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Abstract: The transient scattering of in-plane elastic waves from a finite-sized periodic structure,
comprising a regular grid of Swiss-cross holes arranged according to a square lattice, is considered.
The theoretical and numerical modelling focuses on the unexplored ultrasonic frequency regime,
well beyond the first, wide, locally resonant band-gap of the structure. Dispersive properties of the
periodic array, determined by Bloch–Floquet analysis, are used to identify candidates for high-fidelity
GPU-accelerated transient scattering simulations. Several unusual wave phenomena are identified
from the simulations, including negative refraction, focusing, partial cloaking, and wave trapping.
The transient finite element modelling framework offers insights on the lifetimes of such phenomena
for potential practical applications. In addition, nonideal counterparts with rough edges are modelled
using characteristic statistical parameters commonly observed in additive manufacturing. The
analysis shows that the identified wave effects appear likely to be robust with respect to potential
manufacturing uncertainties in future studies.

Keywords: elastic metamaterials; ultrasonics; rough surfaces; wave propagation

1. Introduction

In recent years, the design and fabrication of metamaterials have demonstrated exotic
effects and phenomena for all types of travelling waves, from electromagnetic [1] to me-
chanical [2]. The terminology of metamaterial was first used to describe a class of structured
materials (or composites) for which wave effects arise as a collective manifestation of locally
resonant constituent units [3]. The resonant frequency of a metamaterial’s subunit depends
only on its inertia and restoring force, meaning that the incident wavelength may be several
orders of magnitude greater than the physical dimension of the constituent subunits. This
sub-wavelength property is characteristic of all metamaterials; therefore, it is now widely
accepted that the definition has been broadened to include all sub-wavelength systems that
support exotic wave effects not found in nature. Examples for mechanical metamaterials
and phononic crystals include negative refraction [4], superlensing [5], filtering [6], and
cloaking [7].

The nature of metamaterial resonant subunits affects the wave propagation effects,
but the most commonly used class of metamaterials is characterised by periodic repetitions
of unit cells. Analytical techniques use Bloch–Floquet theory to construct dispersion
diagrams, from which stop and pass bands are easily identifiable, as well as special features
such as Dirac points and standing modes [8]. Structured elastic Kirchhoff–Love plates,
comprising periodic distributions of scatterers and also referred to as platonic crystals [9],
have attracted great interest in the last fifteen years. These two-dimensional elastic plate
analogues of photonic crystals feature many of the anisotropic effects typically observed in
photonics, such as ultra-refraction, Dirac-like cones and topological insulator, and edge
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mode properties for flexural [10–14] waves. Similar effects have also been observed for
in-plane elastic waves [15–17]. This article considers a two-dimensional locally resonant
metamaterial for in-plane elastic waves: a plain-strain, homogeneous medium is patterned
with a doubly periodic array of cross-shaped perforations.

Previous studies related to similar systems include the articles by Miniaci et al. [18]
and Avialiotis et al. [19]. The focus of [18] was a polyvinyl chloride phononic plate and
the identification and location of complete band gaps for a square lattice of crosslike holes
using numerical methods and experimental validations. Very good agreement between
the predicted band gap frequencies and the experimental results was found. In order
to perform ultrasonic pitch-catch experimental tests, the plate was machined to produce
hollow and rounded cross-cylinder inclusions [18], with a tolerance of 0.1 mm for each
cross (with characteristic length 18 mm) within a 20 × 20 mm2 unit cell. For incident
frequencies up to 50 kHz, the corresponding wavelengths are of the order 18 mm, i.e., of
the same order as the inclusions. As stated by [18], the study was motivated by the work
of [20], in which an extensive numerical investigation indicated that cross-shaped holes
could generate multiple and complete band gaps within this lower frequency range.

A subsequent study [19] investigated finite width slabs of a metamaterial patterned
with cross-shaped holes, using a semianalytical solution of the relaxed micromorphic
model [21–23] to identify wave scattering properties. Solutions were compared with
frequency-domain finite element simulations and the reflection and transmission coeffi-
cients (and band gap locations) showed excellent agreement over a range of frequencies
and angles of incidence. The dimensions of this material were significantly smaller than
those considered by [18], with the area of the unit cell being 400 times smaller (1× 1 mm2

compared with 20× 20 mm2). Consequently, frequencies were considerably larger with
band gaps covering a range from 100 kHz up to 2.5 MHz.

Our new study investigates exotic wave effects predicted by Bloch–Floquet dispersion
surfaces and explicit time-domain finite element (FE) simulations within pass bands at
higher frequencies (i.e., above the band gaps investigated by [19]). Phenomena such as
negative refraction, cloaking, wave-trapping, and long-wavelength enveloped wave modes
(with wavelengths much larger than those for the resonant subunits at the microscopic
scale) are demonstrated using transient, accelerated GPU (graphics processing unit) imple-
mentation [24]. The time-domain approach described here uses modelling methods similar
to those applied for other high-fidelity FE studies of elastic wave propagation [25–27], for
which experimental validations were also performed.

Future studies of the model described here are likely to use experimental methods
to reproduce the predicted wave behaviours. In order to manufacture the metamaterial,
additive manufacturing methods may be used, which will result in microscopically rough
versions of the cross-shaped inclusions. Additional FE studies are presented for perturbed
versions of the crosses, using roughness statistical parameter values typically recorded for
metal parts created by additive manufacturing methods [28–30].

The article is organised as follows: Section 2 reviews the governing equations, under-
lying assumptions, and dispersion properties. The FE model generation is also described
in detail. Section 3 discusses the examples showing transient wave phenomena for the
periodic and perturbed periodic structures. Concluding remarks and the future outlook for
the model are drawn together in Section 4.

2. Governing Equations and Methods
2.1. Isotropic Elasticity and Plane-Strain Approximation

The plane-strain approximation pertaining to in-plane elastic displacement
u = (u1, u2)

T results in the following partial differential equation (Lamé system [31])

µ∇2u + (λ + µ)∇∇ · u + F = ρ
∂2

∂t2 u, (1)
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where µ and λ are the Lamé parameters, F is an external in-plane body force, ∇ is the
gradient in Cartesian coordinates in two-dimensional (2D) space, ρ is the density, a · b is
the scalar product of two vectors a, b ∈ R2, and t represents time.

By introducing u = u0 exp(iκ · x− iωt)) in Equation (1), and in the absence of body
forces (F = 0), a characteristic equation for the amplitudes u0 can be derived. The notations
κ and ω are used to represent the wave vector, and radian frequency, respectively. Such
characteristic eigenvalue problems have nontrivial solutions if and only if

ω/κ = cs,p, (2)

where cs =
√

µ/ρ and cp =
√
(λ + 2µ)/ρ, are shear and compression wave speed, respec-

tively, and κ = |κ|.

2.2. Dispersive Properties of a Swiss-Cross Periodic Structure

In this manuscript, we are interested in dynamically exciting a metastructure whose
building blocks are enclosed within the dashed black square of Figure 1a. The blue region
represents plane-strain aluminium (material parameter values are provided in Section 2.3
when describing the finite element models) whereas the white region, reminiscent of a Swiss
cross, is void, with zero traction boundary conditions prescribed on its boundaries, i.e.,

σijnj = 0. (3)

0

a

b

L

c

d

2π/L

(a) (b)

kx

ky

Γ X

M

Figure 1. Panel (a) is a schematic representation of a 2× 2 cluster of unit cells comprising Swiss-
cross holes. The black dashed square of side-length L encloses an individual unit cell. Panel (b)
shows the first Brillouin zone of the unit cell in panel (a), where the dashed blue lines indicate its
irreducible fraction.

The unit vector nj ≡ nj(x1, x2) is normal to the line delimiting the void and σij are the
in-plane components of the plane-strain elastic stress tensor. Bloch–Floquet quasi-periodic
boundary conditions [32] for the displacement field are

u(x + ξ1L1 + ξ2L2) = exp(iξ1k · L1 + iξ2k · L2)u(x), with x ∈ Ω, (4)

where (ξ1, ξ2) ∈ Z2, k = (kx, ky)T, L1 = L(1, 0)T, L2 = L(0, 1)T, and Ω is the region
enclosed by the dashed square in Figure 1a. The dispersion surfaces for the unit cell
illustrated in Figure 1a are obtained by performing the following computational steps:

• FE discretisation of the time-harmonic counterpart of the Lamé system of Equation (1);
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• prescription of Bloch–Floquet quasi-periodic conditions as in Equation (4), along
with F = 0 and zero-traction conditions (see Equation (3)) at the boundaries of the
Swiss-cross holes;

• solution of the resulting eigenvalue problem for the Bloch frequency ω as a function
of the Bloch vector k in the first Brillouin zone represented in Figure 1b.

The high symmetry points in Figure 1b are

Γ =

(
0
0

)
, X =

π

L

(
1
0

)
and M =

π

L

(
1
1

)
. (5)

In order to obtain a fine resolution of the dispersive properties, the first Brillouin zone
was sampled using 100× 100 equally spaced points. The problem was then solved by
using the commercial FE software COMSOL Multiphysics.

Table 1 summarises the geometric parameter values of the unit cell represented in
Figure 1a. In Figure 2a, we present the high-frequency dispersion diagrams projected
over the boundaries of the irreducible Brillouin zone. Figure 2b shows some selected
eigenmodes associated with the corresponding branches of the dispersion curves.

Table 1. Geometric parameters, as in Figure 1a, defining the Swiss-cross holes unit cell.

a [mm] b [mm] c [mm] d [mm] L [mm]

0.1 0.3 0.7 0.9 1

X M X
2.6

3

3.5

4

A

B

C

D

2.78 MHz2.65 MHz 2.64 MHz

3.65 MHz

3.45 MHz

(b1) (b2)

(b3) (b4)

(a) (b)
Figure 2. (a) Dispersion diagram of the unit cell in Figure 1a along the irreducible Brillouin zone path XΓMX of Figure 1b.
(b) Selected Bloch–Floquet eigenmodes associated with the wave vector located one tenth along the length of the branch ΓM,
see Figure 1b, for several frequencies in the range 2.65 MHz to 3.65 MHz. Figures (b1) to (b4) correspond to the frequencies
labelled A to D in panel (a).

Once the Bloch dispersion surfaces ω(k) are obtained, it is possible to evaluate the
group velocity of waves travelling parallel to the wave vector k, as

vg(k) = ∇kω(k), (6)

by using standard numerical gradient routines. The group velocity landscape of the
structure is presented in Section 3. As originally documented in the seminal book by
Joannopoulos et al. [32], focusing on photonic crystals, the comparison of isofrequency
contours and group velocity of the bulk homogenous external medium (2) with those of
the periodic microstructured medium give invaluable information about the capability of
metamaterials to effectively “mould" the flow of waves.
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2.3. Transient GPU-Accelerated FE Models

The underlying finite element model’s spatial domain is illustrated in Figure 3a for the
case of an incident Gaussian beam. Various dimensions of the metamaterial slab were con-
sidered but the case of ten rows of sixty identical unit cells is shown in Figure 3a, covering
horizontal and vertical distances of 60mm and 10mm, respectively. Absorbing layers, to
reduce the effect of unwanted reflections from the sides of the truncated two-dimensional
homogeneous part of the domain, are applied to the horizontal and vertical extremities
of the domain. The thickness of the absorbing layers is chosen to be > 3λp, following
the recommendations of previous literature [33] to ensure that unwanted reflections are
minimised; the notation λp denotes the longitudinal, or compression, wavelength. The
dependence of the absorbing layer parameter value, on the longer wavelength scale, ac-
counts for the mode conversions that occur as the incident shear wave interacts with the
metamaterial and its constituent subunits.

!

1

(a) (b)
Figure 3. (a) Finite element model domain for shear wave Gaussian beam incidence. The angle α is 35◦ and the slab of
metamaterial, sandwiched by homogeneous aluminium media, consists of 600 cross-shaped holes. Absorbing layers of
length 8mm are applied to all sides of the domain. (b) Alternative point-source excitation for shear waves. The weighting
applied to each of the six excitation nodes is highlighted by the directions of the arrows.

The wavelength is determined by the incident centre frequency, f = ω/2π, and the
material parameters of the media. Aluminium material parameters (Young’s modulus,
Poisson’s ratio, and density) are assumed here: E = 70 GPa, ν = 0.33, ρ = 2700 kg/m3

to define compression and shear wave speeds of cp = 6198 and cs = 3122 m/s. The two
homogeneous parts of the domain in Figure 3a, above and below the metamaterial slab,
are defined by these aluminium material parameters. The central portion was also initially
defined in the same way but the cross-shaped holes are excised to create the periodic array
of unit cells. Zero traction boundary conditions (see Equation (3)) are applied to the edges
of the crosses, whose dimensions are illustrated in Figure 1a and Table 1.

Each unit cell is a 1 mm× 1 mm square that contains a symmetrical cross (resembling
the Swiss cross) with length and width 0.9 mm. Therefore, the spacing between the left
and right ends of neighbouring crosses is 0.1 mm. As shown in Figure 1a, all sublengths of
this study’s fundamental cross are equal, i.e., 0.3 mm, whereas the Swiss cross (also known
as the emblem of the Red Cross) possesses a sublength ratio of 7:6, for which the central
square has relative length 6.

The initial studies investigated for this article were periodic arrays of these regular
crosses, with slab sizes varying from 10× 60 slabs to 24× 60, for which the first number
represents the number of repeating rows. The domain was meshed with element length
∆x = 0.02 mm using the explicit time-domain finite element software package Pogo [24],
and its in-built meshing tool, pogoMesh. The element size is minimised to improve the
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accuracy of the results observed. It is well known that for two-dimensional explicit time
domain FE studies [24,34], thirty elements per wavelength is more than sufficient for
convergence of the results. Since a range of frequencies were used here, the mesh size was
chosen to ensure convergence for all cases considered. The highest centre frequency in the
examples that follow is 3.3 MHz, which corresponds to a shear wavelength of λs = 0.95 mm,
equating to close to fifty elements per shear wavelength, ensuring convergence for all
examples presented. Figure 4a illustrates the mesh of plain-strain, linear, 3-noded triangular
elements around a cross-shaped hole; the pogoMesh function generates an irregular mesh
in the immediate vicinity of the edges and vertices, but reverts to a regular form as the
distance from the interface increases.

The size of the FE model varies with the slab of metamaterial investigated. For
example, a 10× 60 example, with beam angle α = 35◦ varies from −26 mm to 36 mm in
the vertical direction, and −40 mm to 40 mm in the horizontal dimension, producing a
domain consisting of around 25 million triangular elements and degrees of freedom (DOFs)
for the two-dimensional model. A larger domain is required to accommodate a smaller
beam angle, or a point source at distance. For example, the case of a point source located
40 mm from the top of the slab requires a domain with more than 50 million DOFs, ranging
from −40 mm to 40 mm in the horizontal direction, and from −56 mm to 56 mm in the
vertical direction.

The use of Pogo [24], a GPU-driven explicit transient FE software package, has enabled
a step change in modelling capability for the elastic metamaterial considered here. Standard
CPU-driven software packages for time domain computations begin to show instability
for model-sizes > 10 million DOFs, and simulations become increasingly inefficient with
respect to run-times. In contrast, several examples considered here exceeded 50 million
DOFs with no stability issues and run-times of less than ten minutes on a standard PC
with a single Nvidia GTX 1080Ti GPU card possessing 11 GB of memory. The results are
also highly accurate for very large and complex models; the three-dimensional studies of
elastic wave attenuation and scattering in polycrystalline solids [26,35] investigate models
with up to 1 billion DOFs. Models that would take several days for standard CPU-driven
transient schemes can be run in a matter of hours using parallel GPU-implementation.

The underlying excitation is a 200-cycle Hann-windowed tone-burst (numerical inves-
tigations were initially conducted to optimise the number of cycles) with centre frequencies
selected from the higher frequency dispersion surfaces in Figure 2. Two types of shear
wave excitation were considered, a Gaussian beam or point source. The Gaussian beam
used a 5 mm source line, highlighted with red markers in Figure 3, wherein the underlying
signal was applied to each source node with appropriate weighting to steer the beam at the
chosen incident angle α (see Figure 3a).

The point-source excitation method is illustrated in Figure 3b. Similarly, appropriate
weightings were applied to the relevant nodes to produce an incident shear wave, whose
homogeneous medium wavelength is determined by λ = cs/ f , where f denotes the
centre frequency of the excitation. Note that a phase difference of π is applied to nodes
diametrically opposite to one another (indicated by arrows of the same colour) in Figure 3b.
In order to generate a compression wave point source, the arrows in Figure 3b would be
rotated by π/2 in the anticlockwise direction, to obtain the required weightings.

Each simulation was run for T = 120 µs, with the excitation signal length defined by
the ratio of number of cycles to the frequency. For explicit time-domain numerical methods,
it is essential that the Courant–Friedrichs–Lewy convergence condition [36] is satisfied. The
finite element simulation time step ∆t was determined by the choice of Courant number C
and the equation [36]

∆t = C∆x/cp. (7)

The Courant number C must be less than one, and it is recommended to be lower than
0.7, so our choice of C = 0.3 ensures convergence for accurate results. The mode-converted
compression wave speed, rather than shear wave speed, is used in Equation (7) to ensure
that the time steps are sufficiently small to capture the wave propagation with optimal
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accuracy. As discussed by [26], a structured, regular mesh, as illustrated in the majority of
Figure 4a, is likely to perform better than an irregular mesh. This is because the irregular
mesh has a wider range of element sizes to account for sharp spatial features. Therefore, it
is not possible to then achieve the same value of the Courant number everywhere, even if
there is only one wave mode and material parameter definition present. Optimal results
are obtained by reducing the area of the spatial domain that contains irregular meshing
elements, something that pogoMesh [24] achieves in a highly efficient manner.

2.4. Rough Interfaces Model Generation

In order to investigate the robustness of the wave phenomena and the practicalities
of manufacturing specimens of the metamaterial in the future, accompanying studies of
perturbed cross-shaped holes were performed. Surface roughness may be regarded as
a random process that requires statistical techniques for characterisation [37]. Typically,
a rough surface may be described by its deviation from a smooth reference surface. For
example, the rough surface of a pipe would be described by height deviations from
a smooth cylindrical surface, whereas the rough sea would be measured relative to a
smooth plane.

There are two important aspects of surface roughness to consider: the spread of
heights above and below the mean reference surface and the lateral variation of these
heights along the surface. Numerous statistical distributions and parameters have been
used to describe these properties, including the root mean square (rms) height δ and
correlation functions [38], which are defined in two-dimensional space as follows:

δ =
√
< h2 >, < h > =

∫ ∞

−∞
h p(h)dh = 0; C(r) =

< h(x1)h(x1 + r) >
δ2 , (8)

where x1 is the coordinate direction along which the extent of the surface is defined, h is the
variation in height from the mean line x2 = 0, p(h) is a probability density function, and
<> denotes spatial averaging over the surface. The quantity r in (8) is the distance between
any two points on the surface. A height correlation function C(r) describes the extent
to which information about the height at one point on a surface determines, on average,
the height at another point. A Gaussian correlation function is assumed here, following
previous literature [38], but alternative distributions are also possible and investigated [37].
Note that with the definition in (8), C(0) = 1 and C(∞) = 0 so that as distance r increases,
C(r) decreases. The characteristic correlation length, λ0, is the distance over which C(r)
falls to 1/e.

In additive manufacturing studies of surface roughness, an alternative measure of
the variation of height about the reference surface is commonly used. For example, in the
recent investigations [28–30], the arithmetic average of the absolute values of height profile
deviations, Ra, was reported. The difference between Ra and δ is most easily understood
by comparing their equations:

Ra =
1
L

∫ L

0
|h(x)|dx; δ =

√
1
L

∫ L

0
h(x)2 dx , (9)

where L is the length of the rough surface. Although the two measures are similar, in
general, the rms value δ will produce slightly higher values than Ra – for example, in the
event of a single large peak or deep valley.

Recent investigations of the surface finish of additively manufactured parts made
from alloys containing aluminium (for example, Ti6Al4V, a titanium alloy stabilised with
aluminium, and AlSi10Mg) by [28,29] indicate that the roughness parameter Ra typically
ranges from 2–25 µm. For our study of the effect of roughness on the wave phenomena
observed for the regular cross-shaped holes, randomly rough surfaces of length 0.3 mm
(characterised by a value of δ = 5 µm, which is in the aforementioned range) were
generated and used to define the perturbed crosses shown in Figure 4b. The rough surfaces
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were generated by using a weighted moving average approach to correlate randomly
generated height values, following the work of Ogilvy for ultrasonic nondestructive testing
applications [38].

(a) (b)
Figure 4. (a) Meshed domain in the vicinity of a regular Swiss cross-shaped hole. (b) Mesh in the vicinity of rough
cross-shaped holes defined by the roughness parameters δ = 5 µm and λ0 = 5 µm.

To ensure sufficient convergence and accuracy of the modelling results, the time-
stepping of the FE simulation was adjusted to account for the addition of roughness in the
models. Equation (7) was modified to replace ∆x with ∆x/4, which matched the roughness
parameter values for δ and λ0. This change led to a significant increase in simulation run-
time. For the regular models and T = 120 µs, the time-step ∆t calculated from Equation (7)
was ∆t = 9.7× 10−10 s, leading to around 124,000 time steps. However, for the rough
crosses, ∆t was reduced to 2.4× 10−10 s, leading to nearly 500,000 time steps and a run-time
approximately four times longer. The incident wavelength is of the order of the size of the
cross-shaped hole, so it is expected that interaction with the defined roughness, which is
realistic for additive manufacturing methods but around sixty times smaller, should have a
minimal effect on the exotic wave effects observed for the regular, periodic structure.

3. Results and Discussion

As mentioned in Section 1, the main focus of this article is the scattering of waves
within the high-frequency pass-band of a finite-sized slab of elastic metamaterial compris-
ing a cluster of Swiss cross-shaped building blocks, as shown in Figure 1. The dispersion
diagram, projected over the boundaries of the irreducible first Brillouin zone, is presented
in Figure 2a, with an emphasis on the high-frequency regime of interest (>2.5 MHz). For a
complete overview of the dispersive behaviour of the periodic systems of Swiss crosslike
holes in Figure 1, the reader is referred to [19], where the focus is on complete band-gaps.

Despite the horizontal and vertical extents of the slab in Figure 3 being finite, the
dispersive properties of bulk aluminium, and of the infinite periodic microstructured
constituent, provide invaluable information for wave scattering phenomena within a
finite structure. Previous studies, also using Bloch–Floquet quasi-periodicity to derive
dispersions surfaces from which interesting frequencies were identified for finite sub-
structures, have been carried out in several research fields, including civil [39,40] and
biomedical [41,42] engineering.

3.1. Negative Refraction and Wave Trapping

A first illustrative example is shown in Figure 5 using several panels to demonstrate
and explain negative refraction and wave trapping phenomena. Isofrequency contour
(IFC) diagrams are often also referred to as slowness contour diagrams in the literature.
However, in this article, the contours are represented in terms of dimensionless wave-
number components rather than slowness components (whose dimensions are s/m). In
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Figures 5a,b, the IFCs of both the interior and exterior media are shown. The black solid
lines in Figure 5a represent the IFC of the microstructured medium, whereas the blue
dashed lines represent the IFC of plain-strain aluminium (see Equation (2)).

(a) IFC diagram (b) Magnification of panel (a)

(c) t = 10.5 µs (d) t = 25.5 µs

(e) t = 51.0 µs (f) t = 88.5 µs

Figure 5. Scattering of a shear-dominated Gaussian beam at centre frequency f = 2.985 MHz and an angle of incidence
α = 35◦. Panels (a,b) show the IFC diagram (and its magnification); the red asterisk represents the intersection point of the
Gaussian beam propagation direction and the isofrequency contours. Panels (c–f) show the magnitude of the displacement
field at different times in the FE simulation, with the total time being T = 120 µs.

The IFC of the Swiss crosslike hole system is repeated periodically outside of the
first Brillouin zone (see the blue square in Figure 5a). In addition to the IFC, which gives
information about the phase velocity of the interior and exterior media, we also show
the group velocity in the microstructured medium (see the grey arrows), estimated by
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evaluating the numerical gradient (see Equation (6)), associated with the Bloch–Floquet
dispersion surfaces.

Figure 5b is an enlargement of Figure 5a, by which the group velocity distribution can
be observed more clearly. It is shown that close to the coincidence point, i.e., at α = 35◦

and marked with a red asterisk, the group velocity is negative and points in the opposite
x-direction, with respect to the group velocity of the shear-dominated incident wave. This
situation results in negative refraction at the first interface (i.e., the top row of Swiss-cross
holes), which can be seen in the transient FE instantaneous displacement in Figure 5c,d.

Figure 5e shows a time-frame at which the beam emerges from the slab, with ap-
proximately the same angle as the angle of incidence but shifted. At approximately three
quarters of the transient simulation duration, Figure 5f shows transient localisation of
waves, with an accumulation of the displacement field on the left side of the slab. This
is consistent with the general group velocity landscape in Figure 5b, where the favoured
direction of the group velocity, in the vicinity of the coincident point, is towards the left.

3.2. Partial Cloaking

Figure 6 illustrates an example of partial cloaking for an extended slab (24× 60 rows).
Again, the IFC (see Figure 6a,b) predicts the effective behaviour of the structure to waves
impinging at a given angle of incidence and certain centre frequency f = 3.05 MHz. More
specifically, in the neighbourhood of the coincidence point for shear waves, the group
velocity points in the same direction as the group velocity of the incident wave.

(a) IFC diagram (b) Magnification of panel (a)

(c) t = 21.0 µs (d) t = 63.0 µs (e) t = 82.5 µs

Figure 6. Scattering of a shear-dominated Gaussian beam at centre frequency f = 3.05 MHz and an angle of incidence
α = 60◦. Panels (a,b) show the IFC diagram (and its magnification); the red asterisk represents the intersection point of the
Gaussian beam propagation direction and the isofrequency contours. Panels (c–e) show the magnitude of the displacement
field at different times in the FE simulation, with the total time being T = 120 µs.
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The panels Figure 6c–e display a time evolution of the shear-dominated Gaussian
beam. Across all featured time frames, the transmitted beam approximately maintains the
incident direction, with limited—yet still clearly visible—refraction and reflection. In this
sense, an observer can feel the effect of the original incident beam on the other side of the
slab, hence the use of the term “partial cloaking”. There is also evidence of trapped modes
within the slab throughout the simulation time window, as shown in Figures 6d,e, which is
predicted by the flat dispersion curves in Figure 2a.

3.3. Focusing and Long Wavelength Envelopes

In Figure 7, we investigate focusing effects of the slab. The dispersive behaviour of the
periodic slab at f = 3.3 MHz is exploited, exhibiting negative group velocity across most
of the first Brillouin zone. In Figure 7c, the slab is insonified with a Gaussian beam oriented
at α = 6◦ incidence. The instantaneous displacement shows a clear negative refractive
behaviour of the incident beam. In Figures 7d,e, a similar behaviour is observed, where an
image develops firstly within the interior of the slab (magnified in the inset of Figure 7d)
and, at a later time, in the transmission region beyond the slab of metamaterial.

(a) IFC diagram (b) Magnification of panel (a)

(c) Gaussian beam at t = 24.0 µs

(d) Point source at t = 31.5 µs (e) Point source at t = 63.0 µs

Figure 7. Scattering of a shear-dominated Gaussian beam at an angle of incidence α = 6◦ and a point source at (0, 40mm),
both with centre frequency f = 3.3 MHz. Panels (a,b) show the IFC diagram (and its magnification); the red asterisk
represents the intersection point of the Gaussian beam propagation direction and the isofrequency contours. Panels (c–e)
show the magnitude of the displacement field at different times in the FE simulation, with the total time being T = 120 µs.
The inset of panel (d) is a magnification of the centre of the slab.
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In Figure 8, we show scattering of waves by a rough microstructured slab (described
in Section 2.4), and its smooth counterpart, for which a long-wavelength enveloped wave
mode phenomenon is observed. Figure 8c,d show the scattering effects at the same time
point within the simulations. Apart from a small difference in phase, due to the finer
mesh for the rough crosses leading to a smaller time step, the results for the smooth and
rough cases are almost indistinguishable. It can clearly be seen that the long-wavelength
envelope within the slab is around ten unit cells in length, but is only marginally affected
by the roughness. Similarly, the beam refraction at the interface (consistent with the
IFC diagrams in Figure 8a,b) is observed for both the smooth and rough crosses. This
example of comparing rough and smooth crosses is one of five individual cases that was
studied in this work, providing preliminary insights for future investigation of the practical
implementation of the Swiss cross-shaped holes metamaterial. These initial results indicate
that the wave effects are likely to be unaffected by perturbation from smooth-edged crosses
that would result when manufacturing the structures for future experimental validations.
However, Monte Carlo analysis over a wide range of roughness and frequencies, similar to
previous studies [25], will reveal more comprehensive understanding.

(a) IFC diagram (b) Magnification of panel (a)

(c) Smooth crosses (d) Rough crosses

Figure 8. Effect of roughness on the scattering of a Gaussian beam with α = 35◦ and f = 2.78 MHz. The roughness is
defined by δ = 5 µm and λ0 = 5 µm. Panels (a,b) show the IFC diagram (and its magnification) for smooth crosses. Panels
(c,d) show simulation snapshots for the smooth and rough cases at the same time, t = 93 µs, with the total time being
T = 120 µs.

4. Conclusions

The theoretical and numerical modelling of the metamaterial comprising periodically
repeated Swiss cross-shaped holes demonstrated exotic wave effects at high frequencies. As
well as beam steering and focusing applications, the structures show potential for elastic en-
ergy reservoirs. For example, the long-wavelength envelope wave mode in Figure 8 has an
extended lifetime, as can be observed by viewing the videos in the supplementary material,
for both the smooth and rough crosses considered here. Therefore, slabs of the microstruc-
tured material may be used to store elastic energy and possibly release it on demand to act
externally on the homogeneous medium or other slabs of microstructured material.
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Bloch–Floquet theory and the resulting isofrequency contour diagrams were used
to predict trapped waves, negative refraction, and cloaking phenomena. High-fidelity
and rapid finite element simulations in the transient regime illustrated these effects. The
use of GPU-driven implementation provides a step change in modelling capability, with
run-times hundreds of times faster than with standard CPU-driven software, and the
capability to investigate models with several hundred million degrees of freedom. This
increase in modelling fidelity and efficiency is crucial for future experimental validation
and manufacturing, as well as extensions to three-dimensional space.

The study here was broadened with a view to future applications and the manu-
facturing of metamaterial samples. Additive manufacturing methods, such as selective
laser melting, produce parts with remnant surface roughness. The cross-shaped holes
were also analysed for cases when the smooth edges were replaced with rough edges
(characterised by statistical parameters following Gaussian distributions). The wave effects
were shown to be robust, with little difference between smooth and rough cases except
for small changes in phase due to the finer domain mesh required for the perturbed case.
These preliminary results indicate that the manufacture of the metamaterial, following re-
fined model-informed design for specific wave phenomena, may be expected to be largely
unaffected by surface roughness finish. The access to modelling run-times of minutes
and hours, compared with days and weeks, enables a much broader range of parameter
value analysis. It is envisaged that extensive Monte Carlo studies, covering wide ranges of
frequency and roughness parameters, will identify potential manufacturing bounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167576/s1.
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