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Abstract: To improve the resource efficiency of multi-access edge computing (MEC) systems, it is
important to distribute the imposed workload evenly among MEC servers (MECSs). To address
this issue, we propose a task redirection method to balance loads among MECSs in a distributed
manner. In conventional methods, a congested MECS selects only one MECS to which it redirects
tasks. By contrast, the proposed method enables a congested MECS to distribute its tasks to a set of
MECSs, the loads of which are lower than that of the congested MECS by determining the number
of tasks that it redirects to each selected MECS. We prove that our task redirection method drives a
MEC system to a state where the resulting MECS load vector is lexicographically minimal. Through
extensive simulation studies, we show that compared with the conventional methods, the proposed
method can achieve the smallest load difference between the load of the MECS, the load of which is
the highest, and that of the MECS, the load of which is the smallest. By lexicographically minimizing
the MECS load vector, the proposed method decreases the average task blocking rate when the task
offload rate is high. In addition, we show that the proposed method outperforms the conventional
methods in terms of the number of tasks, the delay requirements of which are not satisfied.

Keywords: task redirection; load balancing; lexicographically minimum; resource efficiency;
distributed consensus

1. Introduction

In a multi-access edge computing (MEC) system, a device offloads tasks to nearby
MEC servers (MECSs). By serving offloaded tasks at the edge of a network, a MEC system
can facilitate delay-sensitive and computing-intensive applications in devices that are
limited with respect to energy, storage, and computing power [1,2]. However, devices
are not distributed uniformly in MEC systems, and each device may have a different task
offload rate. In addition, the service capacities of MECSs differ, and there is no central
entity controlling the mapping between offloaded tasks and MECSs. Therefore, the num-
ber of tasks offloaded to a MEC system is likely not evenly distributed among MECSs,
which results in the situation where some MECSs are heavily congested while other MECSs
are lightly loaded. When tasks are offloaded to a congested MECS, it is highly probable that
they will be blocked or their delay requirements will be violated. Furthermore, the capacity
of a MEC system, in terms of the number of acceptable tasks, will be reduced because
lightly loaded MECSs cannot serve the tasks blocked by congested MECSs. Therefore,
to enhance the resource efficiency of MEC systems, tasks from overloaded MECSs must be
redistributed to underloaded MECSs so that the workload imposed on the MEC system is
evenly distributed among MECSs.

Various load balancing methods that allocate a task to the least-loaded MECS have
been proposed. In [3], whenever a task is offloaded, a central controller assigns it to the
least-loaded MECS sequentially. We note that a role transfer solution can be used to design
a centralized method for solving the load balancing problem [4–6]. However, as the size
of the MEC system, in terms of the number of offloaded tasks and MECSs, increases, it
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becomes challenging for a central controller to assign tasks to the least-loaded MECS every
time a task is offloaded. Distributed approaches were proposed in [7,8]. The method
proposed in [7] transfers tasks from highly loaded MECSs to the least-loaded MECS.
Similarly, to transfer the tasks offloaded from devices to a MECS, the authors in [8] forced
an overloaded MECS to select two MECSs randomly from a set of neighboring MECSs and
choose the least-loaded one for offloading. In the case of distributed methods, since all
the overloaded MECSs redistribute their tasks to the least-loaded MECS simultaneously,
the least-loaded MECS can easily become heavily loaded, which results in a further load
unbalance among MECSs. In addition, most approaches do not explicitly consider the
delay requirement of a task, nor the amount loads to be redirected to the least-loaded
MECS. Load balancing methods based on machine learning were proposed in [9–11].
After predicting the state of the MEC system in terms of the MECSs loads, the authors
proposed methods to balance loads among MECSs. However, the signaling cost of these
methods is very high because a central controller must collect an enormous amount of
data to analyze the state of the MEC system and transfer the learned model parameters
to each MECS. In addition, a relatively long time is required for a controller to learn by
analyzing big data, so these methods are not easily applied to short timescales. In [12],
game theory was used to resolve the load balancing problem. The cost minimization
problem was formulated as a transportation problem, and Vogel’s approximation method
was used to calculate the optimal solution. However, global information is needed to solve
the optimization problem, and the static threshold required to determine the load state of a
MECS was not systematically configured.

To address these issues, we propose a task redirection method to balance loads among
MECSs using a decentralized consensus method [13,14]. We explicitly consider the delay
requirement of a task when estimating the MECS load. In our task redirection method,
each MECS determines whether to redirect tasks by considering its load state relative to
that of the other MECSs. Once MECS i decides to redirect its tasks; instead of transferring
tasks to the least-loaded MECS, i redistributes its tasks to a set of MECSs whose loads
are smaller than its own load. In addition, MECS i determines the number of tasks to be
redirected to each MECS in the set according to the difference between the load of each
MECS in the set and its own load.

This paper is organized as follows. In Section 2, we introduce a system model and
define the load balancing problem in a MEC system. In Section 3, we present our task redi-
rection method and discuss its properties. In Section 4, we validate the proposed method
by comparing its performance with those of the conventional methods. We conclude the
paper and provide future works in Section 5. Before we proceed, in Table 1, we present the
notations used in this paper for the readers’ convenience.

Table 1. Notations used.

Notations Meaning

N A set of MECSs in the system.
Ci CPU frequency of MECS i.

Oi(t) A set of tasks in the waiting queue of MECS i at the end of time slot t.
Si(t) A set of tasks in the service queue of MECS i at the end of time slot t.

dx Data size of a task x.
wx Workload imposed by a task x in terms of the number of CPU cycles.
Tx Maximum delay allowed to finish a task x.

ri,x(t) Uplink transmission rate to send a task x to MECS i during a time slot t.
ρi,w(t) Load of MECS i imposed by the tasks in Oi(t).
ρi,s(t) Load of MECS i imposed by the tasks in Si(t).
ρi(t) Load of MECS i at the end of time slot t.
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Table 1. Cont.

Notations Meaning

ρ̄i(t) Avg. load of a MEC system at the end of time slot t (i.e., 1
|N| ∑j∈N ρj(t)).

∆i(t) A set of MECSs whose loads are lower than ρi(t).

δi,j(t) Load difference between MECS i and j (specifically,
ρi(t)−ρj(t)
|N| , j ∈ ∆i(t)).

αi,j(t) The amount of workload that MECS i redirects to j.
Φi,j(t) A set of tasks that MECS i redirects to MECS j.

2. System Model and Problem Formulation

We considered a MEC system composed of a set N of MEC servers. We denote the
capacity of MECS i in terms of the number of CPU cycles per second as Ci. We assumed
that a MECS is installed in a base station (BS) and ignored the information transfer delay
between the MECS and BS. Following [9], we assumed that each device offloads its tasks
to the MECS installed in the BS, giving it the highest signal strength. Time is divided into
slots whose length is assumed to be the frame time between a device and a BS.

A MECS maintains two queues: a waiting queue and a service queue. The set of
tasks in the waiting queue of MECS i at the end of time slot t is denoted as Oi(t), and the
set of tasks in the service queue of MECS i at the end of the time slot t is denoted as
Si(t). The waiting queue is used to temporarily buffer tasks offloaded from devices to
a MECS during a time slot. At the end of a time slot, a MECS makes a task redirection
decision to balance the loads among MECSs. Depending on the decision made by a MECS,
the tasks in its waiting queue are either moved to its service queue or redirected to another
MECS. A MECS uses its service queue to accommodate tasks until they are served in a
FIFO manner. Thus, the tasks in the service queue of a MECS can be classified into two
groups: a group composed of tasks moved from its waiting queue and a group composed
of tasks redirected from other MECSs. Once a task is located in a service queue, it cannot
be redirected to other MECSs to avoid unnecessary increases in the delay involved in
transferring a task from one MECS to another.

During each time slot, MECS i receives tasks offloaded from devices and places them
in its waiting queue. A task x is composed of three tuples (dx, wx, Tx), where dx is the
data size of the task, wx is the workload of the task in terms of the number of CPU cycles
required to process the task, and Tx is the maximum delay allowed to finish the task.
We denote the uplink transmission rate to send a task x from a device to its serving MECS
during a time slot t as ri,x(t). If we assume ri,x(t) does not change during a time slot,
even though it can change across time slots to satisfy the delay requirement of task x,
MECS i has to complete the task within:

bi,x = Tx −
dx

ri,x(t)
. (1)

Since the MECS is installed in a BS, it can be synchronized in time with the associated
devices. Thus, dx

ri,x
can be obtained by subtracting the time when a device sends task x from

the time when the MECS receives the task. Therefore, the CPU frequency (i.e., the number
of CPU cycles per second) required to finish tasks x becomes:

fi,x =
wx

bi,x
. (2)

Thus, at the end of time slot t, the load of MECS i imposed by the tasks in Oi(t) is:

ρi,w(t) =
∑x∈Oi(t) fi,x

Ci
. (3)
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If a task x resides in the service queue of MECS i for di,x, MECS i has to finish x in
ci,x = bi,x − di,x to meet the deadline requested by x. MECS i removes tasks whose ci,x ≤ 0
from Si(t) because the delay requirement of the task is not satisfied. If we denote the set of
tasks in Si(t) whose ci,x > 0 as S′i(t), the load imposed by a task x ∈ S′i(t) in terms of the
number of CPU cycles per second is given as:

f ′i,x =
wx

ci,x
. (4)

Therefore, the load imposed by the tasks in Si(t) is obtained as follows:

ρi,s(t) =
∑x∈S′i(t)

f ′i,x
Ci

. (5)

The first step to balance the loads among MECSs is to determine whether a MECS
will have a higher load than the other MECSs. At the end of each time slot t, the set of
tasks received by MECS i is Oi(t) ∪ Si(t). Thus, if ρi,w(t) + ρi,s(t) is larger than ρj,w(t) +
ρj,s(t), MECS i will have a higher load than MECS j if no other action is taken. Therefore,
using Equations (3) and (5), we define the load of MECS i at the end of time slot t as:

ρi(t) = ρi,w(t) + ρi,s(t). (6)

We can observe that ρi(t) depends on many factors such as the attribute of a task
(dx, wx, Tx), the uplink transmission rate (ri,x(t)), the computing power of a MECS (Ci),
and the number of tasks in a MECS (|Oi(t)|, |Si(t)|). The attribute of a task depends on the
application services. Thus, ρi(t) 6= ρj(t) even when all the other variables affecting ρi(t)
and ρj(t) are the same. As we can see in Equation (1), ri,x(t) influences the heterogeneity
of the task attribute by changing the delay requirement of a task when it arrives at a MECS.
The number of tasks in a MECS i depends on the task input rate and the task service
rate. The task input rate to a MECS i during a time slot t, which we denote by ai(t), is
mainly affected by the number of devices offloading their tasks to a MECS i. Generally,
ai(t) 6= aj(t), (i, j ∈ N) because devices are not evenly distributed over the region that
a MEC system serves. In addition, the association method that a device selects a MECS
to which the device offloads its tasks also influences ai(t). Usually, it is difficult for a
device to know the load situation of each MECS. Thus, following [9], we assumed that a
device offloads tasks to the MECS colocated with the BS, which gives it the highest signal
strength. By selecting the BS giving the highest signal strength, a task may obtain high
ri,x(t). However, it was shown in [15,16] that the number of devices associated with each
BS is not evenly distributed when a device determines its association according to the
signal strength from a BS, which results in ai(t) 6= aj(t), (i, j ∈ N). The task service rate of
a MECS is determined by Ci and the workload imposed by a task (wx), which are not the
same for all tasks.

Therefore, ρi(t) 6= ρj(t), (i, j ∈ N) in general, which means the ρi(t)s of some MECSs
are high, while those of the other MECSs are low, as shown in Figure 1a. If a task is
offloaded to a MECS whose load is high, it is highly probable that the delay requirement of
the task is violated. However, we can avoid the situation if we redirect the tasks from a
highly loaded MECS to a lightly loaded MECS, as we depict in Figure 1. Thus, our goal is
to balance loads among MECSs by redirecting tasks so that:

ρi = ρj = ρ̄ =
1
|N| ∑

k∈N
ρk, ∀i, j ∈ N, (7)

where |N| is the cardinality of set N.
To balance the loads between a highly loaded MECS i and a lightly loaded MECS j,

MECS i must determine the amount of workload to redirect to MECS j. Generally, to make
such a decision, MECS i needs to know the local information of MECS j such as Oj(t) and
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Sj(t). However, by including ρi,w(t) in ρi(t), we enable MECS i to determine the amount
of workload to redirect to MECS j without the local information of MECS j. We detail our
task redirection method in Section 3.

(a) Load balancing problem and task redirection

(b) Load balancing after task redirection

Figure 1. Load balancing problem and task redirection approach.

3. Task Redirection Method

In this section, we first present our task redirection algorithm that drives a MEC system
to the state where loads among MECSs are balanced; then, we discuss the properties of
the algorithm.

3.1. Task Redirection Algorithm

To balance the loads among MECSs in a distributed manner, each MECS i must be able
to decide autonomously whether to redirect tasks in Oi(t). If MECS i decides to redirect
tasks, i must select MECS j to which it transfers tasks. In addition, MECS i has to determine
the amount of workload to redirect to the selected target MECS j. To make such decisions,
each MECS i exchanges ρi(t) with other MECSs at the end of a time slot and calculates the
average load.

ρ̄(t) =
1
|N| ∑

j∈N
ρj(t). (8)

If ρi(t) ≤ ρ̄(t), i considers that it is relatively underloaded compared with the other
MECSs. Thus, i does not redirect a task in Oi(t) and moves all the tasks in Oi(t) to Si(t).
By contrast, if ρi(t) > ρ̄(t), the load of MECS i is higher than that of some other MECSs;
therefore, i decides to redirect tasks in Oi(t) to MECS j. We adopt the distributed consensus
method in [14] for MECS i to determine not only a target MECS, but also the amount
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of workload that i redistributes to the selected target MECS. The procedure is shown
in Algorithm 1. MECS i collects a set ∆i(t) of MECSs whose loads are lower than ρi(t).
For each MECS j ∈ ∆i(t), a MECS i calculates the load difference:

δi,j(t) =
ρi(t)− ρj(t)
|N| , j ∈ ∆i(t). (9)

Then, MECS i searches for the MECS j∗ ∈ ∆i(t) that gives the highest δi,j(t). Since the
capacity of MECS i is Ci, the amount of workload corresponding to δi,j∗(t) becomes
θi,j∗(t) = δi,j∗(t)Ci. Since the total workload imposed by the tasks in Oi(t) is oi(t) =

∑x∈Oi(t) fi,x, the amount of workload that i redirects to j∗ is αi,j∗(t) = min(oi(t), θi,j∗(t)).
MECS i constructs a set Φi,j∗(t) of tasks to be transferred to j∗ by randomly selecting
tasks from Oi(t). Specifically, MECS i randomly selects tasks from Oi(t) as long as
∑x∈Φi,j∗(t) fi,x < αi,j∗(t). Then, i redirects all the tasks in Φi,j∗(t) to j∗.

After removing j∗ from ∆i(t), MECS i repeats the procedure until ∆i(t) is empty or all
the tasks in Oi(t) are redirected, whichever comes first. If ∆i(t) becomes empty before all
the tasks in Oi(t) are redirected, MECS i moves the remaining tasks to its service queue.

Algorithm 1 Task redirection algorithm.

1: Ti(t) = ∆i(t)
2: if Ti(t) 6= ∅ then
3: find j∗ = arg maxj∈Ti(t) δi,j(t)
4: θi,j∗(t) = δi,j∗(t)Ci
5: αi,j∗(t) = min(oi(t), θi,j∗(k))
6: Construct Φi,j∗(t)
7: redistribute all the tasks in Φi,j∗(t) to j∗

8: oi(t) = oi(t)−∑x∈Φi,j∗(t) fi,x

9: if oi(t) ≤ 0 then
10: break
11: else
12: Ti(t) = Ti(t)− {j∗}
13: else
14: move remaining tasks in Oi(t) to its service queue.

3.2. Properties of the Task Redirection Method

In [17], the load of each MECS was shown to converge to ρ̄ = ∑i∈N ρi/|N| in polyno-
mial time if each MECS repeats Algorithm 1.

To state how the proposed method distributes tasks to MECSs, we first introduce the
following definitions.

Definition 1. A vector~a ∈ X ⊆ Rn is said to be a min-max fair vector on X if and only if we
cannot decrease a component in ai ∈~a without increasing another component aj ≥ ai. Formally,
for all ~b ∈ X, if there exists i = {1, . . . , n} such that bi ∈ ~b < ai ∈ ~a, then there exists
j = {1, . . . , n} such that bj > aj ≥ ai.

Definition 2. Given a set of vectors A ⊂ Rn, a vector ~a ∈ A is said to be leximax minimal if
< ~a > is lexicographically less than or equal to < ~b > for any vector ~b ∈ A, where < ~a >
represents the vector obtained from vector~a by rearranging its elements in nonincreasing order.

We say that a MECS load vector ~ρ = (ρ1, . . . , ρn) is feasible if ρi < 1 for all i ∈ N and
denote the set of feasible ~ρs as Ψ ⊆ Rn. Then, we state the fairness of our task redirection
method as Proposition 1.
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Proposition 1. The MECS load vector ~ρ = (ρ1, . . . , ρn) = (ρ̄, . . . , ρ̄) ∈ Ψ obtained by our task
redirection method is min-max fair.

Proof. Let us suppose that there is a min-max fair load vector~a = (a1, . . . , an) ∈ Ψ such
that ai 6= aj for some i, j(i 6= j). Without loss of generality, we assumed that ai is the
smallest and aj is the second smallest element in~a. If we choose ε such that 0 < ε < aj − ai,
we have ai + ε < aj. Let us consider another load vector~b = (b1, . . . , bn) ∈ Ψ. If the loads
of some MECSs decrease, the decreased load has to be accommodated by another MECSs.
Specifically, for 0 < δi < ε and 0 ≤ δk < ε, the decrease in the load of MECS i from ai to
ai − δi induces variation in the loads of other MECSs from ak to ak + δk and ∑k 6=i δk = δi.
When bi = ai − δi and bj = aj + δj, bi < ai and bj = aj + δj < ai, which contradicts that~a is
a min-max fair vector.

Proposition 2. The min-max fair MECS load vector ~ρ = (ρ1, . . . , ρn) = (ρ̄, . . . , ρ̄) is a unique
leximax minimal load vector.

Proof. It was shown in [18,19] that if a max-min fair vector exists on a set X ⊆ Rn, then it
is the unique lexicographically maximal vector on X. Since ~ρ is min-max fair on Ψ, −~ρ is a
max-min fair load vector on −Ψ, which makes −~ρ the unique lexicographically maximal
vector on −Ψ. Therefore, ~ρ is the unique leximax minimal vector on Ψ.

According to Proposition 2, by redirecting tasks among MECSs in a distributed man-
ner, our task redirection method makes ~ρ lexicographically smallest given a set of tasks
accommodated in a MEC system.

4. Performance Evaluation

In this section, we verify the proposed method by comparing its performance with that
of conventional schemes under the same environment. Henceforth, we call the proposed
method, leximax minimal load balancing redirection (LMLBR). We selected the following
three representative schemes for performance comparison: (1) Random redirection (RR).
In RR, the overloaded MECS redirects its tasks to a randomly selected MECS; (2) Nearest
redirection (NR). In NR, the overloaded MECS redirects its tasks to the MECS that is
geographically closest; (3) Least-loaded redirection (LR). In LR, the overloaded MECS
redirects its tasks to the least-loaded MECS.

We distributed 50 MECSs in an area of 1000 × 1000 m. According to [20–22], we set
the simulation parameters as shown in Table 2. The capacity of each MECS (Ci) was
randomly selected in [9 GHz, 11 GHz], according to a uniform distribution. We set the task
arrival process at a MECS to follow a Poisson point process (PPP) with rate λ. When task
x is generated, its dx, wx, and Tx are randomly chosen from the given ranges in Table 2
according to a uniform distribution. For example, the data size of a task is randomly
selected in [3 kbits, 6 kbits]. We set the length of a time slot to 100 ms, which is the frame
time between a device and a BS in an LTE system. We set the size of waiting queue and
service queue of a MECS so that the number of offloaded tasks does not exceed the queue
capacity of each MECS, when the number of devices associated with each MECS is evenly
distributed and the number of offloaded tasks for each time slot is distributed uniformly.

We first investigate the load variance of a MECS in Figure 2. The figure presents a
box plot for the load changes of the 32nd MECS during the simulation time when the task
offload rate is 0.5, 0.7, and 0.9. In NR and LR, all the overloaded MECSs select the best
MECS in terms of the distance (NR) or the load (LR) as their target MECS and redirect
their tasks to the best MECS. Therefore, the load of the best MECS increases sharply after it
accepts the tasks redirected to it within a time slot. Therefore, the load of a MECS varies
substantially depending on whether the MECS is chosen as the best MECS. However,
in the proposed method, the variance is relatively small because tasks are redirected from a
congested MECS to more than one target MECS according to the load difference between
the congested MECS and the target MECS.
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Table 2. Simulation parameters.

System Parameters Values

Subcarrier bandwidth 15 kHz
Background noise 10−13 W
Data size of task x (dx) 3000–6000 bits
Workload of task x (wx) 0.1–1.0 GHz
Maximum delay allowed for task x (Tx) 0.1–0.2 s
CPU frequency of MECS i (Ci) 9–11 GHz
Waiting queue size of a MECS 5 tasks
Service queue size of a MECS 5 tasks
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Figure 2. Cont.
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Figure 2. Load per time slot of four methods.

To scrutinize the load variance among MECSs, in Figure 3, we present the loads of
all 50 MECSs at a given time slot when the task offload rate is 0.5, 0.7, and 0.9. LMLBR
minimizes the MECS load vector lexicographically. In NR and LR, since the redirected
tasks are absorbed into the best MECS at once, the loads of some MECSs are very high,
while the loads of the other MECSs are low. However, in LMLBR, tasks are assigned to
multiple MECSs, which makes the load difference among MECSs the smallest.

To compare the four methods in terms of the quality of service provided by the MEC
system, we inspected the average task blocking rate and the rate of tasks completed within
their delay constraints. When a task is offloaded to a MECS whose queue is full, the task
is blocked by the MECS. The average task blocking rate is defined as the fraction of tasks
that are blocked by the MECSs in the system. In Figure 4, the average task blocking rate
is depicted with varying λ. In NR and LR, some MECSs are highly loaded; thus, if a task
is offloaded to a highly loaded MECS, the task is likely to be blocked. Since the two lines
representing RR and LMLBR look similar in Figure 4, we show and scrutinize the average
blocking rate obtained by these two methods for λ = 0.5, 0.7, 0.9, separately, in Table 3.
In our method, an overloaded MECS i considers the loads of other MECSs when it selects a
MECS j to which it redirects its tasks. In addition, our method determines the amount of
tasks to redirect to each j according to the load difference between i and j. On the contrary,
in RR, an overloaded MECS redirects its tasks to one randomly selected MECS until it
becomes underloaded, regardless of the load of the selected MECS. Therefore, two adverse
cases can happen when RR is used. Firstly, an overloaded MECS may redirect its tasks
to another overloaded MECS. Secondly, an overloaded MECS may redirect an excessive
amount of tasks to the selected MECS, which results in overloading the selected MECS.
Thirdly, multiple overloaded MECSs may select the same MECS i to which they redirect
their tasks. In this case, it is very likely that the selected MECS i becomes overloaded
even though it was underloaded before accommodating the redirected tasks. If the load
imposed on a MEC system is not so high, the number of MECSs overloaded by the tasks
offloaded from devices is small. Accordingly, the adverse cases occur rarely. Therefore, we
can observe in Table 3 that the average blocking rate obtained by RR is smaller than that
achieved by LMLBR when λ ≤ 0.7. However, as the traffic offload rate increases, the two
adverse cases by RR occur more frequently, which increases the average task blocking rate.
Since our method avoids the two adverse cases, it can achieve a lower task blocking rate
than RR when λ = 0.9. To further compare RR and LMLBR in terms of the blocking rate,
we show not only the average blocking rate, but also the standard deviation of the blocking
rate obtained by RR and our method in Figure 5. When we investigated the standard
deviation of the blocking rate (denoted by σb) in Figure 5, our method achieved smaller
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σb than RR for all λ > 0.1. This is attributed to the behavior of the proposed method.
Unlike RR, our method redirects tasks from highly loaded MECSs to lightly loaded MECSs
by considering the load difference between MECSs. Therefore, compared with RR, the
proposed method achieves smaller load difference between the load of the MECS whose
load is the highest and that of the MECS whose load is the smallest.
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(b) task offload rate, λ = 0.7
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(c) task offload rate, λ = 0.9

Figure 3. Load per server for a given time slot (i.e., ρi(t), ∀i ∈ N).
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Figure 4. Average task blocking rate for various task offload rates.

Table 3. Comparison of RR and LMLBR in terms of the average task blocking rate (Difference (δbr)
represents the average blocking rate obtained by LMLBR minus the average blocking rate obtained
by RR).

λ 0.5 0.7 0.9

RR 0.0247 0.0491 0.0792
LMLBR 0.0521 0.0605 0.0666
Difference (δbr) 0.0274 0.0114 −0.0126

Figure 5. Comparison of RR and LMLBR in terms of the average task blocking rate. Each bar
represents the average blocking rate at a given task offload rate. If we denote the average blocking
rate as b and the standard deviation of the blocking rate as σb, each line in each bar indicates the
range of blocking rates from b− σb to b + σb.

The rate of tasks completed within their delay constraints is affected by the total
delay from the beginning of the task offloading process to the end of task computing.
The total delay is composed of three parts. The first component is the transmission delay
between a device and the MECS to which the device offloads a task. The second part is
the queuing and service delay experienced by a task in the MECS that serves the task.
The third component is a redirection delay that is included in the total delay only when a
task is redirected from one MECS to another MECS. According to Little’s law, the queuing
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delay is proportional to the queue length, which is proportional to the MECS load. Figure 6
shows that the rate of tasks completed within their delay constraints is the smallest for
all λs when LMLBR is used. Since the MECS load vector obtained by LMLBR is leximax
minimal, the queue length vector whose element is the queue length of each MECS is also
leximax minimal, which results in the smallest total delay for a given λ. Overall, the rate
of tasks completed within their delay constraint for LMLBR is 10–42% better than that
achieved by other methods.

To inspect the influence of the number of redirection per task on the distribution of
MECS load, we show in Figure 7 the loads of all 50 MECSs at the same time slot when
λ = 0.9. As the number of task redirection increases, the load imposed on a MEC system
is distributed among MECSs more fairly. However, the congestion level of a network
connecting MECSs also increases with the number of task redirections. In addition, the
time from when a task is first offloaded from a device to a MEC system to the time when it is
finally served by a MECS also increases with the number of times that the task is redirected.
Since the problem of determining the optimal number of task redirection in itself deserves
to be investigated thoroughly, we set this problem as one of our future works.
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Figure 6. Rate of tasks completed within the delay constraints versus the task offload rate.

Figure 7. Influence of the number of redirect per task on the load distribution among MECSs when
λ = 0.9.

To investigate the sensibility of performance with respect to the simulation parameters,
we evaluated the performance by varying the queue size. In each MECS, we set the
size of the service queue to be the same as that of the waiting queue. We show the
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results in Tables 4 and 5. In Table 4, as the queue size increases, the task blocking rate
decreases, but the difference is too small to mean much in practice. However, in Table 5,
the performance comparison is meaningful in terms of the rate of tasks completed within
the delay constraints. This is attributed to the following facts. In LMLBR, a MECS i
redirects tasks to the MECSs whose loads are lower than ρi. In addition, the amount of
tasks redirected from MECS i to MECS j is not excessive because LMLBR considers the load
difference between i and j. However, in RR, an overloaded MECS redirects the tasks to the
randomly selected MECS until it becomes underloaded. If tasks are redirected to one MECS
excessively, the service queue of the MECS increases sharply, which results in the large
waiting time and the decreases in the rate of tasks completed within the delay constraints.

Table 4. Task blocking rate versus queue size.

λ
Q Size = 20 Q Size = 10 Q Size = 5

RR LMLBR RR LMLBR RR LMLBR

0.5 0 0 0 0 0.0247 0.0521
0.7 0 0 0.0021 0.0024 0.0491 0.0605
0.9 0.0004 0.0001 0.0051 0.0035 0.0792 0.0666

Table 5. Rate of tasks completed within the delay constraints versus queue size.

λ
Q Size = 20 Q Size = 10 Q Size = 5

RR LMLBR RR LMLBR RR LMLBR

0.5 0.7641 0.8528 0.7892 0.8532 0.7745 0.8437
0.7 0.6652 0.7936 0.7213 0.8225 0.7154 0.8097
0.9 0.5596 0.7423 0.6113 0.7612 0.614 0.7301

Since the proposed method requires the exchange of information between MECSs,
it incurs communication overhead. If a broadcast channel is used to exchange the load
information among |N|MECSs, the communication cost is O(|N|). If an unicast channel
is used to exchange the information, the overhead is O(|N|2). The factor determining
whether the exchange of information between MECSs is required or not is the way that
a MECS decides whether it is overloaded. If a MECS decides to redirect its tasks when
its load is larger than a local threshold value, the communication cost of the method is
zero. However, it is difficult to configure an optimal threshold value according to the
dynamic network condition. If a MECS decides to redirect its tasks if its load is higher than
ρ̄, it requires exchanging its load information with neighboring MECSs. All four methods
that are used for performance comparison in our experiments use ρ̄ for the threshold value.
Thus, each MECS exchanges its load information with other MECSs at each time slot and
calculates the average load to decide whether to redirect its tasks. Therefore, they have the
same communication overhead.

The computational complexity of our method can be derived as follows. In our
method, when the load of a MECS is higher than the average load, the MECS selects a set of
target MECSs whose loads are lower than its load. Then, the MECS redistributes its tasks to
the target MECSs in order in proportion to the load differences between itself and the target
MECSs. Thus, the computational complexity of LMLBR is O(|N|log|N|) for sorting the
target MECSs in order. In RR, when the load of a MECS is higher than the average load, the
MECS randomly selects a target MECS to redistribute the tasks. Thus, the computational
complexity of RR is O(1). However, considering the results in terms of the quality of the
service provided by a MEC system, the proposed method outperforms RR in terms of the
rate of tasks completed within the delay constraints, while being comparable to RR with
respect to the task blocking rate.



Appl. Sci. 2021, 11, 7589 14 of 15

5. Conclusions and Future Works

In this paper, we presented a distributed task redirection method among MECSs to
improve the resource efficiency of MEC systems. We proved that our method drives the
MEC system to the state where the loads of the MECSs are lexicographically minimal.
Through simulation studies, we showed that compared with other conventional load
balancing methods, the proposed method achieves the smallest load difference between
the load of the MECS whose load is the highest and that of the MECS whose load is the
smallest. By obtaining the leximax minimal load vector, the proposed method improves the
rate of tasks completed within their delay constraints. In addition, our method decreases
the average task blocking rate when the task offload rate is high.

We are planning the following future works. Firstly, we will devise a task selection
method that selects tasks to redirect from the waiting queue of a highly loaded MECS.
By considering the delay requirements of the tasks in Oi(t) when constructing the set
Φi,j∗ , we expect that the rate of tasks completed within the delay constraints will improve.
Secondly, we will inspect the influence of the delay required to redirect a task from one
MECS to another MECS. We will also scrutinize the optimal number of redirection per task.
Finally, we will extend the proposed method so that it can be used in the environment
where only a subset of MECSs in the system can exchange their load information.
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