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Abstract: Apples are the most popular fruits grown in Polish orchards. In order to obtain the best
quality fruit, it is necessary to improve plantation maintenance, fruit harvesting, and processing.
Given that many fruits are exposed to external factors, including forces that adversely affect their
structure—causing them to crack, bruise, or crush—it is necessary to provide conditions that do not
adversely affect their quality. Therefore, the aim of this article was to develop a simplified model of
an apple that could be tested under different loads using the finite element method. The parameters
of the model were selected to reflect the actual apple as accurately as possible. To assess the apples
under impact load, as well as the construction of the FEM model, concrete and wooden substrates
were used, where apples were dropped from height of 10 mm and 30 mm. Due to this research, an
apple model was obtained that reflects the actual object very well (high R2 coefficient). In addition,
the layering and distribution of surface pressures of the real and model objects from the distribution
are presented. This shows that the constructed model corresponds to the behaviour of the biological
material, subjected to loads in real conditions.

Keywords: FEM; model; apple; force; strain

1. Introduction

Poland is one the world’s leading apple producers. The annual production volume
reaches about 3 million tonnes [1]. When assessing the quality of these fruits, it turns
out that only one-third are intended for dessert purposes, while the remaining quantity
is only suitable for processing. The production of fruit of the highest quality, for direct
consumption, the parameters of which are described in the Official Journal of the European
Union, requires procedures to be followed to classify it in one of three quality classes. The
‘extra’ class includes apples of superior quality, which have, among other qualities, the
whole stalk, and do not show any damage to the flesh, i.e., they must have no bruising.
Apples in Class I may have no stalks, if the areas of detachment are clean and the skin in
that area is not damaged. It is permissible for the flesh to be damaged (bruised) with an
area not exceeding 1 cm2. Class II apples, i.e., the lowest class allowed on the consumer
market, includes fruit, the flesh of which is damaged, with the damaged area not exceeding
2.5 cm2 [2,3].

It appears that the “structure of destination” should change in favour of dessert apples;
therefore, high quality fruits are required. As emphasised by Konopacka and Rutkowski [4],
and Nadulski [5], high quality apples translates into higher levels of export and, above
all, greater consumption by increasingly demanding consumers. In order to ensure high
quality fruit, care and harvesting should be carried out in such a way to prevent the
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occurrence of mechanical damage, which reduces their usefulness during storage. Among
the most common causes of damage to apples, and, consequently, of the decrease in their
quality, would include conducting the (subsequent) stages of the technological process in
the wrong way. One example is the use of unsuitable fruit picking machines, which cause
damage to the flesh tissue in the fruit, decreasing its quality. Consequently, this may lead
to a reduction in exports [6–9].

1.1. Impact Loads on Biological Material

Apples are subjected to various static, dynamic, and impact loads during harvesting,
handling, transport, sorting, storage and other operations necessary to obtain the final
product. Impact loads are a major cause of knock-on effects that cause loss to apple
growers, as they significantly affect the deterioration of fruit quality parameters [10].
During the impact, irreversible changes in the structure of the internal tissues occur, most
often involving damage to cell walls. The mechanism of changes in the cellular structure
of apples under impact loads differs significantly from those occurring under quasi-static
loads. Therefore, it is not possible to analyse the mechanism of bruising formation and
determination of resistance to apple bruise using simple measurement methods based on
the compression test [11,12]. Under impact loads, the biological material behaves like an
elastic material. Liquid and air filling the intercellular spaces do not have time to move to
other less loaded areas where there are still free spaces [13]. This results in the release of
stresses that exceed the strength of the cells, in the form of cracks and irreversible tissue
damage. At low load speeds, biological materials exhibit strong viscoelastic properties. In
the initial loading phase, after displacement of gases and filling of cell spaces, the process
of liquid migration, causing deformation of cell walls, begins [14]. As a result, this type of
load allows higher destructive stress values to be achieved than with impact loading.

In this situation, it becomes important to determine the critical values of the impact
energy, for which the elastic deformation of the apple becomes permanent. It can be
assumed that, in the case of elastic deformations, i.e., deformations in which the apple
returns to its initial shape after removing the load, there is no damage to the flesh tissue, so
there is no danger of bruising. Tissue damage occurs only when permanent deformations
appear [15].

Permanent deformations are caused by contact of the outer layer of the apple skin with
a hard surface, e.g., the wall of a box, working elements of machines used in the production
process, but also when hitting another fruit. The intensity of the bruising also depends on
a number of other factors, including the degree of ripeness, the weather conditions and the
time of harvest [16]. The size of the bruising and, consequently, the usefulness of the fruit,
depend mainly on the reactions of the biological material to the external load, and the time
scale adopted [17,18].

Guillermin et al. [19] conducted research to assess the rheological properties of two
apple varieties: Avrolles and Douce Coetligné. Based on the analysis of the tissue properties
of the flesh and the juice content of the fruit, the authors assessed the behaviour of the
apples during the compression test. Endurance tests were carried out 15 and 30 days after
harvesting. In the case of Avrolles, the plasticity of the biological material was noticed,
while in the case of Douce Coetligné, the viscoelastic properties were noticed. In the case
of Douce Coetligné, the apple skin significantly reduced the formation of bruises and
deformities in the flesh.

1.2. FEM Load Assessment of Biological Material

Forecasts of areas of influence, deformation, and distribution of surface pressure in
fruit are important issues in post-harvest research. There are many methods for fruit
damage assessment, i.e., by means of surface pressure and stress distribution [20]. Devel-
opments in computer technology, with the use of finite element methods (FEM, enable
the use of this system to predict the mechanical behaviours of fruits under loading. It is
used to solve complex problems with the use of computer engineering techniques, without
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the need to perform experimental studies. It is a particularly important technique used
in the design and construction of engineering structures [21]. Petru et al. [22] described
a mechanical behaviour of seeds that were exposed to external linear loading. Thanks to
the tests carried out, the researchers identified seed sites that were particularly vulnerable
to changes in the structure of biological material [22,23]. Guner et al. [24] examined the
behaviour of the structure of the biological material using the example of a nut that was
squeezed between two parallel plates until the shell and grain began to crack [24]. The
behaviour of a biological material in individual layers of beans was also studied using
the example of beans and peas. The maximum deformation that occurred during the
external load application was determined. The finite element method was used to model
the deformation [25]. Similar studies were conducted by Akangbe et al. [26], who, under
external loading, studied the behaviour of interacting rapeseeds in the stack [26].

Theoretical aspects of computer integration—in regard to the method—were solved
in the 1960s and 1970s. Research and development from the European Union’s research
base in the 1990s resulted in extensive scientific output in various fields of engineering [27].
This method also proved useful in agricultural engineering research, in the context of
deformation of agricultural products. Many tests were carried out to estimate the complex
stress field of organic materials under different boundary conditions [28–34]. It should be
stressed that most of these tests were carried out considering static or quasi-static load
cases—small deformation and linear contacts with the linear assumptions of the elastic
material model through implicit solvers. The consideration of non-linearity in partial
contact and ductility in material models (especially in cases of impact loads) in such tests
were absent or very limited [27].

Many experimental methods can measure the level of damage, stress distribution,
surface pressure, and the reaction of the fruit to external forces. Works involving dam-
age measurements, surface pressure using the finite element method are beginning to
appear [21–23]. For example, the extent of deformation of the tomato fruit because of hard
surface contact, between tomatoes, has been mapped [35]. In this study, a 3D model of the
tomato was generated in CATIA, and then the compression tests were simulated using MES
to determine the mechanical properties of the tomato. The comparison of experimental
data with the conducted finite element simulation confirmed that the two sets of results
were consistent [5]. The tests in which the Golden Delicious apple variety was tested also
used a 3D scanner, a high-speed digital camera, and the FEM technique mentioned above;
the aim of the tests was to determine the degree of deformation of these fruits arranged in
a box. The experimentally validated FEM model in this study will be used to determine
the appropriate conditions related to the transport, storage, and processing of apples. In
this way, the authors confirmed the results of a simulation using SolidWorks during the
fruit drop, where they also used a high-speed camera, and consequently noticed that the
results of visual tests and simulations were very similar [35].

The susceptibility of pears to different impact conditions was determined experimen-
tally and implemented using FEM [21]. In this test, the authors used three drop heights
(0.2, 0.5, and 1 m), two impact surfaces (steel and wood), two fruit impact orientations
(vertical and horizontal), and three ripeness levels (unripe, ripe, and overripe). The lowest
and highest differences between the predicted and observed upholstery surfaces calculated
by ANSYS software were 0.00% and 60.53%, respectively. Comparing experimental and
model data, high compliance was observed for pears dropped from 0.2 and 0.5 m heights.
These studies show the high efficiency of the applied FEM method as an accurate tool to
study the deformation of biological material of agricultural origin.

The aim of the study was to develop a simplified model of an apple using the finite
element method. The validation consisted in analyses and comparing the results obtained
with the experimental results presented in the paper ‘Influence of Contact Surface Type
on the Mechanical Damages of Apples Under Impact Loads’ [36], published in the journal
Food Bioprocess Technology (2017) 10:1479–1494, doi:10.1007/s11947-017-1918-z. An inno-
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vative area in this study was the assessment of fruit damage based on the stress contour
distribution based on the surface pressures.

2. Materials and Methods

The model of the apple (‘Golden Delicious’ variety) was presented as an ideal sphere
with a diameter of 71.7 mm and a weight of 163 g, determined from an average measure-
ment of 300 apples. Based on the geometric model, a discrete model (Figure 1) was made
for finite element method (FEM) calculations.
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Figure 1. Cross-section view of the FEM model of an apple.

The apple was modelled with an eight-node hexahedral solid element, a volume
elements with 3 degrees of freedom in each node. The average size of a finite element was
1 mm. In the areas most stressed during the test, the grid of the elements was additionally
compacted. Since, during the test, a partial plasticisation of the material of which the
apple model was made may have occurred, and a significant change in the model may
have occurred because of large deflections, all of the elements were adjusted to non-linear
calculations, in terms of material and geometry. Considering that the model would have
been exposed to fast-changing phenomena, specially prepared explicit elements were used.
The material was homogeneous throughout the entire volume of the model. The choice
of material was so difficult that it had to be suitable for studying dynamic phenomena
and match the viscoelastic nature of the biological material. An additional difficulty was
the behaviour of the actual object during the impact tests. The material of the apples
was liquefied upon impact, changing the state. Modelling of phase transitions would
considerably complicate the adjustment of the numerical model to the results obtained
from the experiment. However, due to the way the object was deformed, a non-linear
constitutive description of the material as a function of significant deformation had to
be applied. The model was developed in the Abaqus CAE system. Finally, the authors
decided on a material called Crushable Foam, available in the software used, designed for
low-density polymer foams. It was considered that the behaviour of the apple material
during dynamic events most resembles the crispy foam. It is an isotropic material, partially
strengthening as the model volume changes. This reinforcement is directly related to the
deformation mechanism in the apple, which is why the volumetric type reinforcement
was chosen in the properties of the material. The description of this material assumes
that the dependence of the flow surface in the deviant plane on pressure is expressed by
means of an ellipse and uses three components of plasticizing stress (uniaxial compression,
hydrostatic—in compression and tension) to determine the parameters of this ellipse. When
the material is reinforced, the range of the described ellipse increases (the hydrostatic tensile
stress (pt) remains constant, while the compression values (pc) move. An example of stress
distribution for such a material before and after reinforcement is shown in Figure 2.
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the plane containing the hydrostatic stress axis.

Appropriate parameters of the material were determined, based on an experimental
compression test and dynamic analysis of the apples. The elastic values of tested material
were as follows: Young’s modulus (E) = 4.069 MPa, Poisson’s ratio (ν) = 0.32, which were
calculated in a paper prepared by Komarnicki et al. [36]. A density equal to 845 kg·m−3

was determined, based on the measurement of the whole series of objects. Table 1 presents
the material parameters that were adopted.

Table 1. Properties of the crushable foam material used.

Foam Hardening Rate Dependent

Yield Stress Uniaxial Plastic
Strain

Yield Stress
Ratio

Equivalent Plastic Strain
Rate

0.3 0 0.1 0
3 1 0.5 1

The numerical tests consisted of dropping the model from a range of height (10–150 mm)
on to a horizontal concrete and wooden slab. Their properties are presented in Table 2. Due
to the structure of the wood material, Young’s modules for this material were specified
in three directions of the grains: 1—longitudinal, 2—radial, and 3—tangential. Poisson’s
ratios ν12 ν13 ν23 were also determined, based on the grain direction. Linear models
of materials were adopted, as the stresses achieved in them were significantly below the
yield point.

Table 2. Properties of the impact surface used.

Density
(kg·m−3)

Elastic Properties

Young’s Modulus (MPa) Poisson’s Ratio

Concrete 2400 14,000 0.2

Wood 1000
E1 E2 E3 ν12 ν13 ν23

12,500 830 830 0.467 0.372 0.435

The calculations were performed in the Abaqus/Explicit module for the analysis of
dynamic phenomena [37]. The model was forced kinematically, by means of speed, applied
to the model over its entire volume. The speed was determined by the height from which
the object was dropped. The speed range during analysis ranged from 443 to 1715 mm·s−1.
Stopa et al., in their observations, assumed and confirmed the hypothesis that permanent
deformations indicated an occurrence of the first signs of damage in the parenchyma tissue,
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and it followed an increase of the impact energy corresponding with the initial phase of
maximum surface pressure stabilisation [20].

To provide this hypothesis, the following was conducted: detailed analyses of the
contours and the distribution of average surface pressure during individual impacts for
successive impact energies. The surfaces of the bruises were also measured as a measure of
apple flesh damage.

The study lists and compares experimental results [36] with model results for dis-
charges on two substrates: concrete and wood. Comparison of substrates from corrugated
cardboard was abandoned due to difficulties in creating its numerical model. All drop
heights, i.e., from 10 to 150 mm, were compared with a change in height every 10 mm. The
heights of 10 and 30 mm were analysed in detail for both substrates. Komarnicki el al. [36],
in their tests, considered these heights crucial, representing the limit beyond which the
permanent deformation that causes the damage occurs.

3. Results and Discussion

Figures 3–5 present the average values of surface pressures obtained during the
experimental tests.
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Figure 5. Comparison of the force values obtained based on experimental tests and on the numerical
model for both substrates. Fw—means force for wood surface, Fc—means force for concrete surface.

The results were presented on the cut-off axis, and on the ordinate axis—the values
calculated with the proposed model. The graph shows that the relation presenting the
average maximum values of surface pressures can be considered correct because the
average error of matching the model to the variables does not exceed ±10%. It should be
noted that the material tested is of biological origin and is characterised by considerable
anisotropy and irregularity within a single object (apples), influenced by conditions such
as sunlight, humidity, temperature, and other conditions.

Figure 3 shows a comparison of mean values of surface pressures, p, obtained from
experimental tests with model results for both substrates. The average model fitting error
for each substrate was determined based on the average value of surface pressure +/−5%
observations around the trend line (p < 0.95). The high density of the results indicates that
the model is correctly matched to the real object, because the model values are slightly
different from the experimental values. Based on the linear regression analysis and the
coefficient of determination obtained from it, the model fit is good—for concrete substrate
R2 = 0.68—and high (for wood substrate R2 = 0.84). The higher surface pressure p values
obtained for both experimental and model values for the concrete type substrate are related
to the fact that it was a non-deformable substrate with a high modulus of elasticity [20].

In Figure 4, a comparison of contact surface A obtained through experimental and
model tests for both substrates is presented. An even distribution of results within an error
limit of 10% can be observed. For both substrates, the coefficient of determination obtained,
based on linear regression analysis, was very good. For instance, concrete R2 = 0.90 and
wood R2 = 0.94. Stopa et al. [20], Komarnicki et al. [36], and Unuigbe and Onuoha [38]
proved that the size of the contact surface depended on the type of the resistance surface
and was capable of deformation, i.e., the flexural modulus.

In Figure 5, a comparison of force F values for experimental and model values is
presented. The results obtained are within an error limit of 10%. For both substrates, the
coefficient of determination obtained based on linear regression analysis is very good. For
instance, concrete R2 = 0.90 and wood R2 = 0.92. The obtained values are influenced by the
height of the drop, the type of retaining surface, and the radius of curvature of the tested
object. The deviation of some measurements from the mean value has no significant effect
because these are the values obtained for the drop height at which the damage to the flesh
tissue occurs [20,36].

In fact, a high coefficient of determination does not always guarantee a perfect fit of
model to the experimental data. In this paper, discrepancies between the experimental
and model data may result, among others, from properties of the material, conditions of
fruit ripening, and conditions under which the tests are performed. These circumstances



Appl. Sci. 2021, 11, 7579 8 of 16

influence the differences in contact surface areas and surface pressures in the analysed
Figures 3–5.

Figure 6 presents the effect of the drop height on experimental and model values of
surface pressures, p. It can be observed that model values start from a lower value, by
about 0.04 MPa from the experimental values and their increase with height increase occurs
faster than in the experimental results, and reaches most of them. Komarnicki et al. [36], in
his studies, pointed out that, for a wood-type substrate, with a 10 mm drop height, damage
occurs, so higher values obtained at higher drop heights do not have any effect, because,
even at lower values, damage occurs. As previously stated, these results are within the
error limit (10%) and should be considered as very good due to the value of the coefficient
of determination R2 = 0.99 obtained from the power model. The results are presented in
Figure 6.
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Figure 6. Influence of drop height on the experimental and model values of surface pressure, for
wood type substrates. pm—means model surface pressure, pe—means experimental surface pressure.
Error bars represent mean ± SD (standard deviation).

In Figure 7, a comparison of contact area A for experimental and model values is
presented. The obtained values differ to a small extent, as evidenced by the presented trend
lines for their courses, where determination coefficients are close to unity and are R2 = 0.96
for experimental results and R2 = 0.98 for model results. Based on the results of the contact
surface, it can be concluded that the proposed model is a very good representation of reality.
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In Figure 8, a comparison of the obtained force F values for experimental and model
values is presented. It can be observed that the strength values are close to each other and
are characterised by an equal fast build-up rate as the height increases; the trend lines for
both runs are characterised by a high coefficient of determination close to unity.
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Figure 8. Influence of the drop height on the experimental and model force value, for wood type
substrates. Fm—means model force, Fe—means experimental force. Error bars represent mean ± SD
(standard deviation).

In Figure 9, the effect of drop height on experimental and model values of surface
pressures is presented. It can be observed that model values start from a lower value,
around 0.1 MPa from the experimental values, and their increase with the drop height
increase occurs faster than in the experimental results, but reaches a similar maximum
value. However, as previously stated, these results were within the error ±10% compared
to the base value calculated.
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Figure 9. Influence of drop height on the experimental and model values of surface pressure, for
concrete type substrates. pm—means model surface pressure, pe—means experimental surface
pressure. Error bars represent mean ± SD (standard deviation).

In Figure 10, a comparison of contact area A for experimental and model values is
presented. The obtained values differ to a small extent; bigger values were obtained in the
model tests. On the other hand, the increases in contact area values are similar and have a
similar course.
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Figure 10. Influence of the drop height on the experimental and model contact surface, for concrete
type substrates. Am—means model contact surface, Ac—means experimental contact surface. Error
bars represent mean ± SD (standard deviation).

In Figure 11, a comparison of the obtained force F values for experimental and model
values is presented. It can be observed that the force values are similar to each other and
are characterised by a comparable rate of increase in speed, as the drop height increases
to 70 mm, while from the drop height of 80 mm, the model values are characterised by a
greater increase in force, F. The trend lines for both runs have high determination factors.
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Figure 11. Influence of the drop height on the experimental and model force value, for wood type
substrates. Fm—means model force, Fe—means experimental force. Error bars represent mean ± SD
(standard deviation).

Figures 12 and 13a,b present the courses of values (of surface pressures) as a function
of distance for the drop of fruit, from a height of 10 mm on the concrete substrate, as well
as drawings of contour lines and distributions of surface pressures of the real and model
objects, in the cross-section passing through the central point of contact. A difference in
maximum surface pressure values of 0.1 MPa can be observed (a relative difference of
22%). However, based on course observations, it can be concluded that this difference
is insignificant, because a higher value was obtained in the experimental studies and no
damage was found due to the shape of the surface pressure distribution, whose maximum
values were in the central point of contact. This indicates that we are dealing with an
elastic deformation. This also confirms the absence of visible damage to the flesh tissue of
the tested apple at the point of contact with the resistance element in the stroke test [36].
Based on the shape of the contact, it can be concluded that this difference may be due to the
geometry of the objects. The experimental object could have a smaller radius of curvature
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(longitudinal shape of the contact) at this point [36], resulting in a higher surface pressure
value, whereas the numerical model is the ideal ball.
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Figure 13. Layers and surface pressure distributions of the real object (a) and model object (b) for
an apple dropped from a height of 10 mm on a concrete substrate in a section passing through the
central point of contact.

Figures 14 and 15a,b present the courses of values of surface pressures as functions of
distance for the drop, from a height of 30 mm on the concrete substrate, as well as drawings
of contour lines and distributions of surface pressures of the real and model objects, in
the cross-section passing through the central point of contact. For drops from a height of
30 mm, Komarnicki et al. [36] found the damage, as evidenced by the shift of maximum
surface pressures from the central zone to the peripheral zone of the contact area. In the
analysed case, the surface pressure values, similar to the height of 10 mm, was 0.05 MPa
lower for the numerical model than the experimental values. During the course of the
maximum values of surface pressures, in the cross-section passing through the central
point of contact, a decrease of these values could be observed in the central part of the
contact, indicating the formation of plastic deformation, as confirmed by Stopa et al. [20]
and Komarnicki et al. [36]. Furthermore, they discovered that, in extreme cases, the surface
pressure values in the central contact zone might decrease to zero.

Figures 16 and 17a,b presented the courses of values of surface pressures as functions
of distance for the drop, from the height of 10 mm on the wooden substrate, as well as
drawings of contour lines and distributions of surface pressures of the real and model
objects, in the cross-section passing through the central point of contact. It can be observed
that the difference in the maximum values of surface pressures, as opposed to the concrete
substrates, are smaller and amount to about 0.03 MPa. Based on observations of the course, it
can be concluded that this difference is not significant, because a higher value was obtained
in the experimental studies, and no damage was found due to the shape of the distribution
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of surface pressures, whose maximum values were at the central point of contact. It can also
be concluded that we are dealing with an elastic deformation. This confirms the absence
of visible damage to the flesh tissue of the tested apple at the point of contact with the
resistance element in the stroke test [20,36]. Based on the shape of the contact, it can be
concluded that this difference may be due to the geometry of objects. The experimental
object could have a smaller radius of curvature (longitudinal shape of the contact) [20,36],
resulting in a higher surface pressure, while the numerical model is the ideal ball.
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Figure 15. Layers and surface pressure distributions of the real object (a) and model object (b) for
an apple dropped from a height of 30 mm on a concrete substrate in a section passing through the
central point of contact.
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Figure 16. Surface pressure values as a function of distance for dropping an apple from a height of
10 mm on a wooden substrate.

Figures 18 and 19a,b present the courses of values of surface pressures as functions
of distance for the drop, from the height of 30 mm on the wooden substrate, as well as
drawings of contour lines and distributions of surface pressures of the real and model
objects, in the cross-section passing through the central point of contact. For drops from
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a height of 30 mm, Komarnicki et al. [36] found the damage, as evidenced by the shift of
maximum surface pressures from the central zone to the peripheral zone of the contact area.
In the analysed case, the surface pressure values, as opposed to a drop from a height of
10 mm, reached similar values. In the course of the maximum values of surface pressures
in the cross-section passing through the central point of contact, a decrease of these values
was observed in the central part of the contact, which indicates the formation of plastic
deformation, as confirmed by Stopa et al. [20] and Komarnicki et al. [36]. Furthermore,
they found that, in extreme cases, the surface pressure values in the central contact zone
might decrease to zero.
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4. Conclusions

The relationship between load and deformation may become non-linear; a non-linear
analysis should be carried out at this point to obtain realistic results that reflect the actual
behaviour. In this context, a clear approach to the solution was identified as valuable in
solving recharging cases, such as the impact/collision and drop test event. The explicit
dynamics system was designed to simulate non-linear structural mechanic applications.
In complex applications, open methods are more appropriate and an open approach
provides an alternative process to solving problems [39–43]. Today’s technology allows us
to efficiently perform non-linear and time-dependent impact load cases using simulations
based on numerical methods. However, these types of non-linearities (geometry, contact,
and/or non-linearity of material), including dynamic simulations, have not yet become
major practices in studies related to the deformation of agricultural products, because of
their interactions [44].

In the literature, there are examples of modelling the behaviour of fruits (e.g., pears,
apples, or tomatoes) under stress in quasi-static conditions. The proposed models accu-
rately reproduced real objects, in terms of geometry, using 3D scanning; however, the
three-layer structures and differences in physical and mechanical properties of the tissues
of individual layers (skin, flesh tissue, and seminal nest) were often omitted [29]. The pre-
sented research, which included modelling of surface pressures, could replace long-lasting
and time-consuming experimental studies. Moreover, a FEM model can be used to analyse
and design new devices, technologies, or systems, e.g., during transport or processing, in
order to reduce the risk of damage, as well as real deformation of the tissues of plant origin,
at the stage of harvesting, transport, storage, and processing.

For this reason, we decided to create a three-layered model of the ‘Golden Delicious’
apple variety, taking into account the interactions between the individual layers and using
experimental studies to determine the properties (Poisson’s number, modulus of elasticity)
of individual layers.

The next step of our study will obtain a creation of geometric model that will reflect
with high precision a real object. Future plans include research on other apple varieties and
other types of agricultural products, to define the damage of flesh tissue based on surface
pressure. The created models will be used to analyse harvesting, transport, and storage
processes, in order to reduce the occurrence of damage and design new technological lines.
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