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Abstract: A new methodology, the hybrid learning system (HLS), based upon semi-supervised learning
is proposed. HLS categorizes hyperspectral images into segmented regions with discriminative features
using reduced training size. The technique utilizes the modified breaking ties (MBT) algorithm for
active learning and unsupervised learning-based regressors, viz. multinomial logistic regression, for
hyperspectral image categorization. The probabilities estimated by multinomial logistic regression for
each sample helps towards improved segregation. The high dimensionality leads to a curse of dimen-
sionality, which ultimately deteriorates the performance of remote sensing data classification, and the
problem aggravates further if labeled training samples are limited. Many studies have tried to address
the problem and have employed different methodologies for remote sensing data classification, such as
kernelized methods, because of insensitiveness towards the utilization of large dataset information and
active learning (AL) approaches (breaking ties as a representative) to choose only prominent samples for
training data. The HLS methodology proposed in the current study is a combination of supervised and
unsupervised training with generalized composite kernels generating posterior class probabilities for
classification. In order to retrieve the best segmentation labels, we employed Markov random fields,
which make use of prior labels from the output of the multinomial logistic regression. The comparison
of HLS was carried out with known methodologies, using benchmark hyperspectral imaging (HI)
datasets, namely “Indian Pines” and “Pavia University”. Findings of this study show that the HLS
yields the overall accuracy of {99.93% and 99.98%}Indian Pines and {99.14% and 99.42%}Pavia University for
classification and segmentation, respectively.
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1. Introduction

Hyperspectral imaging (HI), introduced at National Aeronautics and Space Admin-
istration (NASA)’s Jet Propulsion Laboratory [1], is a system that consists of spatial in
conjunction with spectral coordinates forming a hyperspectral cube. This imaging system is
being used in diverse fields viz. security control [2], pharmaceutical analysis [3], agriculture
quality [4], biomedical sciences [5], and many others. Hyperspectral remote sensing is
an active analysis in the field of the land area [6] and recent examples of remote sensing
is an airborne visible/infrared imaging spectrometer (AVIRIS) sensor [7], operational at
the NASA Propulsion Laboratory. Nowadays, AVIRIS sensors are capturing more than
200 spectral bands against each pixel, carrying huge information about an object, which is
much better than previous primitive sensors [8]. One of the most popular and important
areas of processing hyperspectral remote sensing is classification. Here the task is to clas-
sify each pixel of the hyperspectral image by assigning a label for generating a thematic
land-cover map [9]. In this regard, several studies have been carried out in the last decade
by applying a variety of machine learning and image processing methods to extract useful
information from hyperspectral data [10].

Hyperspectral image analysis can classify the materials in an area under observation
in a better way based on the huge spectral information obtained but at the cost of high
spectral dimensionality. On the contrary, high dimensionality brings along with it the curse
of the dimensionality problem that destroys classification performance (Feng et al., 2017).
Furthermore, the Hughes effect arises due to high dimensionality in the hyperspectral data
that pose critical problems for supervised learning methods to perform effectively [10,11],
and sometimes one pixel contains a lot of spectral information with spatial information lost.
In a similar manner, sometimes, a single channel contains spatial information, but spectral
information is lost [12,13]. Attempts have been made to address the problem, such as that
by Fauvel et al. [14]. They described all the details about spectral-spatial advancements in
the scenario of classification.

Two kinds of features are mainly extracted from remote sensing data for classification [15].

• First, the main feature is that spectral information lies in the third dimension against
each pixel entry in a data cube, and it can be extracted for the exploitation of linear
separability of the classes. Numerous methods have been developed for extraction,
such as independent component analysis [16], linear spectral unmixing [17,18], and
maximum noise fraction [19].

• The second information is the spatial information for which numerous methods
have been used, such as manifold regularization [20,21], kernel methods [22,23], and
morphological analysis [13,24].

During the last decade, different conventional machine learning methods have used a
large number of training samples for training over data [25,26]. In remote sensing datasets,
normally, a limited number of reliable samples are available. Wang et al. [27] addressed
this issue so that all labeled samples are not used in the training process. Wang et al.
suggested that prominent samples should be selected only for training, based on active
learning (AL), so that the maximum number of samples would be available during the
testing phase [28,29], leading to an agreeable generalization accuracy. Li et al. [30–32] have
shown that there are different ways to use AL for remote sensing, namely random selection
(RS), maximum entropy (ME), mutual information (MI) [33,34], breaking ties (BT) [35], and
modified breaking ties (MBT) [36].

Bruzzone et al. showed a significant improvement in classification with extracted
spectral and spatial features from the dataset. Better classification is achieved when
reliable samples are being used in training [37]. Samples usually are very expensive with
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regard to time and cost, and it is not so common to utilize this type of large ground truth
information. Schölkopf and Smola [22] addressed the issue that kernelized methods that
are insensitive towards the utilization of large dataset information due to the curse of
dimensionality. Good generalization capability can be achieved using different kernelized
methods with even a limited number of reliable training samples [23,38]. There exist
numerous methods for the use of large ground truth information such as SVM [39], semi-
supervised SVM [40], multinomial logistic regression (MLR) [41], partial least squares
regression [42], and artificial neural networks [43]. In both spectral and spatial information,
researchers have started to employ neural networks such as densely connected multiscale
attention networks [44], end-to-end fully convolutional segmentation networks [45], and
convolutional neural networks (CNN) with random forest [46] and Ghostnet [47].

In this work, a hybrid learning system (HLS) is introduced and tested that categorizes
hyperspectral images into segmented regions with discriminative features using reduced
training size. It is based on a semi-supervised learning approach, using an MBT algorithm
for AL and multinomial logistic regression for unlabeled HI data categorization. For the
training phase, a smaller number of samples are selected using the AL method (modified
breaking ties). HLS is a combination of supervised and unsupervised training with gener-
alized composite kernels generating posterior class probabilities for classification. Finally,
Markov random fields are used to get the best segmentation label by using class prior labels
from the output of the multinomial logistic regression. The proposed methodology is tested
by comparing it with known methodologies for hyperspectral image classification and
segmentation. Two benchmark HI datasets, namely “Indian Pines” and “Pavia University”
are used for experimentation. The article is organized as follows: Section 2 describes the
Methodology, including dataset description with processes and stages involved in HI;
Results and Discussion are reported in Section 3 with a comprehensive comparison with
existing researchers’ work, and Section 4 provides the concluding remarks.

2. Materials and Methods

The hyperspectral image classification and segmentation tasks are related problems.
The goal of image classification is to assign a class label to each pixel in the hyperspectral
image whilst segmentation refers to the partition of the set of image pixels into the collection
of sets. These sets are declared regions where the pixels in each set are close to each
other in some sense. Notably, the term classification is used when there is no spatial
information taken into account. On the other hand, the term segmentation is used when
spatial prior information is being considered. Let P is a set of n pixels of HI as given by
P ≡ {1, 2, . . . , n}. Similarly, M ≡ {1, 2, . . . , N} where M is a set of integers consisting of
dataset labels. Further, let X is a set of d-dimensional vectors of image pixels represented
as X = (x1, x2, . . . , xn) ∈ <d×n. Y is shown below as the set of labels for a dataset
Y = (y1, y2, . . . , yn). The purpose behind this problem formulation is to classify each
pixel xi ∈ P and assign them their best label yi ∈ M and also segment them into different
regions Ri ⊂ P based on labels yi for pixel Xi [28]. The flow chart for the proposed
methodology, namely the hybrid learning system (HLS), is presented in Figure 1. After
training on AL-based samples, posterior probabilities were generated by a generalized
composite kernels algorithm. On these probabilities, the maxim-a-posteriori algorithm was
employed to find the best class probability/label against each training sample. On these
classification labels, an α-expansion algorithm is run to generate the segmentation map.
Generally in classification, spectral–spatial kernels are computed over a sample with its
immediate and farther neighbors to assign it the probabilities, but in segmentation, the best
label is assigned based on immediate neighbors. We have used two datasets to conduct
our experimentation. Initially, each dataset is passed to extended attribute profiles (EAPs)
for the components’ selection. After selecting the components, the MBT algorithm was
applied for AL and multinomial logistic regression is applied for unlabeled HI data. Then,
the output from multinomial logistic regression is used for segmentation. The method is
iterated over ten Monte Carlo runs to get optimal results.
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Figure 1. The hybrid learning system for classification and segmentation of the HI landscape dataset.

2.1. Datasets

In this study, two sets of landscape images were used for HI-based classification: the
“Indian Pines” and “Pavia University” datasets. The AVIRIS sensors were used to acquire
the Indian Pines dataset collected over the Northwestern Indiana region. It is 3D-data
where the first two dimensions, 145 × 145, represent spatial information while the third
one corresponds to 202 spectral channels wavelengths ranges from 400–2500 nm. Each
pixel has a spectral resolution of 10 nm and represents an area of 20 × 20 m2. There are
16 classes in this dataset with 10,366 instances. Although the dataset is imbalanced, the
proposed methodology uses fewer instances for training sessions, thereby relieving the
inherent effect of the unbiased nature of the dataset. For regions visualization, an image of
spectrum for band (150) in grayscale is shown in Figure 2a.
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Indian Pines dataset, and (b) band number 90 of the Pavia University dataset.

The Pavia University dataset has been acquired using a ROSIS sensor by capturing
the Pavia University, Italy region. It consists of 3D-data where the first two dimensions,
610 × 340, express the spatial resolution while the third dimension represents 103 spectral
wavelength channels in the range 430–860 nm. Each pixel has a geometric resolution of
1.3 m. This dataset has 9 classes and 207,400 instances. For regions visualization, the
spectral band, namely number 90, in the grayscale channel has been shown in Figure 2b.
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2.2. Multinomial Logistic Regression (MLR)

The set c ≡
[
c(1)

T
, c(2)

T
, . . . , c(N−1)T

]T
represents regressors (logistic) and c(r) is the

rth class set of regressors [28]. The posterior-class probabilities, as well as regressors, are
calculated by the MLR model as given by

p(yi = r|x i, c) =
exp

(
c(r)f(xi)

)
∑N

r=1 exp
(
c(r) f(xi)

) (1)

The important point here is that the value of c(r) = 0 because the density is not de-
pendent on translation on the regressor c(r). The function f(x) ≡ [f1(x), f2(x), . . . , fk(x)]

T

where k represents the total number of feature vectors. The f (linear/nonlinear) is given by
f(xi) ≡

[
1, xi,1, . . . , xi,j

]T, where xi,j represents the jth element of xi. The kernels are given
by f(xi) ≡ [1, Fx,x1 , . . . , Fx,xl ]

T, here, Fxi,xj := F
(
xi, xj

)
:=
(
ζ(xi), ζ

(
xj
))

, and some kind of
symmetry also exists in the function F. Parameters are mapped in a nonlinear manner. For
this, radial basis function has been employed represented as:

F(x, m) ≡ exp (−||x−m ||2)
(2ρ2)

(2)

It is important to learn the class densities for regressors’ estimation. The class densities
are estimated using labeled and unlabeled samples, where SL ≡ {(y1, x1), . . . , (yL, xL)
represents labeled samples (small set) and SU ≡ {xL+1, . . . , xL+U} represents unlabeled
samples (large set). Posterior density using labeled as well as unlabeled data is given by:

p(c|Y L, DL, DU) ∝ p(YL |D L, DU, c)p(z|DL, DU)≡ p(YL |D L, c)p
(

c|D L+U
)
, (3)

where YL ≡ {y1, y2, . . . , yL} represents set of labels in SL, DL ≡ {x1, . . . , xL) represents
feature vectors set in SL, and DL+U represents labeled as well as unlabeled sets of samples.
The maximum-a-posteriori (MAP) estimation for regressors is computed as given by
ĉ = argmax

c

{
l(c) + log p

(
c|X L+U

)}
, where

l(c) ≡ log p(YL |D L, c)≡ log
L

∏
i=1

p(yi|xi, c)≡
L

∑
i=1

(xT
i c(yi) − log

K

∑
j=1

exp (xT
i c(j))) . (4)

Here, l(c) is the log-likelihood function over c provided the samples have labels SL
and p(c|DL+U) where the latter works as prior information over c. Further, the Gaussian
prior is given by p(c|Γ) ∝ exp

{
− 1

2 cTΓc
}

, where Γ is a precision matrix and Γ = Γ(DL+U)

is built in such a way that the regressors c is promoted by the density p(c|Γ). This leaves
samples in the class having similar features f(x) (either labeled or unlabeled). It is important
here to compute the distance between features.

2.3. Regression Estimator Using MAP

EM-algorithm is used iteratively for computation of MAP for c. The general forms of
expectation and maximization steps are given by J(c|c t) ≡ E[log p(c, e|A) | ct] and ct+1 ∈
argmax

c
J(c|c t), where vector ei, is a scaling factor for i = 1, . . . , N-1, representing missing

variables and A ≡ {DL, XU} is the set having instances of the labeled and unlabeled
dataset. Now we can compute the Gaussian prior by using the sequence of p(ct |A ) where
t = 1, 2, . . . is an increasing function.

2.4. EMAPs with Spatial Information

The morphological profiles (MPs) and attribute profiles (APs) were determined to
merge the spatial and spectral information to assist classification. The attribute filters (AFs)
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for computing APs, using gray level images were defined in a mathematical morphological
framework that operated by combining components at different threshold levels. The
filtering operation applied on grayscale images with given threshold values checks whether
the current component is going to merge lower gray levels or otherwise. Here, merging of
components to lower gray level means thinning, and higher gray level means thickening.
In this technique, the entire feature (spectral band) extracted from the original pixel was
not considered, and several principal components are taken for this technique and the
remaining components are ignored. This yields extended attribute profiles (EAPs). In
this research work, the first three principal components are considered that hold most of
the associated variance. The stacked EAPs, using different types of attributes, are called
extended multi-attribute profiles (EMAP). These are used to enhance extractability related
to spatial features from a landscape.

2.5. Approach of Generalized Composite Kernels

Generalized composite kernels (GCKs) are used for spectral-spatial classification. In
the proposed methodology, stacked cross-kernels are used as: K

(
xi, xj

)
≡

[Kω (xωi , xωj ), Ks (xs
i , xs

j ), Kωs (xωi , xs
j ), Ksω (xs

i , xωj )]T and the input function h(.) is
given by:

h(xi) ≡
[
1, KT(xi, x1), KT(xi, x2), . . . , KT(xi, xL)

]T

≡ [1, Kω
(
xω

i , xω
1
)
, Kω

(
xω

i , xω
2
)
, . . . , Kω

(
xω

i , xω
L
)
,

Ks(xs
i , xs

1
)
, Ks(xs

i , xs
2
)
, . . . , Ks(xs

i , xs
L
)
,

Kωs(xω
i , xs

1
)
, Kωs(xω

i , xs
2
)
, . . . , Kωs(xω

i , xs
L
)
,

Ksω
(
xs

i , xω
1
)
, Ksω

(
xs

i , xω
2
)
, . . . ,

(
Ksω

(
xs

i , xω
L
)]T

(5)

Therefore, MAP estimation for ĉ may be written as:

ĉ = argmax
c


l(c) + log p(c|DL+U)+

L

∑
i=1

L

∑
j=1



c(yi)
j+1Kω

(
xω

i , xω
j

)
+ c(yi)

j+L+1Ks
(

xs
i , xs

j

)
+c(yi)

j+2L+1Kωs
(

xω
i , xs

j

)
+c(yi)

j+3L+1Ksω
(

xs
i , xω

j

)

− log ∑K
k=1


exp ck

1 + c(k)j+1Kω
(

xω
i , xω

j

)
c(k)j+L+1Ks

(
xs

i , xs
j

)
+ c(k)j+2L+1Kωs

(
xω

i , xs
j

)
+c(k)j+3L+1Ksω

(
xs

i , xω
j

)


)


(6)

Here, we have used variable splitting and augmented Lagrangian optimization tech-
nique to deal with large kernel sizes for improved computational performance [30].

2.6. Isotropic Multi-Level Logistic (MLL) Prior

A logical approach for image segmentation is that the contiguous pixels mostly lie in
the same class. This approach has been exploited here with background information where
image modeling, isotropic multi-level logistic (MLL) prior has been used. Piecewise-smooth
segmentations are encouraged by this prior by using Markov random fields (MRF) where the
Gibbs energy is computed. Therefore, the prior model for segmentation is given by:

p(y) =
1
z

exp

(
− ∑

k∈K
Pk(y)

)
1. (7)

Here, z is a normalizing factor and Pk is called prior potential and k is a set of cliques
over the image. The potential over cliques is computed by:

− Pk(y) =


vyi, i f |k| = 1 (for single cligue)
µk, i f |k| > 1 and ∀i,j∈c yi = yj
−µk, i f |k| > 1 and ∃i,j∈c yi 6= yj

′

(8)
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It is clear from Equation (8) that the neighboring pixels have the same labels. The
Equation (7) becomes flexible by introducing exp(vyi

) ∝ p(yi) and µk =
(

1
2

)
µ > 0 and it is

given by:

p(y) =
1
z

exp (∑
i∈P

vyi + µ ∑
(i,j)∈K

δ
(
yi − yj

)
), (9)

where µ is controlling the level of smoothness and δ
(
yi − yj

)
determines the higher proba-

bility towards label assignment.

2.7. Performance Measures

The performance measures for classification as well as segmentation for HLS are
overall- and average- accuracies, including Kappa statistics. We have calculated the Overall
Accuracy (OA), Average Accuracy (AA) [28], and Kappa (κ) statistics [48] using the follow-

ing relationships as given by OA = ∑N
i=1 yi
N , where yi represents true predicted instances

and N is the total number of actual instances in the experiment. Similarly, A =
∑L

i=1
yi
Li

L ,
where yi represents true predicted instances of the ith class, Li is the number of actual
instances of ith class while L indicates the total number of classes in the experiment, and
κ = P(x)−P(y)

1−P(y) , where P(x) represents the actual observed agreement and P(y) represents
the chance agreement. This measure is used to test inter-rater reliability. It shows the
reliability of the data collected in the experimentation having the right representation of
measured variables [49].

3. Results and Discussion

This section focuses on the results of experiments performed for the classification and
segmentation of the HI scans. Firstly, a brief description of the experimental setup is pro-
vided followed by the experimental results with a discussion of the proposed methodology.
Finally, a comprehensive comparison with the existing techniques is made at the end.

3.1. Experimental Setup

The experimentation was carried out using a Dell Alien machine, Intel (R) Core (TM)
i7—7700 HQ CPU @ 2.80 GHz, having 32 GB RAM. The operating system used was
Microsoft Windows with open source software and library programs.

Numerous parameters for computing EMAPs have been found, concerning mean
value 2.5–10%, standard deviation value 2.5%, and threshold range is (200–500). The
experiment is performed by running independent Monte Carlo iterations 10 times and has
empirically found the optimum number of samples to generate outstanding results. Before
and after this sampling threshold, accuracy suffered degradation.

After classification, the MAP estimation was passed to the segmentation algorithm,
where the MLL algorithm was used for segregating the classes. Here, different accuracy
measures were tabulated for each class corresponding to AL methods, namely RS, ME,
MI, MB, and MBT. The classification results in terms of overall for all these AL techniques,
in the case of the Indian Pines dataset, varied from 98.13 to 99.93%. The Indian Pines
ground truth is pictorially shown in Figure 3a, while the classification and segmentation
pictogram are shown in Figure 3b,c, respectively. These results may be compared subjec-
tively based on the perceptual information within the original images shown in Figure 3a.
The quantitative performance of classification and segmentation is illustrated in Tables
1 and 2 for Indian Pines. The results were outstanding for classification for the Indian
Pines dataset as shown in Table 1, having OA, AA, and kappa statistics as 99.93, 99.86, and
99.84%, respectively. Whereas for segmentation, each of the performance measures (OA,
AA, and kappa) have been found as 99.98%, as shown in Table 2. For classification, most of
the past methods were based on the exploitation of spectral information [50]. Researchers
having similar thoughts relied on the fact that single spectral information is enough for
better classification [14,51,52]. These extracted spectral features, representing independent
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characteristics, were fed to the classifier without using the spatial information in contiguous
pixel dependency. Tarabalka et al. [53] addressed the solution of this issue, that exploitation
of the spectral information only is not enough for classification. Spatial information should
incorporate with spectral information for better results [15,30,32,54–57]. Li et al. [28] have
also shown the importance of spatial information with spectral information. Jain et al. [58]
have elaborated hyperspectral image classification with a combination of SVM using self-
organizing maps (SOMs). This technique is divided into two phases; the first one is based
on the training of the SVM using SOM, while the second is based on the calculation of
probabilities by finding the interior and exterior pixels, so the best label should be decided
based on an optimal threshold. The comparison of existing techniques using the Indian
Pines datasets is shown in Table 3 (Section 3.2).
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Table 1. Classification accuracy of Indian Pines dataset (class-wise) on 10 independent repetitions using active
learning techniques.

Class No. Class Name
#Samples Classification Accuracy over Different AL Methods

Train Test Random
Selection

Maximum
Entropy

Mutual In-
formation

Breaking
Ties

Modified
Breaking Ties

1 Alfalfa 5 50 100.00 100.00 100.00 100.00 100.00

2 Corn-no till 5 1429 99.90 100.00 100.00 100.00 100.00

3 Corn-min till 5 829 100.00 100.00 100.00 100.00 100.00

4 Corn 5 229 100.00 100.00 100.00 100.00 100.00

5 Grass-pasture 5 492 93.54 90.38 82.06 90.37 97.87

6 Grass-tree 5 742 100.00 100.00 100.00 100.00 100.00
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Table 1. Cont.

Class No. Class Name
#Samples Classification Accuracy over Different AL Methods

Train Test Random
Selection

Maximum
Entropy

Mutual In-
formation

Breaking
Ties

Modified
Breaking Ties

7 Grass-pasture-
mowed 5 21 100.00 100.00 100.00 100.00 100.00

8 Hay-windrowed 5 484 100.00 100.00 100.00 100.00 100.00

9 Oats 5 15 100.00 100.00 100.00 100.00 100.00

10 Soyabeans-no till 5 961 100.00 100.00 100.00 100.00 100.00

11 Soyabeans-min
till 5 2463 100.00 100.00 100.00 100.00 100.00

12 Soyabeans-clean
till 5 609 100.00 100.00 100.00 100.00 100.00

13 Wheat 5 207 100.00 100.00 100.00 100.00 100.00

14 Woods 5 1289 100.00 100.00 100.00 100.00 100.00

15 Building-grass-
trees-drives 5 375 100.00 100.00 100.00 100.00 100.00

16 Stone-steel
towers 5 90 100.00 100.00 100.00 100.00 100.00

Overall Accuracy 99.92 99.39 98.13 99.27 99.93

Average Accuracy 99.59 99.39 98.87 99.39 99.86

Kappa Statistics 98.99 99.77 97.38 98.96 99.84

Table 2. Segmentation accuracy of the Indian Pines dataset (class-wise) using HLS.

Class No. Class Name

Segmentation Accuracy over Different AL Methods

Random
Selection

Maximum
Entropy

Mutual
Information Breaking Ties Modified Breaking

Ties

1 Alfalfa 100.00 100.00 100.00 100.00 100.00

2 Corn-no till 100.00 100.00 100.00 100.00 100.00

3 Corn-min till 100.00 100.00 100.00 100.00 100.00

4 Corn 99.84 100.00 99.56 100.00 100.00

5 Grass-pasture 94.16 92.50 84.50 93.46 99.63

6 Grass-tree 100.00 100.00 100.00 100.00 100.00

7 Grass-pasture-mowed 100.00 100.00 100.00 100.00 100.00

8 Hay-windrowed 100.00 100.00 100.00 100.00 100.00

9 Oats 100.00 100.00 100.00 100.00 100.00

10 Soyabeans-no till 100.00 100.00 100.00 100.00 100.00

11 Soyabeans-min till 100.00 100.00 100.00 100.00 100.00

12 Soyabeans-clean till 100.00 100.00 100.00 100.00 100.00

13 Wheat 100.00 100.00 100.00 100.00 100.00

14 Woods 100.00 100.00 100.00 100.00 100.00

15 Building-grass-trees-
drives 100.00 100.00 100.00 100.00 100.00

16 Stone-steel towers 100.00 100.00 100.00 100.00 100.00

Overall Accuracy 99.44 99.23 98.50 99.59 99.98

Average Accuracy 99.62 99.51 99.00 99.59 99.98

Kappa Statistics 99.21 98.93 97.19 99.43 99.98
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Table 3. Comparison of classification and segmentation accuracies of the Indian Pines dataset
(class-wise) on 10 repetitions using 5 training samples of each class.

Sr. No. References
Classification Accuracy Segmentation Accuracy

OA AA Kappa OA AA Kappa

1 Li et al. [28] 19.08 11.64 6.66 14.37 17.73 12.34

2 Li et al. [30] 38.32 48.30 40.04 42.05 62.41 39.04

3 Li et al. [31] 55.55 64.32 50.04 62.49 70.92 57.75

4 Li et al. [32] 48.32 64.38 44.19 82.84 88.32 78.19

5 Proposed (HLS) 99.93 99.86 99.84 99.98 99.98 99.98

In the Pavia University experiment, the pictorial representation of ground truth,
classification and segmentation landscapes of our proposed methodology are shown in
Figure 4a–c. The representation of nine classes, i.e., asphalt, bare soil, bitumen, bricks,
gravel, meadows, metal sheets, shadows, and trees, have been used to produce the ground
truth. Every class with separate color can be seen after the application of the algorithm.
Similar to the previous experimentation, empirically found number of samples using
different active learning algorithms are computed by ten independent Monte Carlo runs.
The classification results of each class are shown in Table 4 as OA, AA, and k-statistics
as 99.14, 98.56, and 99.01%, respectively. The segmentation results in tabular form are
illustrated in Table 5 for different active learning strategies. The segmentation results of the
proposed methodology for the Pavia University dataset are: (OA, AA, and k-statistics as
99.42, 99.29, and 99.28%, respectively).
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Table 4. Classification accuracy of the Pavia University dataset (class-wise) on 10 independent repetitions using HLS.

Class No. Class Name

# Samples Classification Accuracy over Different AL Methods

Train Test Random
Selection

Maximum
Entropy

Mutual
Information

Breaking
Ties

Modified
Breaking Ties

1 Asphalt 5 7174 98.28 97.81 96.52 99.13 99.01

2 Bare Soil 5 19,184 99.88 99.99 100 99.98 99.98

3 Bitumen 5 2486 96.68 95.63 93.04 98.27 98.05

4 Bricks 5 3583 99.96 99.99 100.00 100.00 100.00

5 Gravel 5 1605 99.99 100.00 100.00 100.00 99.99

6 Meadows 5 5556 83.60 88.87 96.05 89.92 90.03

7 Metal Sheets 5 1700 100.00 100.00 100.00 100.00 100.00

8 Shadows 5 4191 100.00 100.00 100.00 100.00 100.00

9 Trees 5 1173 99.98 99.98 99.65 99.48 99.99

Overall Accuracy 99.09 99.33 99.25 99.37 99.14

Average Accuracy 97.59 98.03 98.36 98.53 98.56

Kappa Statistics 98.23 98.72 98.93 99.09 99.01

Table 5. Segmentation accuracy of the Pavia University dataset (class-wise) using HLS.

Class No. Class
Name

Segmentation Accuracy over Different AL Methods

Random
Selection

Maximum
Entropy

Mutual In-
formation

Breaking
Ties

Modified
Breaking Ties

1 Asphalt 98.97 98.95 98.48 99.75 99.64

2 Bare Soil 99.75 99.92 99.88 99.87 99.85

3 Bitumen 98.19 97.98 97.09 99.62 99.44

4 Bricks 99.99 100.00 100.00 100.00 100.00

5 Gravel 100.00 100.00 100.00 100.00 100.00

6 Meadows 86.74 92.95 97.26 94.72 94.90

7 Metal
sheets 100.00 99.99 99.99 99.99 99.84

8 Shadows 100.00 100.00 100.00 100.00 100.00

9 Trees 100.00 100.00 100.00 100.00 99.99

Overall Accuracy 99.34 99.59 99.55 99.69 99.42

Average Accuracy 98.18 98.87 99.19 99.33 99.29

Kappa Statistics 98.45 99.21 99.32 99.48 99.28

The existing models [28,30–32] were tested on freely available datasets, and further, the
results were compared with the proposed framework (Tables 3 and 6) using five samples
from each class (Tables 1 and 4).



Appl. Sci. 2021, 11, 7614 12 of 15

Table 6. Comparison of classification and segmentation accuracies of the Pavia University dataset
(class-wise) on 10 repetitions using 5 training samples of each class.

Sr. No. References
Classification Accuracy Segmentation Accuracy

OA AA Kappa OA AA Kappa

1 Li et al. [28] 2.15 3.08 0.80 3.15 5.89 1.21

2 Li et al. [30] 12.84 67.87 9.54 14.30 77.50 10.42

3 Li et al. [31] 42.91 62.01 18.24 48.83 66.13 22.99

4 Li et al. [32] 43.02 31.73 8.18 40.14 38.81 10.78

5 Proposed HLS 99.14 98.56 99.01 99.42 99.29 99.28

3.2. Comparison with Existing Techniques

At the end of the experimentation phase, a comprehensive comparison of classifica-
tion and segmentation was conducted on existing methodologies. The comparison was
performed on five training instances for the Indian Pines and Pavia University datasets,
respectively, as shown in Tables 3 and 6. It can be noted that RS, ME, MI, and BT showed
relatively poor performance as compared to MBT. This was attributed to the fact that
former techniques usually select samples from complex areas, having the least confidence,
which causes difficulty in learning procedure [36]. In comparison, the MBT outperformed
as compared to the other active learning techniques, as it selected only those samples that
were lying in the vicinity of high-density samples in each class.

Mura et al. [59] introduced morphological attribute profiles (MAPs). Morphological
profile filters are used to extract structural information. These calculated profiles are more
flexible and lead to better investigation of the contextual information by using different
morphological attribute transformations. Makantasis et al. [60] employed a convolutional
neural network to encode spectral and spatial information. The output is fed to a multi-layer
perceptron for classification. The overall accuracy of 98% was achieved when the author
used 30 samples of the Indian Pines dataset with deep neural networks. The relatively
low performance by using even higher number of samples is the inherent capability
of deep learning strategies as given in [61]. The remarkable segmentation results of the
proposed methodology were owed to the use of well-classified data before the segmentation
phase. The algorithm consumed relatively more resources for computation as compared
to conventional solutions. Similarly, a semi-supervised approach for segmentation was
introduced by Li et al. [42] in which the posterior class probabilities were calculated by
MLR algorithm. Maximum-a-posteriori (MAP) was computed on this output to calculate
the best classification label. The multi-level logistic (MLL) algorithm was then employed
with Markov random fields (MRF) to compute the segmentation [44,45]. Moreover, MRF
works on the model of Gibbs energy to calculate the best segmentation label, based on
current pixel potential for the neighboring pixels, to decide whether this pixel belongs to
the current region or not [46,47].

4. Conclusions

There always exists information corresponding to each channel (wavelength) dur-
ing the acquisition process in hyperspectral imaging (HI). Since diffuse scattering and
reflection are specific to material dependence, this dimension has enormous applications
in biomedical, geography, defense, and chemistry. In this paper, a novel methodology is
introduced that is called hybrid learning system (HLS), which categorizes hyperspectral
images into segmented regions with discriminative features using reduced training size.
HLS is a semi-supervised learning approach using active learning, a supervised learning
technique, and unsupervised learning-based MLR for classification and segmentation of
HI. The proposed method outperformed with a fewer number of training instances. For
merged spatial and spectral information, EMAPS are computed first for each dataset to
give improved classification results. Generalized composite kernels have been used in
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the MLR algorithm for classification to produce the posterior class probabilities against
each instance for better segmentation of landscapes. The comparison of work has been
carried out using benchmark datasets, i.e., “Indian Pines” and “Pavia University” with
known methodologies. The HLS based HI has been found to yield an overall accuracy of
{99.93% and 99.98%} Indian Pines and {99.14% and 99.42%}Pavia University for classification and
segmentation, respectively.
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