, 70% of the data were selected
for training, 10% for validation, and 20% for testing. Figure 10 shows typical images
for location categorization. As explained in Section 3.3, 1024 dimensional features were
extracted to feed into the softmax classifier for place classifier. Table 9 shows the hyper
parameters for training the place classifier.
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(b) are traffic, etc., and irrelevant [26].

Table 9. Training Parameters of place classifier [26].

Parameter Method

Input size 1024
Learning rate 0.01

Learning rate decay 0.01 (step:50, 150)
Weight decay 0.0004

Batch size 128
Epoch 250

Weight initialization Xavier

The accuracy was 96.12% (of Top-1) and 98.24% (of Top-2) for six categories. The
Top-1 accuracy of two classes—“fire-prone” and “irrelevant to fire”—was 98.93%, which is
meaningful for deciding the binary states of D in our Bayesian net.

4.4. Experiemts including Bayesian Network

In order to evaluate the performance of Bayesian network, we took the Foggia dataset
again and obtained all the visual information, including the results of majority voting,
smoke detection, and place classification. The dataset does only contained video clips, and
there was little information to infer the state of humidity in the visual contents. So, we
set the state of humidity as “Normal” and performed the inference by Bayesian network.
Table 10 summarizes the results.
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Table 10. Performance comparison with other methods.

Methods False
Positive (%)

False
Negative (%) Accuracy (%)

Proposed method
(Tvot = 3TLSTM) [26] 2.46 1.45 97.68

Proposed method
(TBayes = Tvot = 3TLSTM) [26] 1.56 1.45 98.45

Khan Muhammad et al. [19] 0.00 0.14 95.86
Yakun xie et al. [21] 2.33 0.84 97.94

Arpit Jadon et al. [24] 1.23 2.25 96.53

The table represents that our simple Bayesian net increases 0.77% of accuracy, and
reduces 0.90% of the false-positive rate. This implies the additional visual information
combined with the Bayesian network, such as the place category and the existence of
smoke, can help to improve the fire-detection performance, even though the humidity is
set to “Normal”.

To sufficiently validate the voting process and Bayesian network, we have collected 40
additional video clips from YouTube which have relatively long-playing times between 4.5
and 6.3 min. Table 11 shows an overview of the fire/non-fire video clips with summarized
interpretations of the dynamic behaviors. The set of 11 non-fire video clips consists of
fire-like sunset, cloud, and chimney smoke scenes that are easily false detected. Figure 11
shows samples of still shots from the video dataset, which may be useful to longer-term
experiments.

Table 11. Collected video clips from YouTube [26].

Fire State
Change Interpretation Number of

Video Clips

Decreasing Decreasing flame/
Increasing smoke or steam 9

Increasing Increasing flame 9
Maintaining Sustain flame/smoke 11

Non-fire False object 11
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We picked arbitrarily six video clips as in Figure 11, and observed the changes in the
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probability of fire before and after inference to check the effectiveness of our Bayesian net.
In the experiment, the humidity state was presumed and set to “Dry”,” Wet”, or “Normal”,
depending on the video content after watching, because there was no information on
humidity attached to each video clip.

Table 12 shows the change in the probabilities. All the results in the table show that a
posteriori probability is improved for accurate decision except case 6, in which wrong place
decision reduces the probability of fire after Bayesian inference. Note that the place was
classified as “sea”, which is irrelevant to fire. The finely categorized places, according to the
domain where the fire detection works, for example, “ship”, “harbor” or “open sea” in the
case, can remedy the problem. Note that a posteriori probability after Bayesian inference
can help to improve the fire decision in this example.

Table 12. Changes in the probability of fire before and after Bayesian inference [26].

Case Fire(GT) Set H
Visual Analysis

P(F|D,H,S) Result
P(F) D S

(a) Yes Dry 0.6 Yes No 0.897 Yes
(b) No Wet 0.3 Yes Yes 0.055 No
(c) No Normal 0.5 No Yes 0.364 No
(d) Yes Normal 0.8 Yes Yes 0.903 Yes
(e) Yes Normal 0.6 Yes Yes 0.777 Yes
(f) Yes Normal 0.8 No Yes 0.595 Yes

For the collected dataset, we extended the period Tvot = TBayes, because the video
clips were long enough. The accuracy depended on the length of the decision period, as
shown in Table 13. In the experiment, we set humidity as Normal because there was no
information about the humidity.

Table 13. Accuracy comparison depending on the decision interval and Bayesian network [26].

Decision
Interval

(Tvot = TBayes)
30 s 1 min 1 min 30 s 2 min 2 min 30 s 3 min

Majority voting 96.3% 97.8% 98.5% 99.4% 100% 100%
Bayesian net 97.6% 98.5% 99.3% 100% 100% 100%

Note that we obtained perfect accuracy using the majority voting method independent
of Bayesian inference when the time interval is long enough. This implies that the ensemble
of majority voting is as reliable as a human fire detecting, based on its long-time dynamic
behavior. Furthermore, the additional Bayesian network is helpful to reduce the time
interval for making perfect decisions. Not that the latency is an important factor, because
early fire detection is critical not to spread a fire.

We want to reiterate that our process is similar to a human’s fire decision. If a person
were only to rely on the dynamic behavior of local visual information (such as the behavior
in SRoF), although they would ultimately reach the correct conclusion, it would take
significant time. On the other hand, however, a person accounted for the overall location
circumstances where fires happen, along with other environmental information, meaning
the conclusion could be reached faster.

Table 14 shows the overall analysis results, which includes the changes in the area of
smoke (or steam) and flame measured in the number of pixels with temporal changes in
the ratio of voting, the Bayesian inference result, the classified place category, and the result
of smoke detection for video clips in Figure 12. In our experiment, we set Tvot = TBayes = 1
min and assume the presumable humidity states depending on the content of the video
after watching.
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Table 14. Experimental results for Figure 11 [26].

Figure Humidity Time Ratio of Voting Top-1 Place
Classification

Smoke
Detection

Bayesian
Network Result

Area of
Flame

Area of
Smoke

(a) Normal

1 min fire: 0.93, non-fire: 0.07 building: 0.84 yes fire: 0.968, non-fire: 0.032 43.2 834.8
2 min fire: 0.95, non-fire: 0.05 building: 0.89 yes fire: 0.977, non-fire: 0.023 13.9 841.7
3 min fire: 0.92, non-fire: 0.08 building: 0.87 yes fire: 0.964, non-fire: 0.036 48.7 947.5
4 min fire: 0.94, non-fire: 0.06 building: 0.76 yes fire: 0.973, non-fire: 0.027 237.8 1238.5

(b) Dry

1 min fire: 0.87, non-fire: 0.13 building: 0.71 yes fire: 0.975, non-fire: 0.025 53.4 449.2
2 min fire: 0.92, non-fire: 0.08 building: 0.75 yes fire: 0.985, non-fire: 0.015 67.9 372.8
3 min fire: 0.95, non-fire: 0.05 building: 0.79 yes fire: 0.991, non-fire: 0.009 294.7 691.3
4 min fire: 0.94, non-fire: 0.06 building: 0.78 yes fire: 0.989, non-fire: 0.011 319.6 538.1

(c) Wet

1 min fire: 0.1 non-fire: 0.9 forest or mountain: 0.84 yes fire: 0.075, non-fire: 0.925 0 682.9
2 min fire: 0.08, non-fire: 0.92 forest or mountain: 0.87 yes fire: 0.059, non-fire: 0.941 0 685.7
3 min fire: 0.08, non-fire: 0.92 forest or mountain: 0.82 yes fire: 0.059, non-fire: 0.941 0 694.6
4 min fire: 0.07, non-fire: 0.93 forest or mountain: 0.86 yes fire: 0.051, non-fire: 0.949 0 688.4

(d) Normal

1 min fire: 0.13, non-fire: 0.87 irrelevant place: 0.83 yes fire: 0.079, non-fire: 0.921 78.4 218.9
2 min fire: 0.08, non-fire: 0.92 irrelevant place: 0.85 no fire: 0.047, non-fire: 0.953 23.7 0
3 min fire: 0.1, non-fire: 0.9 irrelevant place: 0.87 no fire: 0.039, non-fire: 0.961 68.6 0
4 min fire: 0.1, non-fire: 0.9 irrelevant place: 0.94 no fire: 0.039, non-fire: 0.961 87.4 0
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5. Conclusions

We proposed a deep learning-based fire detection method, called DTAIF, which
imitates the human detection process, one step further from DTA in our previous paper.
We assumed that DTAIF can reduce erroneous visual fire detection by combining all the
information from different sensors. As the same way as the method in the previous paper,
Faster R-CNN is used to detect SRoFs, and LSTM accumulates the local features within the
bounding boxes to decide a fire in a short-term period. Then, majority voting of the short-
term decisions is taken to make the decision reliable in a long-term period. In addition, to
make the final fire decision more robust, this paper proposed to use a Bayesian network
that combines environmental information with the visual information. As an example,
we have constructed a simple Bayesian network to combine the humidity state with all
extractable visual information from video sequences including the place category, and the
existence of smoke, and the long-term majority voting-based fire decision.

Our experiments showed that even a simple Bayesian network can improve the fire
detection accuracy compared to our previous video-based method and can achieve state-
of-art performance for the public dataset. The proposed scheme with the Bayesian network
also reduced the latency for perfect fire decisions when compared against our previous
method. We believe that the proposed fire detection approach is so general that it can be
applied for both indoors and outdoors, even though our example Bayesian network was
confined to outdoor fire in the experiment.

We did not consider time complexity and practical implementation in the work. For
example, a recent object detection method, such as YOLOv2 [39], instead of Faster R-CNN,
can be chosen for further work to make more fast and effective realization of DTAIF.
Furthermore, there are several issues to improve our work including learning Bayesian
network based on dataset, and graph convolutional network (GCN) to combine domain
knowledge instead of Bayesian net.
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