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Abstract: Microbial electrosynthesis (MES) is a promising technology platform for the production
of chemicals and fuels from CO2 and external conducting materials (i.e., electrodes). In this system,
electroactive microorganisms, called electrotrophs, serve as biocatalysts for cathodic reaction. While
several CO2-fixing microorganisms can reduce CO2 to a variety of organic compounds by utilizing
electricity as reducing energy, direct extracellular electron uptake is indispensable to achieve highly
energy-efficient reaction. In the work reported here, Rhodobacter sphaeroides, a CO2-fixing chemoau-
totroph and a potential electroactive bacterium, was adopted to perform a cathodic CO2 reduction
reaction via MES. To promote direct electron uptake, the graphite felt cathode was modified with
a combination of chitosan and carbodiimide compound. Robust biofilm formation promoted by
amide functionality between R. sphaeroides and a graphite felt cathode showed significantly higher
faradaic efficiency (98.0%) for coulomb to biomass and succinic acid production than those of the
bare (34%) and chitosan-modified graphite cathode (77.8%), respectively. The results suggest that
cathode modification using a chitosan/carbodiimide composite may facilitate electron utilization by
improving direct contact between an electrode and R. sphaeroides.

Keywords: microbial electrosynthesis; cathode; amide-coupling; Rhodobacter sphaeroides; CO2

1. Introduction

Microbial electrosynthesis (MES) is an economically emerging bio-electrochemical
technology for transforming CO2 and renewable electrical energy into chemicals and
fuels [1,2]. It could allow the storage and increase in value of intermittent renewable
energies such as solar and wind [3]. In an MES reaction, the electroactive microorganisms
(called electrotrophs) can utilize electrons (e−) from external conducting materials (i.e.,
electrodes) as reducing energy to catalyze the conversion of CO2 [4]. These electrotrophs
achieve CO2 conversion through several carbon-fixation pathways including the reduc-
tive pentose phosphate cycle (e.g., photo- or chemoautotrophs), reductive tricarboxylic
acid cycle (e.g., Clostridium thiosulfatophilum), and reductive acetyl-CoA pathway (e.g.,
Clostridium ljungdahlii) [1,5]. Rhodobacter sphaeroides, a CO2-fixing chemoautotrophic bac-
terium, can catalyze both the production and consumption of hydrogen molecules (H2) [6].
In a recent investigation, MES-driven CO2 uptake and H2 production in R. sphaeroides were
found to occur simultaneously without additional organic carbon substrates [7].

Extracellular electron uptake mechanisms of electrotrophs from electrodes rely on:
(i) indirect electron uptake by H2 or electron shuttles (i.e., natural and artificial redox
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mediators) or (ii) direct electron uptake via physical contact through electron-transfer pro-
teins or apparatus [1,8]. Although the cathodically evolved H2 can support electrotrophic
growth of a microorganism, the direct supply of cathodic electrons to microorganisms is
more sustainable and energy efficient in an MES reaction [8]. Direct electron uptake from
electrodes occurs in range of more positive potential ranges (−0.4 to −0.5 V vs. SHE) than
H2-mediated indirect electron uptake [4,8]. Meanwhile, using artificial redox mediators
has drawbacks to application due to their chemical instability, toxicity to microbes, and
difficulty in separating them from electrolytes [9]. A dense and well-developed cathodic
biofilm is a key parameter for improving direct electron uptake rates and production
rates in MES [10]. For example, an increased biofilm of Sporomusa ovata on a graphene-
functionalized carbon composite cathode enabled higher cathodic current consumption
with higher acetate production compared with a bare cathode in an MES reactor [11]. Fur-
thermore, accelerating robust biofilm formation enabled improvement in MES performance.
Zhang et al. reported that a modified cathode with positively charged layers such as chi-
tosan, cyanuric chloride, 3-aminopropyltriethoxysilane, and polyaniline showed enhanced
electron consumption and acetate production rates of S. ovata in an MES reactor [12]. This
is because a cathode surface coated with positively charged layers is more suitable for
interactions with negatively charged microorganisms [13].

In this study, we performed the cathode modification for MES by R. sphaeroides to
increase bioproducts synthesis and Faradaic efficiency. In order to promote direct electron
uptake, the graphite felt material was coated with a chitosan layer. The chitosan layer
presents unique functionalities (co-existing polycationic and neucleophilic properties) that
are suitable for constructing a rigid biofilm onto the electrode surfaces [13]. Additionally,
the chitosan layer was modified with a carbodiimide compound to enable more substantial
interaction between the R. sphaeroides cells and cathode surface (Figure 1).
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Figure 1. Schematic illustration of the proposed mechanisms of bacterial adsorption (Rhodobacter 
sphaerodies) onto the graphite felt electrode (GFE). (i) Bacterial adsorption onto the bare (GFE), (ii) 
chitosan-modified (GFE/Chit), and (iii) chitosan/carbodiimide compound-modified (GFE/Chit/CDI) 
cathode. Electron and proton (H+) sources for microbial CO2 conversion of R. sphaeroides can be sup-
plied from the cathode part via the anodic water splitting reaction. 

Figure 1. Schematic illustration of the proposed mechanisms of bacterial adsorption
(Rhodobacter sphaerodies) onto the graphite felt electrode (GFE). (i) Bacterial adsorption onto
the bare (GFE), (ii) chitosan-modified (GFE/Chit), and (iii) chitosan/carbodiimide compound-
modified (GFE/Chit/CDI) cathode. Electron and proton (H+) sources for microbial CO2 conversion
of R. sphaeroides can be supplied from the cathode part via the anodic water splitting reaction.

2. Materials and Methods
2.1. Strain and Medium Preparation

The Rhodobacter sphaeroides 2.4.1 strain was obtained from the Korea Collection of Type
Cultures (KCTC, strain no. 1434). The activation and growth medium had the following
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composition (L−1): 2.72 g KH2PO4, 1.95 g NH4Cl, 4 g of succinic acid, 0.1 g of glutamic acid,
40 mg of aspartic acid, 0.5g NaCl, 0.2 g of nitriloacetic acid, 0.3 g MgSO4·7H2O, 33.4 mg
CaCl2·2H2O, 2 mg FeSO4·7H2O, 2 mg (NH4)6Mo7O24, 100 µL of a trace elements solution,
and 100 µL of a vitamins solution. Pure carbon dioxide was used as the sole carbon source
for the microbial electrosynthesis reaction instead of succinic acid. The trace elements
solution had the following composition (100 mL−1): 1.765 g EDTA, 10.95 g ZnSO4·7H2O,
5.0 g FeSO4·7H2O, 1.54 g FeSO4·7H2O, 1.54 g MnSO4·H2O, 0.392 g CuSO4·5H2O, 0.284 g
Co(NO3)·6H2O, and 0.11 g H3BO3. The vitamins solution had the following composition
(100 mL−1): 1 g of nicotinic acid, 0.5 g of thiamin HCl, and 0.1 g of biotin. The medium
was adjusted to pH 7.0 using a 20% KOH solution. All culture media were sterilized by
filtration through a hydrophilic membrane filter with a pore size of 0.2 µm (Adventec Ltd.,
Tokyo, Japan).

2.2. Microbial Electrosynthesis Reactor Configuration and Operation

A double-chamber H-type reactor was used for the microbial electrosynthesis (MES)
reaction (working volume: 350 mL) (Figure 2). The anode and cathode chambers were
joined by a glass arm (38 mm diameter) and separated using a proton exchange membrane
(PEM, Nafion 117; DuPont Ltd., Wilmington, DE, USA). The anode and cathode electrodes
were pieces of graphite felt, and were 4 cm × 10 cm and 4 cm × 5 cm, respectively. The
thickness of each electrode was 0.3 cm (GF030, FuelCellStore, College Station, TX, USA),
and each one was connected to titanium wire which acted as the current collector from
anode to cathode. The reference electrode, Ag/AgCl (in 3.0 M NaCl, 0.209 V vs. NHE) was
placed in the cathode chamber. All bottles and reactors were sterilized at 121 ◦C for 15 min
by autoclaving. After autoclaving, the cathode chamber was flushed with filtered 5% CO2
(balanced with Ar) for at least 1 h to remove any oxygen remaining in the graphite felt.
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Figure 2. (a) Schematic representation and (b) Photograph of the microbial electrosynthesis reactor used for conversion of
CO2. CO2 conversion was performed in growth medium (pH 7.0) without a carbon source other than supplementation with
5% CO2 at an applied potential of −0.6 V (vs. Ag/AgCl).

The cathode electrode was poised with −0.6 V (vs. Ag/AgCl) using a potentiostat
(WMPG1000; WonAtech, Seoul, Korea). The experiments were carried out under anaerobic
conditions in batch mode. The cathode chamber was supplied with 5% CO2 (v/v) balanced
with Ar at a rate of 17.5 mL min−1 (0.05 vvm). All MES reactors were placed under white
LED lamps in the range of 450–475 nm (www.photonic.com) at 28 ± 3 ◦C, which provided
50 µmol photons m−2 s−1. The reactors were operated in triplicate.

www.photonic.com
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2.3. Electrode Modification Procedure

The graphite felt was pretreated with 5% HCl (v/v) overnight, then thoroughly washed
with Milli-Q water (18.2 MΩ cm) and dried at 60 ◦C overnight. For cyclic voltammetry
analysis, a glassy carbon electrode was polished with aluminum–water slurries (diameter
of 0.3 µm and 1 µm). To fabricate the chitosan-modified electrode, graphite felt of glassy
carbon was immersed in 2% chitosan (50–190 kDa, v/v) solution dissolved in 2% acetic
acid (v/v) overnight, then dried overnight at 60 ◦C. To fabricate the chitosan/carbodiimide
(CDI) compound-modified electrode, the dried electrode was immersed in ethanol–water
(4:1, v/v) coupling medium containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
and N-hydroxysuccinimide (50 mM/50 mM) overnight at room temperature, then carefully
washed with ethanol and dried overnight at room temperature.

2.4. Analytical Methods

To measure the total biomass of planktonic cells, optical density (OD) was measured
using a UV/Vis spectrophotometer (Effendorf Biospectrometer, AG., Hamburg, Germany),
and then corrected to biomass for R. sphaeroides to determine the amount of the dry weight.
A biomass-to-OD660 correlation for R. sphaeroides of 0.55 g L−1 cell dry weight per unit
OD600 was obtained (data not shown). The quantity of attached bacterial calls onto the
graphite felt cathode were determined by a gravimetric method for each biocathode. The
weight of dried cathode, before and after MES operation, was measured. A mass change of
dried cathode after MES operation was calculated as biofilm weight.

The zeta-potential of R. sphaeroides and the graphite felt electrodes was measured
using a Zetasizer (Nano-ZS92; Malvern Panalytical Ltd., Malvern, UK). All samples were
analyzed in 0.1 M sodium phosphate buffer (pH 7.0). All potentials were measured against
an Ag/AgCl reference electrode (3.0 M NaCl, Bioanalytical systems, West Lafayette, IN,
USA). Cyclic voltammetry was performed using a potentiostat (SP-200; Biologics, Paris,
France). Oxygen was removed from the electrolyte by bubbling with oxygen-free N2 for
10 min before electrochemical measurements. The applied scanning rate was 20 mV s−1

within the ranges of −0.3 to 0.6 V and −0.4 to 0.2 for [Fe(CN)6]3−. Sodium phosphate
buffer (0.1 M at pH 7.0) was used as the electrolyte. The microscopic features of the
samples were investigated using a MIRA 3 LMU model scanning electron microscope
(TESCAN, Czech Rep.) at an accelerating voltage of 10 kV. For liquid chromatography
analysis, medium samples and standards were filtered through a syringe filter with pore
size of 0.2 µm (Adventec Ltd., Tokyo, Japan). The filtrate of the samples was analyzed by a
high-performance liquid chromatography (Agilent 1260; Agilent Technologies, Santa Clara,
CA, USA) equipped with an HPX-87 H column.

2.5. Calculation of Faradaic Efficiency

The efficiency values reported in this work are based on the statistical average of at
least three biological replicates. When the biocathodes operated at −0.6 V (vs. Ag/AgCl,
saturated NaCl) showed steady or repeatable current, the biocathodes were operated at
fixed constant potential to measure the biomass and succinic acid production, and the
faradaic efficiency. To measure the total biomass of the planktonic cells, optical density (OD)
was corrected to biomass for R. sphaeroides to determine the dry weight. Cells attached to the
biocathodes were determined by a gravimetric method for each biocathode. The production
of succinic acid was measured by a high-performance liquid chromatography (Agilent
1260, Agilent Technologies, Santa Clara, CA, USA) equipped with an HPX-87 H column.
The faradaic efficiency (η) was calculated according to the following Equation (1) [14]:

η = (mnF)/(
∫ t

t=0
Idt) × 100 (1)

where m denotes the mole of products (mol), n denotes the number of electrons transferred
for the production of 1 mole of products (succinic acid), F denotes the faradaic constant
(96,485 C mol−1), I denotes the current (A), and t denotes the time (s).
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Biomass formation:

CO2 + 0.095(NH4)2SO4 + 4.42H+ + 4.42e− →
CH1.99O0.50N0.19 + 0.095H2SO4 + 1.5H2O

(2)

Succinic acid formation:

4CO2 + 6H2O + 3.5e− → C4H6O4 + 3.5O2 + 3H2O (3)

3. Results and Discussion
3.1. Modification of the Graphite Felt Electrode for Amide-Coupling

The graphite materials were used as the substrate to sustain direct supplementation of
electrons to the bacteria [15,16]. Electron uptake from extracellular sources is mainly depen-
dent on direct cell contact via a biofilm on the cathode surface [17]. Modification of cathode
materials by decorating with functional groups and increasing surface hydrophilicity might
benefit the adhesion and growth of bacterial biofilm [1]. Generally, negatively charged
functional groups on the bacterial surface are responsible for the electrostatic binding of
cationic groups [18]. However, the surface charge of pristine carbon-related materials
is neutral [12]. To generate a positively charged electrode surface, aminopolysaccharide
chitosan polymer was used to coat the graphite felt surface by immersion. In addition,
to induce covalent attachment of bacteria to the electrode surface, the chitosan-coated
graphite felt was further modified with carbodiimide compound to provide robust amide
functionality [19]. The possible chemical pathway of amide-coupling between chitosan
and bacteria through the carbodiimide cross-linker is described in Figure 3 [20].
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Figure 3. Reaction of the carbodiimide compound (EDC) with chitosan free amines (1,2). The inter-
mediate is stabilized by the formation of sulfo-NHS (3) which undergoes nucleophilic substitution to
form an amide bond with the carboxyl groups on the bacteria (4).

To estimate bacterial adhesion to the modified electrodes, the zeta-potential of R.
sphaeroides and powdered graphite felt electrodes were measured in a neutral environment
(0.1 M sodium phosphate, pH 7.0) (Table 1). The zeta-potentials of both R. sphaeroides
(−31.88 ± 3.31 mV) and bare graphite felt (−10.13 ± 2.72 mV) were negative. Meanwhile,
the zeta-potential of the graphite felt surface was shifted to positive range by the modi-
fication with chitosan and the chitosan/carbodiimide compound. This suggests that the
modified graphite felt may form a more rigid biofilm of R. sphaeroides than bare graphite
felt due to improved bacterial adhesion [21].
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Table 1. Zeta-potential results for R. sphaeroides, bare graphite felt, chitosan-modified graphite felt,
and chitosan/carbodiimide compound-modified graphite felt in 0.1 M sodium phosphate buffer
(pH 7.0).

ζ-Potential (mV)

Rhodobacter sphaeroides −31.88 ± 3.31
Bare graphite felt −10.13 ± 2.72

Graphite felt/chitosan 1.81 ± 0.61
Graphite felt/chitosan/carbodiimide 1.74 ± 0.72

3.2. Electrochemical Evaluation of Chitosan- and Chitosan/Carbodiimide Compound-Modification

The electrode consisted of chitosan and carbodiimide compounds immobilized on the
graphite felt surface. Prior to combining the modified electrode with the MES reactor, we
checked the redox reactions of the chitosan- and carbodiimide compound-modified layers
by cyclic voltammetry with electroactive species. Figure 4a shows the cyclic voltammo-
grams (CVs) of a bare and a modified glassy carbon electrode (GCE) in 1 mM [Fe(CN)6]3−

solution. In this experiment, all the electrodes were examined in 0.1 M sodium phosphate
buffer (pH 7.0). The separation between the anodic (Epa) and cathodic (Epc) peak potentials
(∆Ep) of bare GCE in [Fe(CN)6]3− solution was 0.28 V. On the other hand, the ∆Ep values
of chitosan and of chitosan/carbodiimide compound-modified GCE decreased to 0.23 and
0.11 V, respectively. The peak current densities (Jp) of the modified electrodes in the CVs
increased and the midpoint potentials (Em) shifted to the negative with the modification
using chitosan and the chitosan/carbodiimide compound. [Fe(CN)6]3− ions might have
been confined in positively charged layers (Table 1) through the force of electrostatic attrac-
tion [22]. From these results, we presume that the electrode coated with amine and amide
functional groups might have facilitated the migration of negatively charged R. sphaeroides
cells toward the electrode.
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Figure 4. Evidence of electrostatic interaction enhancement between modified electrode and redox active species. (a) Cyclic
voltammograms of bare and modified glassy carbon electrode (GCEs) in 0.1 M sodium phosphate buffer (pH 7.0) containing
1 mM of [Fe(CN)6]3−. Scan rate, 20 mV s−1 (versus Ag/AgCl). Bare indicates bare GCE. Chit indicates chitosan-modified
GCE. Chit/CDI indicates chitosan/carbodiimide compound-modified GFE. (b) Schematic illustration of the redox reactions
of diffusing and confined [Fe(CN)6]3− ions in a chitosan layer. (i) Bare electrode, (ii) chitosan-modified (GFE/Chit), and (iii)
chitosan/carbodiimide compound-modified electrode.

3.3. MES Operation and Biofilm Morphology of Biocathodes

The bare and modified graphite cathodes were integrated with the microbial elec-
trosynthesis (MES) reactor for CO2 reduction to bioproducts (Figure 2). In this study,
the CO2 conversion efficiency was estimated by measurement of R. sphaeroides growth
because the CO2 fixed in microorganisms triggers a direct increase in their biomass via
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growth [23,24]. The production of succinic acid, which is a robust organic product of
CO2 conversion in R. sphaeroides, was also considered the target product in this MES re-
action [25,26]. The MES reactors were operated for 14 d under supplementation with 5%
CO2 at an applied potential of −0.6 V (vs. Ag/AgCl). Charge transfers from the work-
ing electrodes (cathodes) to the catholyte materials (R. sphaeroides and medium) reached
0.78, 0.93, and 0.94 mWh cm−1 for bare, chitosan-modified, and chitosan/carbodiimide
compound-modified GFE, respectively.

Figure 5 shows scanning electron microscope (SEM) images of bare (a,d) and modified
GFEs (b,c,e,f) before (a–c) and after MES reactions (d–f). Sheath-like thin layers were
observed at chitosan-coated GFE cathodes (b,c). R. sphaeroides cells attached to the cathode
surfaces were remarkably increased following the order: bare < chitosan-modified <
chitosan/carbodiimide-modified GFE. The results support the hypothesis that the modified
cathode, especially chitosan/carbodiimide-modified GFE, facilitated the migration of
R. sphaeroides (Figure 3), due to their positive and covalent functionality [13].
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Figure 5. Scanning electron microscope images of graphite felt electrodes (GFEs) as cathodes before (a–c) and after
(d–f) microbial electrosynthesis reaction by R. sphaeroides for 14 d. (a,d) bare GFE, (b,e) chitosan-modified GFE, (c,f)
chitosan/carbodiimide compound-modified GFE. Scale bar, 100 µm (inset, 5 µm).

3.4. Enhanced CO2 Conversion by Modified Cathodes

After 14 d operation of the MES, the final biomass of R. sphaeroides and succinic acid
production were analyzed (Figure 6). Although the planktonic biomass (blue squares) de-
creased, the attached biomass (red circles) in the MES reactors equipped with two modified
GFE cathodes increased substantially. The calculations of total mole concentrations, which
sum up the planktonic and attached biomass, were as follows: 1.08, 2.25, and 2.64 mol
for the bare, chitosan-modified, and chitosan/carbodiimide-modified GFE cathode, re-
spectively. In addition, the largest amount of succinic acid production (bar graph) was
observed at the MES reactor equipped with the chitosan/carbodiimide-modified GFE
cathode (33.4 µmol). The faradaic efficiency of the chitosan/carbodiimide-modified GFE
cathode-equipped MES reaction was significantly higher (98.0%) than that of the bare
(34.9%) and chitosan-modified GFE cathode (77.8%), respectively. Zhang et al. reported
that a modified cathode with chit/CDI in MES by using S. ovata as microbial catalyst
increased acetate production 7.6-fold higher than the sample without cathode modifica-
tion with Faradaic efficiency 86 ± 12% [12]. On the other hand, our study is shown to
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have better performance attributed to chit/CDI modified cathode, triggering succinic acid
production as much as 33.4 µmol with faradaic efficiency by 98%.
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Figure 6. Final biomass (attached and planktonic cells) and succinic acid production from microbial
electrosynthesis reaction of R. sphaeroides for 14 d under −0.6 V (vs. Ag/AgCl) and 5% CO2. The
weight of attached cells (g m−2) was normalized to the area of the graphite felt electrode. Bar chart,
succinic acid (mgL−1). Square symbol (blue), planktonic cells (gL−1). Circle symbol (red), attached
cells (g m−2).

Some electroactive bacteria can obtain electrons from an electrode directly through
physical contact between the cathode and the microbial electron transport system [27].
This physical contact was developed in the form of a biofilm on the cathode [1]. For exam-
ple, Geobacter sulfurreducens, a well-known electroactive microorganism, was genetically
engineered to enable autotrophic growth by introducing genes for an ATP-dependent
citrate lyase (it is named G. sulfurreducens strain ACL) [27]. The designed strain grew
thicker confluent biofilms (ca. 35 µm) on graphite cathodes, resulting in higher current
consumption (≥10-fold) than that of the wild type. Recently, Li et al. reported that R.
sphaeroides produces H2 with its biomass growth through direct electron transfer from
cathode to bacteria in the MES reactor [7]. Taken together, these may reflect that cathode
modification using chitosan/carbodiimide composite may facilitate electron utilization by
improving direct contact between an electrode and R. sphaeroides.

4. Conclusions

The results presented in this paper illustrate that amide-coupling between a cathode
and the CO2-fixing microorganism, R. sphaeroides, improves MES reaction. A graphite
felt cathode was modified with a combination of chitosan and a carbodiimide compound.
Negatively charged R. sphaeroides cells (ζ-potential, −31.88 ± 3.31 mV) facilitated the
formation of biofilm on positively charged modified cathodes. In particular, a robust biofilm
of R. sphaeroides was developed on the chitosan/carbodiimide compound-modified cathode.
Therefore, a chitosan/carbodiimide compound-modified (GFE/Chit/CDI) cathode was
adopted for the optimal condition of cathode modification in this study. This modification
enhanced the biomass and succinic acid production from CO2 conversion in a MES reactor
(applied potential at −0.6 V vs. Ag/AgCl). The calculated faradaic efficiency of the MES
reactor equipped with a chitosan/carbodiimide compound-modified cathode was 98.0%
(coulomb to R. sphaeroides biomass and succinic acid). This is a promising starting point
for the development of future MES-driven CO2 biorefinery process using R. sphaeroides to
produce various spectra of metabolites such as biofuels and platform chemicals.
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