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Abstract: In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with
applications in several applicative fields effectively changing our daily life. In this scenario, machine
learning (ML), a subset of AI techniques, provides machines with the ability to programmatically
learn from data to model a system while adapting to new situations as they learn more by data they
are ingesting (on-line training). During the last several years, many papers have been published
concerning ML applications in the field of solar systems. This paper presents the state of the art ML
models applied in solar energy’s forecasting field i.e., for solar irradiance and power production
forecasting (both point and interval or probabilistic forecasting), electricity price forecasting and
energy demand forecasting. Other applications of ML into the photovoltaic (PV) field taken into
account are the modelling of PV modules, PV design parameter extraction, tracking the maximum
power point (MPP), PV systems efficiency optimization, PV/Thermal (PV/T) and Concentrating
PV (CPV) system design parameters’ optimization and efficiency improvement, anomaly detection
and energy management of PV’s storage systems. While many review papers already exist in this
regard, they are usually focused only on one specific topic, while in this paper are gathered all the
most relevant applications of ML for solar systems in many different fields. The paper gives an
overview of the most recent and promising applications of machine learning used in the field of
photovoltaic systems.

Keywords: machine learning; solar energy; forecast; diagnostic; electricity markets

1. Introduction

ML is a subset of AI which is concerned with creating systems that learn or improve
performance based on the data they use. The term machine learning was first used in 1959
by the American scientist Arthur Lee Samuel, with the following definition: “field of study
that gives computers the ability to learn without being explicitly programmed”.

Today, ML is ubiquitous. When we interact with banks, shop online or use social
media, ML algorithms are used to make our experience efficient, easy and safe, along with
learning our lifestyle-related preferences. For example, search engines on the Internet
practically exploit them in many ways: the results we obtain derive from algorithms that
elaborate models and patterns of use of search keys, as well as for completion suggestions.
Amazon Go, the first store with no cashiers opened by Amazon in Seattle, is also based
on ML and other advanced technologies. Self-driving cars, which we will soon see on the
roads, use continuously improved ML models: MIT in Boston has developed a system that
will allow these cars to orient themselves only with sensors and GPS, avoiding the use of
maps which may simply be out of date or insufficiently detailed. ML is fundamental for
data protection and fraud prevention, thanks to unsupervised algorithms that compare the
access models and detect any anomalies, and it can also improve personal security, making
checks at airports and places of transport more reliable and faster. Applications in the
health sector will also be increasingly relevant, to obtain more accurate diagnoses, analyze

Appl. Sci. 2021, 11, 7550. https://doi.org/10.3390/app11167550 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3896-1838
https://orcid.org/0000-0002-0745-924X
https://doi.org/10.3390/app11167550
https://doi.org/10.3390/app11167550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167550
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167550?type=check_update&version=1


Appl. Sci. 2021, 11, 7550 2 of 34

the risk factors of certain diseases and prevent epidemics [1,2]. ML and associated tech-
nologies are developing rapidly, and we are just starting to discover their capabilities [3,4].
AI technologies have now also arrived in the field of renewable energy; from those, such as
Google, who use them in wind farms to improve forecast data [5,6], to those who use them
to increase the efficiency of solar panels [7].

Several AI and ML solutions are already available to predict wind and PV energy
production, for predictive maintenance systems for wind turbines or to search for new
materials for solar panels [5].

The perspective of ML applications for the development of renewable energy is almost
unlimited. Many players in this market are testing innovative solutions to improve the
performance of their systems. ML applications can make it possible to exploit in the best
way the operation of plants, forecasting weather conditions, such as the exposure to the
sun of the PV surfaces, the direction and strength of the wind in the case of wind power or
rainfall for hydroelectric generators [8,9].

ML and predictive models can also help in the management of energy supply for
households in cities, optimizing their distribution network [10–12].

According to the International Energy Agency (IEA), in the coming years, in the
energy field AI will be decisive and will radically transform global energy systems, making
them more interconnected, reliable and sustainable [13].

During the last several years, many papers have been published concerning ML
applications in the field of solar systems. This paper presents the state of the art of
recent advances in ML for photovoltaic and solar applications, which provides a broad
overview of current advanced techniques to academics and practitioners. In particular,
papers published in international journals from 2018 to 2021 have been taken under
consideration. For the literature review step, the following search engines for research
articles (journals and book chapters) have been extensively employed: Microsoft Academic,
Scopus/ScienceDirect, ResearchGate and GoogleScholar.

The main contributions of this paper are summarized below:

• This is the first paper, as far as authors know, which gathers only more recent and
promising, in authors’ opinion, applications of ML in many different fields of PV and
not only in a specific one,

• For each of the fields under consideration a critical analysis is reported, highlighting
the architecture/solution that, in literature, has proven to be the most suitable for that
specific task,

• The pros and cons of each solution are detailed, in addition to suggesting ideas for
further investigation.

The remainder of this paper is structured as follows: Section 2 reports a reasoned
introduction about ML methods or more generally data-driven methods, Section 3 gathers
all more recent review papers on the topics treated in this paper, Section 4 is devoted to
the field of PV power forecasting, Section 5 reports recent papers concerning the anomaly
detection (fault diagnostic) in PV, Section 6 regards ML-based methods for MPPT in PV,
Section 7 gives an overview on the other applications of ML in PV field and finally Section 8
ends the paper with concluding remarks and an analysis of possible future trends.

2. Machine Learning, Deep Learning and Related Methods

Nowadays, the term Artificial Intelligence is quite common and people, often even
without knowing it, benefit from AI every single day: from Alexa (a ubiquitous application
of a field of machine learning (ML) known as Natural Language Processing); to the recom-
mendation system of Netflix, suggesting content for users to watch next using similar users’
preferences; to the automated driving systems that equip many new recent car models. To
better clarify the terms that are reported in many research papers, this section will briefly
define the most common ones. AI indicates a branch of computer science that studies ways
to build intelligent programs in a way that mimics human reasoning; the benchmark for AI
is human intelligence regarding reasoning, speech, learning, vision and problem-solving.
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To AI belong two other methods: ML and Deep Learning (DL) [14]. Machine learning is,
as anticipated, a subset of AI that allows systems/programs to learn from data without
being declaratively programmed; in this sense, it is a data-driven method. An example
of machine learning is the so-called (Shallow) Artificial Neural Network (ANN); more on
this later.

DL, often indicated as a deep neural learning/network (DNN), is a peculiar type
of neural network which differs from the usual ANNs (also known as shallow neural
networks, SNNs) by being composed of several hidden layers, complex connectivity
architectures and different transfer operators. Deep learning is a term currently quite
common in literature but is not new. It can be dated back to 1986. In 1986, Carnegie Mellon
professor and computer scientist Geoffrey Hinton, by many considered as the “Godfather of
Deep Learning”, demonstrated that more than just a few of a Neural Network’s layers could
be trained using backpropagation for improved shape recognition and word prediction.
Hinton went on to coin the term “deep learning” in 2006. However, only during recent
years has this type of network reached a broad diffusion thanks to the advent of the
graphics processing unit, GPU, mainly by NVIDIA with its CUDA extensions, that can
dramatically improve the calculation time required to train this type of network [15]. In
past years, many ML frameworks have been raised and many of them are capable of
exploiting GPU power, including TensorFlow by Google and Pytorch from Facebook, to
cite just a few. These user-oriented ML frameworks have contributed to the diffusion of
DL. With the advent and wide adoption of DL in many different fields, many techniques
and algorithms have been introduced to train DNNs; think of the concept of “batch size”
or the well-known and widespread training algorithm ADAM [16]. For some aspects, the
difference between an SNN and DNN can be subtle as the techniques originally developed
to train DNNs are currently used also for SNNs. The most important difference between
an SNN (or ML) and DNN (or DL) is that the latter does not require “feature engineering”
to be able to extract the relevant features automatically from data. Usually for achieving
this, significantly more data is required to efficiently train DL architecture. As previously
said, ML is a data-driven method capable of extracting knowledge from data without
being explicitly programmed, but for this to be possible ML requires a data set on which
the model is “trained”; after this initial phase of knowledge extraction from data, the ML
model can be used to provide forecast/insight into the system, it is said it can work in
“inference” mode. The training phase is usually quite computationally and time intensive,
while in inference mode the ML model can often provide results in times that are an order
of difference lesser than in training. The data set used for training needs to be correctly
transformed/normalized to derive the correct “features” that allow the ANN to be trained
effectively. Usually, main performance gains in models’ predictive performance are possible
by performing “feature engineering”, i.e., combining raw features into new features that
can express new/more knowledge on the system to which the data set is related [17]. This
“feature engineering” or “feature extraction” that has to be manually implemented in SNNs
is automatically performed in DNNs, at least to some extent. Another ML-based method
that is beginning to be employed in the field of PV, especially for MPPT reactive tracking, is
reinforcement learning (RL). While in “traditional” ML/DL methods a dataset is required
to extract knowledge from the data (training phase) and thereafter apply this knowledge
to new unseen data (inference phase), in RL the model, or better, the system, can learn
by themselves essentially by trial and error. Using RL an “agent” performs actions to
maximize rewards, or in other words, it is learning by doing, and its goal is to optimize the
total reward in the same way as ML or DL aim at minimizing a loss function.

In addition to DL, during the last several decades, a class of methods known as Ensem-
ble Methods (EM) has been developed and has started to appear in research papers [18–20].
The basic idea is quite simple: integrate a group of base models, also known as weak
learners, to build up a more robust model. This robustness is intended to build a model
capable of providing better accuracy, performing better, and/or being capable of better
generalizing, i.e., to provide good performance for a “scenario” different from the training
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one. However, how does one train different weak learners and aggregate their output to
build up a stronger leaner? In this regard many solutions are possible, but commonly used
techniques are:

1. Bagging
2. Boosting
3. Stacking

Bagging stands for Bootstrap Aggregation, where multiple models are trained in
parallel, but each base model is trained on a different training set derived from the original
training data using the Boostrap (data is randomly sampled from the original dataset with
replacement) method and the final prediction is derived by a voting aggregation from
the predictions of all base models. In bagging methods, the weak learners are usually of
the same type. Since the random sampling with replacement creates independent and
identically distributed samples, bagging does not change the models’ biases but reduces
their variance, producing a model capable of providing consistent results in production.
A typical bagging model is based upon Random Forest. In boosting, multiple weak learners
are learned sequentially, not in parallel as in bagging. Each subsequent model is trained by
giving more importance to the data points that were misclassified (or giving greater error
in terms of MSE for example) by the previous weak learner. In this way, the weak learners
can focus on specific data points and can collectively reduce the bias of the prediction. In
stacking, the base weak learners are trained in parallel as in bagging, but stacking does not
carry out simple voting to aggregate the output of each weak learner to calculate the final
prediction. Stacking employs another meta-learner to provide the final prediction, and this
meta-learner is trained on the outputs of weak-learners to learn a mapping from the weak
learners’ output to the final prediction. Usually, this meta-learner is quite simple, such as a
LASSO or Ridge regression.

Previously, the terms bias and variance have been cited a few times, and require
further clarification. A common “mantra” in ML is the bias vs. variance trade-off; any
ML-based model trying to improve bias will always make gains at the expense of variance,
and vice versa. The two variables measure the effectiveness of the model: bias is the error
or difference between real data and a models’ predicted value, while variance is the error
that occurs due to sensitivity to small changes in the training set.

Typically, the two terms are well synthesized with the image shown in Figure 1:
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The model’s error is the difference between predicted and observed/actual values.
Suppose one has a very accurate model: this means that the error is very low, indicating a
low bias and low variance (as seen on the top-left circle in Figure 1).

If the variance increases, the data are spread out more which results in lower accuracy
(as seen on the top-right circle in Figure 1). In this case, the average model’s error could be
the same as in the first case but sometimes the error is greater and more spread out around
the same mean value. If the bias increases, the error calculated increases (as seen on the
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bottom-left circle in Figure 1). High variance and high bias indicate that data are spread
out with a high error (as seen on the bottom-right circle in Figure 1). This is a bias-variance
tradeoff. In essence, bias is a measure of error between what the model captures and what
the available data is showing, while variance is the error from sensitivity to small changes
in the available data. A model having high variance captures random noise in the data.

For the field of interest of this paper, the most used ensemble methods are:

• Random Forest (RF) (bagging ensemble method);
• XGBoost or LightGBM (boosting ensemble method).

Very few papers have tested stacking solutions.

3. Literature Review of Review Paper for Each of the Fields of Interest in PV

In Table 1 are listed review papers concerning ML-based methods to forecast power
production from PV; note that only recent papers, i.e., from 2018 till 2021, have been taken
into consideration. Some notes for every paper listed in Table 1 summarize what the reader
can expect from reading it.

Table 1. Review papers in forecasting power PV production. Publication year considered: 2018–2021.

Year Reference Notes

2018 [21]

A review of ML and statistical models based on historical data. Concludes that ANNs and
Support-Vector Machines (SVMs) are the best-performing models, especially due to their capability to
rapidly adapt to varying environmental conditions. Genetic Algorithms (GAs) result as the most
frequently used method in optimizing forecasting models’ hyper parameters.

2019 [22]

A very interesting review, from the taxonomy point of view, of AI-based methods in solar power
forecasting. Methods analyzed include ANNs, SVMs, Extreme Learning Machines (ELMs), Recurrent
Neural Networks (RNNs), Long short-term memory (LSTM), RF, stacked Auto-Encoders, Generative
Adversarial Networks (GANs), Fuzzy Logic (FL), Particle Swarm Optimization (PSO) and others. For
each method is indicated their pros & cons and optimal field of application. This paper outlines
challenges and future research directions, mainly: probabilistic prediction of solar energy, model
explainability and prediction of the movement and thickness of clouds.

2019 [23]
A review focused only on DL methods for renewable energy forecasting, both deterministic and
probabilistic (deep belief network, stack auto-encoder, deep recurrent neural network, etc.) Forecasting
horizon from 15 min ahead to 120 min ahead. Some notes on data preprocessing techniques

2020 [24] A comprehensive review of papers from 2008 till 2019 on ML, DL and hybrid models to forecast power
production from PV. Interesting concluding remarks. Mainly focused on methods for point forecasting.

2020 [25]

A comparison of state-of-the-art models to forecast PV power production focused on a horizon of 36 h in
advance. Many models tested from simple linear regression (also Ridge, Lasso and Elastic Net), to the
DT and ensemble models, both bagging (RF) and boosting (eXtreme Gradient Boosting). Robust 10-Fold
Cross-Validation procedure to test each model’s performance and grid search to find each model’s
optimal hyperparameters. All models were tested on a single dataset (plant located in Asia). Weather
forecast and observations were used as model input. XGBoosting performed best.

2020 [26]

A review focused only on three DL methods; LSTM, RNN, Gated Recurrent Unit (GRU) and a hybrid
Convolutional Neural Network + LSTM (CNN+LSTM) to forecast solar irradiance and PV power
production. Generally, LSTM performs overall the best but if enough data is available CNN+LSTM is the
preferred model to choose. This paper highlights the use of RMSE as the most useful metric, allowing
easy comparison of results.

2020 [27]
A review of various reinforcement learning methods, both classical (multi-agent RL, etc.) and deep
(Deep Q-network, etc.) in sustainable energy and electric systems. It is a more generic review not
focused on PV but with a paragraph on MPPT worth reading to a general overview of RL.

4. Latest Research in PV Power Forecasting

This section describes the latest ML-based methods that have been employed in
literature to forecast power production from PV, published from the year 2018 till the
year 2021.
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The vast majority of methods employed within this field are several types of NN
architectures, but while older papers reported the use of shallow architectures such as
multilayer perceptron (MLP) or Radial Basis Function (RBF) networks, research that is
more recent has turned its interest to more advanced DL methods, such as LSTM, CNNs or
a combination of both. Concerning the metrics used to assess models’ performance, the
most frequent are Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). It
is quite impossible to compare results from models applied to different scenarios, where
the scenario has to be intended as the features of the plant under investigation (dimension,
architecture in terms of the number of string, cells type, etc.), the environmental conditions,
length of the training and test dataset, features pre-processing and/or features engineering,
if applied, as the scenario greatly affects the model’s performance results. This is true
for metrics such as RMSE or MAE but also for percentage metrics such as Mean Aver-
age Percentage Error (MAPE) or Root Mean Squared Percentage Error (RMSPE) that are
more suited to comparing models’ performances related to different plants, being the last
percentage errors. For a detailed discussion on models’ metrics see [28,29].

While many researchers are more interested in providing a model capable of pro-
viding “point-forecast” results, i.e., the expected mean/average value for the forecasting
horizon, some papers have been published concerning the “probabilistic/interval forecast”,
where, in addition to the point-forecast, the prediction interval associated to this point is
provided [30]. For the reasons outlined before, PV power forecasting can be classified into
basically two different types:

• Point-forecast
• Interval-forecast

The latter type, in the authors’ opinion, could be more useful as in many situations it
may be more critical to know not the future power production from the PV plant connected
to the grid but rather to know, with a probability of 95% or 99%, that this expected level of
production will not fall below a critical level.

The following tables, Tables 2 and 3, summarize the latest research in forecasting
PV production by grouping the research into point and interval forecasts. As appears
evident from Tables 2 and 3, the vast majority of papers are point-forecast and consider a
short-term forecasting horizon. In this regard, the usual classification of models based on
the forecasting horizon is the following:

• Very short-term, from few seconds to some minutes;
• Short-term, up to 48 or 73 h;
• Medium-term, in the range from few days to one week;
• Long-term, usually several months or one year.

Another, mostly equivalent, classification criteria relies on counting how many time
steps ahead are considered in the forecasting horizon. Many papers are focused on only
one step ahead (this usually could be a single hour or day), but multi-steps-ahead models
are often the more interesting ones. A multi-step ahead model can produce results into an
iterative model or with architectures able to provide, with a single run, or better a single
inference computation, an array of values, each related to a specific timestamp (Pt + 1,
Pt + 2, . . . Pt + h, where P is the forecasted power production, h is the forecasting horizon
and t is the actual timestamp).

The remainder of this section is devoted to highlighting the novelty and/or the
most interesting findings of each of the listed research papers. In [31] a multi-step-ahead
prediction model focused on 1 to 16 steps ahead (with data sampled every 15 min and
so resulting in a forecasting horizon from 15 min to 4 h) is obtained by a deep extreme
learning machine (DELM) combined with enhanced colliding bodies optimization (ECBO)
and Variational Mode Decomposition (VMD). The proposed model employs irradiance
prediction from numerical weather prediction (NWP) and uses as the first step a grey
correlation analysis coupled with Pearson correlation to find in the training data a day
representative of/like the prediction day. In the second step, VMD and ECBO methods
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are employed to decompose the original power data that is fed to a Deep Extreme LM
(DELM) to provide the final forecasts. The proposed DELM can be trained very fast if
compared to a generic DL model. The decomposition method employed in this work is
a novelty as most previous works rely on wavelets packet transform (WPT) or empirical
mode decomposition (EMD). The model has been tested on a PV plant in China using
a dataset of two years (2018–2019) with data sampled every 15 min and differentiating
according to day conditions: sunny, cloudy and rainy. Authors claim very accurate results
in the range of 4–8 steps ahead (1–2 h) but also state that a CNN+LSTM model can obtain
results even better if enough data is provided, especially for longer forecasting horizons.

In the last several years, many different ML frameworks have been developed; this
gives the opportunity to easily develop ML models and eventually deploy them in pro-
duction an effective solution with ease. Some of these solutions provide what is known as
Auto-ML (AML), i.e., an approach that can automatically select, train and optimize an ML
model or eventually an ensemble of ML models. This is what is proposed in [32], where an
AML is employed to derive an ensemble where the features used by each building model
are derived using an improved GA optimization method capable of selecting optimal
features for each region. In this work, historical data coming from PV plant data (panel
temperature and power generation) and weather data (temperature, irradiance, cloud cover,
precipitation and humidity) are used in conjunction with the results of a physical model
that provide power production as a function of the tilted solar irradiance perpendicular to
the solar PV panel, the temperature of the solar PV panel and the ambient temperature.
The dataset used spans over 2 years, 2016–2017, with data sampled every 30 min, and is
used for a multi-regional model, i.e., applied to data from plants at different regions. The
ensemble selected by AML is made up of Elastic Net CV regression, Gradient Boosting
Regression and RF Regression. Historical data of PV power plants located in Hokkaido
(Northern Japan) from 1 January 2016 to 31 December 2017, is used for training while
only one month is used for testing (December 2017). This is one of the very few papers
assessing the viability of AML in forecasting PV production. Interestingly enough, the
models selected to build up the ensemble were previously rarely used in this field.

While most of the research is focused on the very short- to short-term forecasting
horizon, long-term PV production forecasting is investigated in [33] using a grey box
prediction model. In detail, an adaptive discrete grey model with a time-varying parameter
denoted as ATDGM(1,1) with a single variable and one order is used. This type of model
does not require exogenous variables and belongs to the group of the model generally
applicable to time series prediction problems. More on grey methods can be found in [34].
For the first time, to the best of our knowledge, the concept drift issue is discussed in the
field of energy forecasting in [35]. This work is about solar and wind energy forecasting
and not PV power production, but it has been included in this paper as it employs some
techniques that can be easily adopted in the field of interest and because it takes into
consideration a public dataset. An evolving Multivariate Fuzzy Time Series (e-MVFTS) is
here adopted to forecast a time series and its potential has been evaluated in solar and wind
energy using a public dataset made available by United States National Renewable Energy
Laboratory (NREL) for solar energy data, and extracted from Global Energy Forecasting
Competition 2012 (GEFCom2012). The wind energy dataset has been published on the
Kaggle platform repository. To allow for the complete reproducibility of the results, all code
and data were made publicly available. The proposed method, combining a forecasting
model based on Fuzzy Time Series with an evolving clustering method based on Typicality
and Eccentricity Data Analytics (TEDA), can adapt to the concept drift that occurs in the
time series, i.e., can automatically deal with changes in the data distribution.

In [36] a hybrid model based on wavelet packet decomposition (WPD) and long short-
term memory (LSTM) networks is proposed which employs historical power and historical
meteorological data as input variables, including global horizontal irradiance, diffuse
horizontal irradiance, ambient temperature, wind speed and humidity. No forecasted
irradiance is used in the model. WPD is applied to a PV original power series obtaining
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four “sub-series”; each new derived series, augmented with the meteorological data,
constitutes the input of an LSTM whose results are linearly weighted to provide the final
forecast. Each LSTM provides a multi-step prediction. An LSTM network is also used
in [18] where its inputs include historical PV power data, historical weather predictions and
synthetic weather forecasts derived using the k-means clustering method to provide multi-
step-ahead forecasts. The derived synthetic irradiance forecast results in an improvement
into models’ accuracy that varies from 33%, if compared to that when an hourly categorical
type of sky forecast is used, to 44.6%, if compared to that when a daily type of sky forecast
is used. This work claimed that the proposed LSTM DNN can perform better than the
recurrent neural network (RNN), the generalized regression neural network (GRNN) and
the ELM models.

Again, a model with an LSTM DNN in conjunction with an RNN is applied to
forecast PV production in [37]. This work introduces a time correlation modification (TCM)
integrated with a partial daily pattern prediction (PDPP) framework. The main idea is that
the ensemble resulting from LSTM-RNN+TCM can benefit both from the results of the
time correlation model, which is closer to the actual data in trend, and from the results
of the LSTM-RNN model more capable of tracking the fluctuations of PV power output.
Finally, the DPP model is used to predict the pattern of the forecasting day so as to select
an optimal set of weight coefficients to calculate the results using the output from both the
LSTM-RNN model and TCM model.

As the authors claimed, the methodology of Transfer Learning (TF) firstly appears in a
research paper in the field of PV production forecasting in [38]. Transfer learning is a known
technique employed in DNNs that consists of using a complex but successful pre-trained
DNN model to “transfer” what it has learned from its specific domain knowledge to a
similar but different domain. Transfer learning has been extensively adopted in the field of
image classification/recognition for convolutional neural networks (CNNs).

The advantages coming from TL related to the existing successful pre-trained model
consists in:

• Its hyper-parameters and network structure, i.e., number of layers and types, have
already been tested and found to be successful;

• The earlier layers of a CNN are essentially learning the basic features of the image
sets such as edges, shapes, textures, etc. Only the last one or two layers of a CNN are
performing the most complex tasks of summarizing the vectorized image data into
the classification. Weights of the first layers are frozen while only the last layers are
trained for the specific task in the target domain knowledge; this turns out to be a
faster training method.

This idea in the field of PV power forecasting relies on transferring the knowledge of
a pre-trained LSTM in the field of a historical irradiance time series to that of PV power
series (irradiance being highly correlated to PV power) to cope with data scarcity in the
target domain. Authors have obtained interesting results that demonstrate how TL can be
very beneficial for a new plant where there is not enough historical data acquired.

To provide short-term predictions of PV power output, authors in [39] propose the use
of an ensemble method, LighGBM, combined both with a Bayesian optimization algorithm
to find optimal time steps for temporal pattern aggregation and a clustering-based training
framework based on a tree-structured self-organized map (TS-SOM), proving its effective-
ness in a production environment consisting of an edge computing platform (Raspberry Pi
3B) with limited storage. The proposed model, starting from historical meteorological data,
applies three functional steps: a temporal pattern aggregation optimized using a Bayesian
approach, a weather clustering, performed by TS-SOM, and the final model training using
LightGBM. When compared with common DL alternatives such as GRNN and LSTM,
authors showed that the proposed method performs better with a dramatic decrease of
both training time and inference time. A hybrid model made up of a set of different
ML-based methods is described in [40] to forecast PV power production in the short-term
horizon. In the first step, an RF model is used to rank the input, weather-related (such as
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temperature, daily rainfall, horizontal radiation, diffuse horizontal radiation, etc.) features,
then an improved grey ideal value approximation (IGIVA) model receiving results from
RF as weight values searches for similar days of different weather types to improve the
training data. Then, the original power series is decomposed by a complementary ensemble
empirical mode decomposition (CEEMD) algorithm, while, to provide the short-term PV
power generation, a backpropagation NN (BPNN) trained using a dynamic factor PSO
method (DIFPSO) is used.

Again, the short-term horizon is investigated in [41] using an ensemble model made
up of two LSTMs with Attention Mechanism (AM) working on the temperature and power
time series, respectively, whose results are flattened and merged by a fully connected layer.
The AM in DL is based on the concept of directing a model’s main focus by paying greater
attention to certain factors when processing the data. In broader terms, attention is one
component of a network’s architecture and is in charge of managing and quantifying the
interdependence between the input and output elements (General Attention) or within
the input elements (Self-Attention). Authors proved that AM can effectively improve
LSTM performance.

The public dataset of the GEFCom14 competition is used to forecast PV generation for
one day ahead with data sampled hourly in [42]. Here, an ensemble method with cluster
analysis is proposed. A k-means algorithm is used to cluster solar generation, and the
result of each cluster is used in an ensemble, by ridge regression, of RF models. Every
ML-based method, being data-driven, needs an adequate amount of data; this means that,
before being able to provide a forecast, it is necessary to acquire data for a non-negligible
amount of time, ideally at least one year to take into account annual seasonality. In this
regard, methods such as generative adversarial networks (GANs) could be useful to derive
enough data for training an ML-based method. In [43] a recurrent generative adversarial
network (R-GAN) is used to generate realistic energy consumption data by learning from
real data. Although not strictly pertinent, this work has been included, as, in the authors’
opinion, such an approach could be effectively used in the forecasting in the field of PV
production, for, as an example, generating weather or power data for the rainy or cloudy
conditions that are usually the conditions resulting in lower accuracy predictions.

While papers listed so far are related to what is known as “point-forecast”, a far fewer
number of papers have been published during the last several years concerning proba-
bilistic forecasting. In this regard, some international forecasting contests, for example,
M3 and M4 forecasting competitions, have contributed to encouraging the production of
such types of forecasting results. These contests have highlighted some concepts, such
as prediction interval (PI) and probability coverage, and some metrics more suitable for
this type of forecast, such as pinball loss. For more information concerning this contest
see [44–46]. In [47], the authors have provided a point-forecast with a confidence interval
(CI) which quantifies the uncertainties associated with the forecasts delivered by mean
of a bandwidth of possible changes and the certainty associated with each forecast. In
this research, the authors employ a bootstrapping method to compute the CI. It is here
interesting to highlight that confidence interval (CI) and prediction interval (PI) are com-
pletely different concepts, with the first being far narrower than the second (see [48,49]). In
this paper the short-term forecasting horizon 1–6 h is explored; the main novelty resides
in the considered PV plant size, a large multi-megawatt PV system (a 75 MW plat with
84 inverters), for which a new approach consisting of macro-level models results into a
marginal improvement in accuracy compared to the usual inverter-level model approach.
The proposed model uses an FFNN, an LSTM-RNN and a gated recurrent unit-RNN
(GRU-RNN). The same CI criteria are used to provide a probabilistic description of the
accuracy provided by a Gaussian Process Regression with Matérn 5/2 as kernel function
in [50]. As commonly employed in the forecasting PV output field, the proposed model
uses meteorological data (irradiance, temperature, and zenith and azimuth solar positions)
and historical PV output as inputs. A k-means algorithm is used to cluster data into four
groups based on solar output and time. The proposed model is validated using five PV
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plants data and both a five-fold CV procedure and a hold-out one (using 30 random days
as a test). A first work more oriented on the probabilistic forecasting of PV production that
summaries the models’ accuracy in terms of the PI is [51]. Here, in the addition to the usual
point forecasting metrics such as RMSE and MAE, prediction interval coverage probability
and prediction interval normalized average width (PINAW) are introduced; the first metric
estimates the predicted reliability, which is based on the probability that the real PV power
is within the PIs, while the latter measures the width of the PIs. In this paper is proposed an
hourly day-ahead forecasting horizon and sampling, and is introduced a CNN combined
with a quantile regression (QR) method with a two-stage training strategy to cope with
the non-differentiable loss function of QR. Results obtained with the described model
are very interesting also in comparison to that obtained by a quantile extreme learning
model (QELM), quantile echo state network (QESN), direct quantile regression (DQR)
and RBFNNs.

Another researcher paper considering probabilistic forecasting is [52]; here, the au-
thors use a hybrid model made up of a wavelet transform (WT) applied to historical PV
power data and a RBFNN that is trained using a PSO algorithm. The proposed hybrid
model provides the point forecast while constructing a PI is employed an indirect method:
bootstrap. Results in PI using bootstrap are compared, using reliability diagrams, to di-
rect and indirect QR; from this comparison, bootstrap emerges as a paramount factor in
determining the better performing model.

An Analog Ensemble (AnEn) model is used in [53]; the authors, starting from the
AnEn developed in [54], have further improved the metric herein adopted to allow the
management of data, both from NWP and from satellite images (used to derive GHI time
series data), where the probability density function (PDF) of the analogue ensemble is
built up using a weighted kernel density estimation (KDE) method. Results are compared
with a quantile regression forest (QRF) and a Bayesian Regression (BR) with Automatic
Relevance Determination (ARD) prior models. Forecasting results are described in terms
of PINAW and Continuous Ranked Probability Score (CPRS) and show how the proposed
model performs better, compared to QRF and BR, for a forecasting horizon of fewer than
two hours, while above this threshold QRF seems to perform better. The dataset used in
the 2014 Global Energy forecast competition (GEFCom2014) is used in [55] to test a novel
method able to provide a probabilistic forecast. The proposed method, named nearest
neighbours quantile filter (NNQF), solves the problem of training quantile regressions with
gradient-based optimization by deriving a modified training set. This modified training
set can be used to train a generic regression model that directly outputs the conditional
empirical q-quantile defined by the neighbours used in the training. The results achieved
show that the proposed method obtains accuracies similar to those of the winners of the
GEFCom14 competition, with a difference in terms of the pinball loss values obtained
below 1%.
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Table 2. Point-forecast ML-based methods for PV power production. Publication year considered: 2018–2021.

Year Reference Forecasting Horizon & Sampling Parameters Tested on One
Location or Regional Methods & Notes

2021 [31] 1–16 steps ahead
15 min

Forecasted irradiance
Historical powers One location

DELM model that uses a SD training data selection method based on grey correlation analysis (applied on irradiance
values) and Pearson correlation (applied on power production value). A novel decomposition method ECBO-VMD
for power production time series. Fast training time for DELM. Forecasting horizon from 15 min to 4 h
(1–16 steps-ahead if data is sampled every 15 min). Results compared with other DL models show great
accuracy in everyday conditions, especially for 1–2 steps ahead.

2021 [32] One day ahead
30 min

Historical weather
Historical power

Power from a physical model
Regional

AML model providing an ensemble of Elastic Net CV regression, Gradient Boosting Regression and RF Regression.
An improved GA algorithm is used to select optimal features for the base models varying in each region. A physical
model adds power production base prediction level, improving results of the final model.

2021 [33] Annually/Quarterly Historical power Two locations (three
cases/datasets)

A novel discrete grey model with time-varying parameters known as ATDGM(1,1). Almost 10/11 years for training
and one or two years for testing. Results benchmarked with ARIMA, SARIMA, BPNN, LSTM and SVR models.

2021 [35] Gh every 15 min
Pwind hourly

Historical Solar energy &
Wind energy

(Public datasets)

10 sites for solar energy
7 wind farms

Evolving Multivariate Fuzzy Time Series (E-MVFTS) + Typicality and Eccentricity Data Analytics (TEDA). Interesting
methodology to detect concept drift. The model was developed in Python using the pyFTS library.

2020 [36] One hour ahead
5 min

Historical power
Historical meteorological data One location A hybrid DL model combining wavelet packet decomposition (WPD) and long short term memory (LSTM) networks.

Comparisons with individual LSTM, RNN, GRU and MLP.

2020 [56] 12 to 24 h ahead
Hourly

Historical weather
Weather forecast
Historical powers

One location
LSTM network that employs a synthetic irradiance forecast derived using a k-MEANS classification algorithm
resulting in an improvement in the obtained accuracy of 33%, concerning using the hourly type of sky forecast, or
44% over using the daily type of sky forecast.

2020 [37] Day-ahead
15 min

Historical power
direct normal irradiance (DNI)

and temperature
One location An ensemble formed by LSTM-RNN and a Time Correlation Modification model (TCM) whose coefficient is

moduled by a partial daily pattern prediction (PDPP) framework.

2020 [38] 10 min
1–4 weeks

Historical irradiance
Historical power One location

A share-optimized-layer LSTM (SOL-LSTM) network, whose hyperparameters are optimized using Sequential
Model-Based Optimization (SMBO), where Transfer Learning (TF) is applied from a source domain, solar irradiance
series (historical data), to the target domain, power production series, to overcome scarcity in training data.

2020 [39] 1–12 steps ahead
30 min Historical weather features One location LightGBM models combined with a temporal pattern aggregation and TS-SOM for weather clustering. Interesting

performances from an accuracy point of view but also as training and inference time, even in edge devices.

2020 [40] 1–150 steps ahead
5 min

Historical weather features
Historical power One location Hybrid model made up by BPNN for final forecasts whose training data are PV power historical data decomposed by

CEEMD algorithm and weather selected by RF and data-optimized by IGIVA

2019 [41] 1–8 steps ahead
7.5 min

Historical temperature
and power One location Ensemble model of two LSTMs with Attention Mechanism, one for temperature series and one for power series.

2019 [42] 1–24 steps ahead
1 h

Weather forecasts
Day-ahead

Hourly
Ensemble, using ridge regression, of RF models using a preliminary cluster analysis of weather forecasts

2019 [43] Not applicable Not applicable Not applicable R-GAN to generate realistic data to be used for training energy forecasting models



Appl. Sci. 2021, 11, 7550 12 of 34

Table 3. Interval-forecast ML-based methods for PV power production. Publication year considered: 2019–2021.

Year Reference Forecasting Horizon & Sampling Parameters Tested on One Location
or Regional Methods & Notes

2021 [47] 1–6 h ahead (21 steps)
15 min

Historical Weather
Historical power (inverter level and plant level)

Forecast altitude & azimuth sun position
(pvlib-solar position)

One location FFNN & LSTM-RNN+GRU-RNN

2021 [50] 1–24 h ahead
Hourly data

Direct, diffuse and horizontal solar irradiance,
temperature, zenith & azimuth solar position Five locations Gaussian process regression (GPR) with Matern 5/2 kernel

function on pre-clustered data (by k-means)

2020 [51] 1–24 h ahead
Hourly data

Solar irradiance, temperature, humidity,
historical PV power One location

Quantile CNN (QCNN), two-stage training strategy to solve the
training problem of the QCNN caused by the non-differentiable

loss functions of the QR. PI and PINAW provided

2020 [52] 1,3,6 h ahead Weather data
Historical PV power One location

Hybrid model WT+RBFNN+PSO. PI provided using Bootstrap
and results compared QR. Bootstrap obtains better results in terms

of reliability diagrams for the PI.

2019 [53] 30 min–36 h ahead
30 min

Forecast from NWP
Satellite images to estimate GHI

PV power, temperature, GTI, clear-sky profile
using McClear model

Three locations Analog Ensemble (AnEn) model using NWP data, satellite images
and in situ data. State-of-the-art results in 5–36 h horizon.
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5. The Latest Research on Anomaly Detection (a.k.a. Fault Detection) and Diagnosis
in PV

This section reports the latest research papers, i.e., published during the year 2018–2019,
concerning anomaly detection (AD), in some papers also indicated as fault detection (FD),
in PV.

This research field counts fewer papers if compared to papers concerning PV power
forecasting, but it is a very interesting field in terms of the suitability of ML-based methods
to automatically detect and classify anomalies or better provide predictive maintenance.
PV plants are subject to many different faults during their life; these faults can lead simply
to a power loss or even pose a hazard risk due to fires. To have the idea of the likelihood of
power loss coming from faults, this can vary from 3.6% during the first year of life to 18.9%
after three years of life, as stated in [57] that analyzed some domestic PV systems in the
UK. Typical PV faults can be detected automatically using ML-based methods essentially
using three methodologies:

1. Analysis of string/panel current and/or voltage, or current/voltage measured at the
inverter with the use of exogenous variables as environmental ones,

2. Image analysis performed mainly by infrared (IFR) images detected by Unmanned
Aerial Vehicle (UAV),

3. Clustering-based techniques that can detect anomalies using unlabelled data.

For the methodology at point 1, the most frequently used methods include ANN, FL,
Decision Tree (DT) and RF. For point 2 above, DL is the most suitable, and various types of
CNN have been employed in this regard.

The third methodology reported above counts essentially k-Nearest Neighbour (kNN),
one class SVM (1-SVM) or more recent algorithms as Isolation Forest (IS) or Local Outlier
Factor (LOF). This field of research often deals with a dataset of unlabelled data and/or
where the faults are, fortunately, very few, resulting in a highly unbalanced dataset (few
faults and majority of data fault-free). For this reason, the normal accuracy metric is not well
suited to accurately represent the model’s performance. Nonetheless, many papers report
only traditional accuracy while better metrics could be Balanced Accuracy, F1 score [58],
Cohen’s Kappa [59] or Matthews Correlation Coefficient (MCC) [60]. Moreover, for the
reason outlined above, very often the dataset used to train and test the model is ad hoc
simulated and not derived from a real plant; this can overcome the problems related
to an unbalanced dataset, as many faults as desired can be created/simulated, and the
issue concerning the labeling can be resolved, i.e., accurately describing what type of fault
occurred and where and at which timestamp; but, at the same time, this could be not
representative of a real functioning plant. It is probable that the optimal approach could be
to employ both simulated and real data with ad-hoc created faults. The remainder of this
section will present:

• A discussion of anomalies/faults analyzed in literature with ML-based methods
• Suggestions on which approach from the most current literature review (from 2018 till

2021) seems to produce better results
• Common challenges and insight on possible future trends

Detectable Faults by ML-Based Methods

Faults in PV can be of different types; for in-depth analysis of faults that can adversely
affect PV plants see [61,62].

In literature, the vast majority of works deal with four types of faults: short circuit
(SC), open circuit (OC), partial shading (PS) and abnormal ageing. For these types of
faults, the most employed solution is based on an MLP ANN that considers as inputs
current or voltage related to string/array/panel, so the most frequent variables taken
into account are voltage at MPP (VMPP), current at MPP (IMPP), OC voltage (VOC) and
SC current (ISC), almost always supported by environmental variables such as ambient
and module temperature and solar irradiance at the panel level. These models necessarily
require a labelled dataset and are mainly based on the difference between the models’
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predicted system performance and the real measured one. Many ML-based models that
employ SNN apply input pre-processing as Discrete Wavelet Transform (DWT); this is
a typical form of feature engineering that has proven to be beneficial to improve the FD
accuracy of the model. For the faults described so far, the models usually employed consist
of SNNs of various typologies, but also DT ensembles such as RF or 1-SVM. Considering
faults detectable using image analysis as module delamination/crack, hotspot or soiling
(dust and birds’ droppings), this is a field dominated by DL and especially CNNs trained
on thermal infrared (IR) images acquired by UAV. For detecting faulty cells or modules
electroluminescence (EL) images are also considered, while at the array level only IR images,
generally EL images, embed more fault information and are the preferred type of images.
The type of CNN used in this field varies from pre-trained known CNN architectures such
as LeNet and VGG-16 to custom architecture. This is a field where Transfer Learning [38]
can be very beneficial and where data augmentation techniques are also very common
(image rotation, flip, etc.).

Although CNNs are particularly suited to dealing with 2d data, i.e., images (usually
IR or EL), some interesting results have been obtained by treating a 1D signal, such as a
current-voltage (I-V) curve, as a 2D feature using, for example, a scalogram and combining
a CNN with an LSTM.

In Table 4 are reported some recent, always in the range 2018–2021, review papers
dealing with ML-based models to detect faults/anomalies in PV.

Table 4. Review papers for fault/anomaly detection and diagnosis in PV. Publication year considered: 2018–2021.

Year Reference Notes

2021 [63] A review of AI-based methods for remote sensing and fault detection and diagnosis (FDD) in PV emphasizing
the applicability of models and the use of IoT technologies for remote monitoring and diagnosis.

2020 [64]

A very comprehensive review on fault detection in PV using both SNNs and DL. Analysis related to the years
2009–2020. MLP and CNNs result as the more diffused methods employed in this field. Some public datasets
(cell images) were reported. Proposes the build of a large open database of healthy and faults modules/plants
(1D and 2D images)

2019 [65]
Four major faults are analyzed: ground, line-line, arc and hot-spot. For each fault are proposed both
conventional and advanced methods to deal with them: ML-based (MLBTs), reflectometry-based, statistical
and signal based and comparison based. Proposes a scoring system to ranks methods.

2018 [66] A review of applicable methods, ML-based but also statistical-based, to FDD in PV. Highlights that most
methods employ I-V curve data but also irradiance and module temperature.

2018 [62]
An in-depth analysis of all major faults that can affect PV systems is accompanied by a complete list of
methodologies that can be employed to detect and diagnose faults. Only a small section is devoted to
ML-based methods.

2018 [61]

After describing all major faults that can occur in PV, it focuses on FDD methods especially suited for faults
occurring in a PV array: statistical, I–V analysis, power loss analysis, voltage and current measurement and
AI-based. This paper concludes by highlighting the pro and cons of each method with some recommendations
and insight into possible future trends.

2018 [67]

Analyzes all major faults that can affect PV with a review of methods in the literature for PV fault monitoring
and detection. Emphasizes how statistical methods do not require previous data but cannot identify failure
types. On the other hand, numerical methods can detect failure types, but require knowledge of previous data.
Knowledge model-based methods using residual current voltage or power can provide fault detection and
identification but require historical data and also meteorological ones.

The remainder of this paragraph is devoted to the latest research paper dealing with
ML methods for anomaly/fault detection in PV. Paper [68] focuses its attention on the
detection of hotspots using a hybrid based SVM model trained using infrared thermography
(IRT) images; it classifies panels into three categories: healthy, non-faulty hotspot and faulty
hotspot. The novelty of this paper resides in the pre-processing phase of the IRT images
acquired by handheld a FLIR camera horizontally aligned to PV panels of a PV system made
up of 22 modules. The image feature extraction pipeline here proposed results in 41 features:
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3 RGB, 12 contrast, 12 correlation, 3 energy, 1 Histogram of Oriented Gradient and 10 Local
Binary Pattern. The feature extraction proposed results in an improvement in terms of
accuracy results for the following classification algorithms: KNN, n-Bayes, Quadratic
Discriminant Analysis (QDA) and bagging ensemble (BE). The SVM performed the best
also in terms of computing time (k-fold CV methodology applied to derive all metrics). An
LSTM NN is used in [69], combined with DWT as a feature extraction phase, to detect High
Impedance Fault (HIF) and four other faults coming from an IEEE 13-bus system with a
solar PV network simulated in MATLAB/Simulink. Results from the proposed LSTM as
classifier are compared with other ML-based methods: SVM, Naïve Bayes, J48 Decision
Tree. Models performance, defined utilizing several metrics (F-Measure, Recall, Precision,
CM, Kapps Statistics) clearly show the LSTM model as the best performing.

Line-to-Line (LL) faults are automatically detected in [70] using an SVM model whose
hyper-parameters are selected using GA. This model employs features extracted from DC I-
V data resulting from a simulation model (developed with Matlab/Simulink) of a PV plant.
GA is also used to extract optimal features for detect LL faults even in case of low mismatch
and high impedance. A total of ten features are extracted from the simulated data, and
all features are related to I–V curves under normal and fault events based on three points:
short circuit current, MPP and open-circuit voltage. Results show as optimal the Gaussian
kernel for the SVM model and two or three features from the whole set of ten. An emulated
(not software but by dedicated hardware simulator) GCPV system is used in [71] to test a
novel RK-RFKmeans and RK-RFED. Faults emulated at the grid side are open-circuit (F1)
and standalone mode protection (F3), while on the PV side are poor connection and/or
erroneous reading (F2), open-circuit/short-circuit/sudden disconnection (F5) and partial
shading from 10–20% (F4). This paper introduced two new RF classifiers based on RK-RF
that extract nonlinear features using a reduced kernel PCA (RK-PCA) technique to decrease
the computational complexity of K-PCA for large data sets. The data reduction is based on
two schemes; Euclidean distance metric and K-means clustering. Comparison with ML
bases methods such as SVM, DT, ND, DA, KNN and RNN show that the two proposed
methods perform very well.

A novel approach based on a 2D CNN is proposed in [72]; this CNN is trained with
2D scalograms from PV system data. This 2D CNN is proposed into two configurations:
one derived from a pre-trained AlexNet CNN in which the last three layers are fine-tuned to
provide a six-way classifier, and another where the results from a pre-trained AlexNet layer
(fc7) are used with a classical classifier (RF and SVM). Faults considered detectable with
the proposed approach are PS, LL, OC, arc-fault and faults (LL and OC) in PS. Good results
are obtained from the fine-tuned AlexNet but also by the pre-trained AlexNet + SVM. This
paper also outlines how data from MPPT (Imax and Vmax) are significant for obtaining
good accuracy (performance halves without these data). In [73] is proposed a hierarchical
model for anomaly detection and a multimodal classifier to recognize five common faults
in PV. The anomaly detection is realized in two steps: an Auto Gaussian Mixture Model
(Auto-GMM) acts as an unsupervised ML model to detect anomalies, and this is further
filtered using an auto-thresholding methodology applied to a local anomaly index (LAI)
that is derived for each probable anomaly. For the classification, the authors propose a
multimodal feature extraction procedure based on the Fourier spectrum derived from PV
strings currents. Three classifiers are compared to classify five common PV faults: SVM,
bagging and XGBoost. With the extracted multimodal features, the XGBoost model has
proved to perform the best.

In Table 5 are reported some recent review papers dealing with ML-based models for
fault/anomaly detection and diagnosis in PV.
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Table 5. Papers for fault/anomaly detection and diagnosis in PV. Publication year considered: 2018–2021.

Year Reference Metrics Applied to Faults Detectable Methods & Notes

2021 [69] Kappa Statistic, Precision,
Recall, CM, F-measure Software simulation

HIF, Line to Ground fault (LG), LL,
Double Line to Ground fault (LLG),

Three-phase fault (LLLG)
LSTM+DWT

2020 [68] TPR, FNR, PPV, FDR,
ROC, F-measures

PV panels of
a 22 modules plant Hot-spot Hybrid SVM using IRT images and custom feature extraction

methodology (41 total features)

2020 [70] Accuracy Software simulation LL SVM+ GA for optimal model hyper-parameter selection (Gaussian
kernel) and feature selection (three or two from a set of ten)

2020 [71] Accuracy, F1 Hardware simulation Five total faults AC or DC. RK-RFKmeans and RK-RFED

2020 [72] Software simulation LL, ARC, PS, OC, No-Fault, faults in PS Pre-trained AlexNet with last three layers fine-tuned with 2-D
scalogram from PV data

2019 [73] Precision, Recall, F1,
Detection Accuracy Two large solar farms

Five types of common anomalies
(ageing, building shading, hot spot,
grass shading and surface soiling)

Hierarchical context-aware anomaly detection (Auto-GMM+ auto
thresholding, Multimodal feature extraction+XGboost)

2019 [74]

2018 [75] Accuracy (10-fold CV)
Software simula-

tion + laboratory PV
system

RF using only voltage and string currents from PV array optimized
with grid search (out-of-bag accuracy)
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6. The Latest Research on MPPT in PV

Apart from its application, PV are expected to be operated in a manner such that
maximum power can be extracted from the installed system.

The energy output of a PV system is sensitive to variations in weather conditions; in
particular, it is dependent on solar radiation and temperature. Variations in cloud cover, fog
and heat affect the PV system’s conversion efficiency. Dust and other particles floating in
the air or covering the panel can drastically decrease the efficiency of the power conversion
process as well [76].

Under these conditions, the power–voltage curve of the PV array exhibits multiple
local maximum power points (MPPs). However, only one of these MPPs corresponds to
the global MPP (GMPP), where the PV array produces the maximum total power [77].
(Figure 2). Any change in the output voltage because of the change of load or other reasons
will cause the PV panel to produce less power than the maximum. Therefore, the controller
of the power converter that is connected at the output of the PV array must execute an
effective global MPP tracking (GMPPT) process to continuously operate the PV array at
the GMPP during continuously changing weather conditions.
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Figure 2. An example of the power-voltage characteristic of a photovoltaic (PV) array under partial
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Consequently, many research efforts are focused on finding ways to drive PV panels
to their maximum output power at all weather conditions, thus ensuring their profitabil-
ity [78].

In Table 6 a list of papers that provide a review on PV MPPT techniques is shown.

Table 6. Review papers on PV MPPT techniques. Publication year considered: 2018–2021.

Year Reference Notes

2021 [79]
The paper provides a comparative and comprehensive review of some relevant PSO-based methods taking into account the
effects of important key issues such as particles initialization criteria, search space, convergence speed, initial parameters,
performance with and without partial shading and efficiency.

2021 [80]

The paper intends to review the previous articles and provide a proper division, performance method. This explains the
performance, application, advantages and disadvantages of algorithms to be a good reference for selecting the appropriate
algorithm. Algorithms in the presented paper are divided into four categories methods based on measurement, calculation,
intelligent schemes and hybrid schemes.

2021 [81]

The paper represents a review of two modern techniques used in solar photovoltaic systems which enhance the extraction of
maximum output power in an efficient manner. The Artificial Intelligence-Based MPPT Techniques for PV Applications and
a Forecasting System of Solar PV Power Generation using Wavelet Decomposition and Bias- compensated RF are reviewed
and compared in the paper.

2021 [82]
The paper presents an organized and concise review of MPPT techniques implemented for the PV systems in literature
along with recent publications on various hardware design methodologies. Their classification is done into four categories,
i.e., classical, intelligent, optimal and hybrid depending on the tracking algorithm utilized to track MPP under PSCs.

2021 [83]
The review of MPPT techniques proposed in the paper has been grouped into two groups. The first group includes all the
benchmark facilities. The second group includes the intelligent techniques that explain the fuzzy-based MPPT, ANN-based
MPPT evolutionary techniques, hybrid methods and MPPT techniques used in energy harvesting.

2020 [84]
In the presented paper, a compendious study of different Swarm Intelligence (SI)-based MPPT algorithms for PV systems
feasible under partially shaded conditions are presented. The methods are compared in terms of their swarm intelligence
and advantages.
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Table 6. Cont.

Year Reference Notes

2020 [85]

A detailed comparison of classification and performance between six major AI-based MPPT techniques have been made
based on the review and MATLAB/Simulink simulation results. Each technique is compared in terms of algorithm
structure, cost, complexity, platform, input parameters, tracking speed, oscillation accuracy, efficiency and their applications.
The AI-based MPPT techniques are generally classified into fuzzy logic control (FLC), ANN, GA, swarm intelligence (SI),
ML and other emerging techniques.

2020 [86]

The presented study gives an extensive review of 23 MPPT techniques present in literature along with recent publications
on various hardware design methodologies. MPPT classification is done into three categories, i.e., Classical, Intelligent and
Optimisation depending on the tracking algorithm utilised. During uniform insolation, classical methods are highly
preferred as there is only one peak in the P-V curve. The paper furnishes the hardware information of the particular
technique by different authors performed in various platforms with their tracking speeds and efficiencies. In addition, the
parameters of these techniques, their flowcharts and a clear explanation of MPPT algorithm implementation are explained
in brief. The fundamental objective is to give ongoing innovation advancements in MPPT techniques.

2020 [87]

The main MPPT techniques for PV systems are reviewed and summarized and divided into three groups according to their
control theoretic and optimization principles: Traditional MPPT methods, MPPT methods based on intelligent control and
MPPT methods under PSCs. In particular, the advantages and disadvantages of the MPPT techniques for PV systems under
PSCs are compared and analyzed.

2020 [88]

This paper reviews (extensively) the most used MPPT algorithms. They are classified into three groups: (1) direct, such as
hill climbing, Perturb and Observe (P&O) and incremental conductance (INC); (2) indirect, namely fractional short-circuit
current, Fractional Open-Circuit Voltage and pilot cell and (3); soft computing methods such as a Kalman filter, FLC, ANN,
PSO, ant colony optimization (ACO), artificial bee colony (ABC), bat algorithm and hybrid PSO-FLC. The purpose of the
presented review is to provide a general insight into various MPPT methods describing their principles of operations and
highlighting their advantages and limitations. In addition, the suitable embedded board for the hardware implementation
of each method is outlined; low-cost only embedded boards have been studied.

2019 [89]

This study provides an extensive review of the current status of MPPT methods for PV systems which are classified into
eight categories (methods based on mathematical calculations, constant parameters-based methods, measurement and
comparison-based methods, trial and error based methods, numerical methods, intelligent prediction based methods and
methods based on iterative in nature). The categorization is based on the tracking characteristics of the discussed methods.
The novelty of this study is that it focuses on the key characteristics and 11 selection parameters of the methods to make a
comprehensive analysis, which is not considered together in any review works so far. Again, the pros and cons,
classification and immense comparison among them described in this study can be used as a reference to address the gaps
for further research in this field. A comparative review in tabular form is also presented at the end of the discussion of each
category to evaluate the performance of these methods, which will help in selecting the appropriate technique for any
specific application.

2018 [90]
The paper focuses mainly on a review of advancements of MPPT techniques of PV systems subjected to partial shading
conditions (PSC) to help the users to make the right choice when designing their system. The choice of MPPT depends on
several parameters such as the application, hardware availability, cost, convergence speed, precision, and system reliability.

MPPT methods can be classified into indirect and direct methods [91]. The indirect
methods, such as open-circuit and short-circuit methods, require prior knowledge of the
PV array characteristics or are based on mathematical relationships which do not meet all
meteorological conditions. Therefore, they cannot precisely track the MPP of the PV array
at any irradiance and cell temperature. For this kind of method, temperature and irradiance
must be used as sensed parameters, but their measurement requires expensive devices
that have to be placed throughout the PV array to obtain the values of such variables for
each panel or group of them, thus making the measurement very expensive, especially
for large PV plants. On the other hand, direct methods work under any meteorological
condition. The most used direct methods are [6]: P&O, IncCond and ML-based MPPT
methods. These methods control the reference signal of a DC-DC converter that matches
the PV module voltage with that of the DC bus or works as a battery charge [7]. In the
P&O method, the controller adjusts the voltage by a small amount and observes the power
change; if the power increases, it adjusts the operating voltage in that direction until the
output power no longer increases. The IncCond method is based on the fact that the slope
of the power–voltage curve characterizing the circuits of the PV array is zero at the MPP,
positive on the left and negative on the right of the MPP. The controller evaluates the
effect of a voltage adjustment by measuring the incremental changes in PV array output.
However, the effectiveness of P&O and IncCond methods is limited due to steady-state
oscillation and diverged tracking direction, and they can even fail to identify the global
optimal power point under some special conditions, such as an abrupt irradiance change
due to shading. Therefore, more intelligent MPPT techniques based on machine learning
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methods have been proposed for better transient and steady-state performance. Intelligent
techniques (i.e., FL and ANN-based MPPT methods) are more efficient and they have fast
responses, but they are more complex compared to the conventional techniques that are
generally simple, cheap and less efficient [91]. ANN-based methods have shown their
advantages under rapidly varying irradiance [92], especially regarding response efficiency.
However, despite their higher efficiency, these advanced heuristic approaches are much
more complex compared to the conventional techniques. The performance of the ML
approaches is heavily dependent on the accuracy of the trained model that is determined
by the quality of training data, and frequent calibration is needed as the system evolves.

In Table 7, several papers that use ML approaches to improve MPPT performance
have been analyzed. They have been ordered based on the year of publication. In particular,
the table is useful to underline the ML method that has been used most frequently and the
results that the different approaches allow to obtain. Unfortunately, results are not always
presented in such a way they can be compared with other similar papers.

In particular, some papers present results comparing the value of the power that the
proposed solution allows reaching with the value of the power of the global MPP [77,93–95].
In these cases, to compare results obtained in the different papers, the ratio between the
reached power, Preached, and that one that should be obtained, PGMPP, has been calculated as:

MPP_ratio =
Preached
PGMPP

·100 (1)

In some papers, other statistical errors have been used to compare the reached power
with that one at MPP: the Mean Error (ME in Equation (2)) [96], the Mean Square Error
(MSE in Equation (3)) [96], the Standard Deviation error (σ in Equation (4)) [96], the
Root Mean Square Error (RMSE in Equation (5)) [76,97], means absolute error (MAE in
Equation (6)) [97], the overall power tracking efficiency (η in Equation (7)) [98] and a quality
indicator that provides information about the ability of the ANN to predict the MPP (QI1
in Equation (8)) [99]:

ME =
1
N
·

N

∑
i=1

(PGMPP − Preached) (2)

MSE =
1
N
·

N

∑
i=1

(PGMPP − Preached)
2 (3)

σ =

√√√√ 1
N
·

N

∑
i=1

(PGMPP − µ)2 (4)

RMSE =

√√√√ 1
N
·

N

∑
i=1

(PGMPP − Preached)
2 (5)

MAE =
1
N
·

N

∑
i=1
|PGMPP − Preached| (6)

η =

∫ t
0 Preached(t)·dt∫ t
0 PGMPP(t)·dt

·100 (7)

QI1 = 1− 1
N
·

N

∑
i=1

Preached
PGMPP

(8)

EI =
1
N
·

N

∑
i=1

PGMPP − Preached
PGMPP

(9)

where N is the number of tests and µ is the average of the reached values.
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Table 7. Papers for PV MPPT. Publication year considered: 2018–2021.

Year Reference ML Method Description Results on
Reached Power

Transient
Response

Simulation/
Experimental Advantages

2021 [100] ANN, segmentation-based
approach and hill-climbing

The paper deals with the feasibility study and implementation of a novel easy
and cost-effective hybrid two-stage GMPPT algorithm. The first stage
synergically combines two different methods to predict the optimal operating
condition: an ANN-based algorithm and a segmentation-based approach. A
traditional hill-climbing method is used in the second stage to finely track
MPP. Various ANN structures have been implemented and tested.

Figures show the
MPP_ratio (maximum

value 99.55%)
- Simulation

(Matlab) Very fast dynamic behaviour

2021 [101]

PSO, ANN
GA-FLC, PSO-FLC,

GA-ANN and Combined
GA-FLC-ANN

Two artificial intelligence-based MPPT systems are proposed in the paper for
grid-connected PV units. The first design is based on an optimized FL control
using a genetic algorithm and PSO for the MPPT system. In turn, the second
design depends on the genetic algorithm-based ANN. Each of the two artificial
intelligence-based systems has its privileged response according to the solar
radiation and temperature levels. Then, a novel combination of the two
designs is introduced to maximize the efficiency of the MPPT system. The
simulation results demonstrate that the GA/PSO-FLC and the
GA-ANN-based MPPT methods have significant improvement in terms of the
output DC power and the tracking speed.

Quantitative evaluation
of INC, GA-FLC,

PSO-FLC, GA-ANN and
Combined

GA-FLC-ANN

Rise time =
[0.0168s–0.0251s]

Simulation
(Matlab)

2021 [102]
Backstepping terminal
sliding mode control

(BTSMC)

A nonlinear BTSMC is proposed for maximum power extraction. The system is
finite-time stable and its stability is validated through the Lyapunov function.
A DC-DC buck-boost converter is used to deliver PV power to the load. For
the proposed controller, reference voltages are generated by an RBF NN.

MPP_ratio = 98.74%
Under varying climatic

conditions = 98.72%
Under faulty condition

Simulation (Mat-
lab/Simulink)

Best performance of the proposed
control technique in all conditions

2020 [95] MFA + ANFIS + P&O

After being trained using the modified firefly algorithm (MFA), the ANFIS
(adaptive neuro-fuzzy inference system) based on the radiation conditions on
solar panels provides a quantity as the optimal duty cycle, from which point
the P&O algorithm starts to enter the tracking cycle and tries to detect the MPP
under partial shading conditions.

MPP_ratio =
[65.05–99.95%] - Simulation

(Simulink) High speed in tracking the MPP

2020 [103] RL + DL

The deep Q-network (DQN) and deep deterministic policy gradient (DDPG)
are proposed to harvest the MPP in PV systems, especially under a PSC.
Two robust MPPT controllers based on DRL are proposed, including DQN and
DDPG. Both algorithms can handle the problem with continuous state spaces,
in which DQN is applied with discrete action spaces while DDPG can deal
with continuous action spaces. Rather than using a look-up table in the
RL-based method, DRL uses neural networks to approximate a value function
or a policy so that high memory requirement for sizeable discrete state and
action spaces could be significantly reduced.

Powers increase by
17.9% (DQN) and

15.4% (DDPG)

Simulation (Mat-
lab/Simulink)

No prior model of the
control system is needed.
Significant tracking speed

2020 [77] Q-learning-based The paper presents a novel GMPPT method that is based on the application of
a machine-learning algorithm (Q-learning-based method).

MPP_ratio =
[97.1–99.7%]

Simulation (Mat-
lab/Simulink)

(a) it does not require knowledge
of the operational
characteristics of the PV
modules and the PV array
comprised in the PV system;

(b) it is capable of detecting the
GMPP in significantly fewer
search steps.
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Table 7. Cont.

Year Reference ML Method Description Results on Reached Power Transient
Response

Simulation/
Experimental Advantages

2021 [100] ANN, segmentation-based
approach and hill-climbing

The paper deals with the feasibility study and implementation of a novel easy
and cost-effective hybrid two-stage GMPPT algorithm. The first stage
synergically combines two different methods to predict the optimal operating
condition: an ANN-based algorithm and a segmentation-based approach. A
traditional hill-climbing method is used in the second stage to finely track
MPP. Various ANN structures have been implemented and tested.

Figures show the MPP_ratio
(maximum value 99.55%) - Simulation

(Matlab)
Very fast dynamic

behaviour

2020 [76] GRNN and Support Vector
Regression (SVR)

The main contribution of the work is to predict the optimum reference voltage
of the PV panel at all-weather conditions using ML strategies and to use it as a
reference for a Proportional-Integral-Derivative controller that ensures that the
DC/DC boost converter provides a stable output voltage and maximum
power under different weather conditions and loads.

RMSE = 0.0278 (SVR)
RMSE = 0.044 (GRNN)

Simulation (Mat-
lab/Simulink)

Robust against internal
and external disturbances

2020 [104] ANN

The authors propose a simple MPPT algorithm that is based on the neural
network (NN) model of the photovoltaic module. The expression for the
output current of the NN model is used to develop an analytical, gradient
MPPT algorithm which can provide high prediction accuracy of the maximal
power. Finally, to avoid the usage of the pyranometer, a simple irradiance
estimator, which is also based on the identified NN model, has been proposed.
The presented algorithm has smaller computational complexity compared to
the other NN-based MPPT algorithms, in which the MPP position is predicted
by one multilayer NN or by two single-layer NNs.

Relative error between the
predicted and true
maximal power:

• P&O = [0.011–32.397%]
• equivalent circuit

(EMPPT)
[0.366–56.772%]

• NN-based MPPT
[0.0001–18.881%]

• cascade NN-based
MPPT [0.003–0.251%]

Simulation Low computation
complexity

2020 [105]

DT, Multivariate Linear
Regression (MLR), Gaussian

Process Regression (GPR),
Weighted K-Nearest Neighbors
(WK-NN), Linear Discriminant
Analysis (LDA), Bagged Tree
(BT), Naïve Bayes classifier

(NBC), SVM, RNN

Nine ML-based MPPT techniques, by presenting three experiments under
different weather conditions, in case of no sensor, are introduced. DT,
Multivariate Linear Regression (MLR), Gaussian Process Regression (GPR),
Weighted K-Nearest Neighbors (WK-NN), Linear Discriminant Analysis
(LDA), Bagged Tree (BT), Naïve Bayes classifier (NBC), SVM and Recurrent
Neural Network (RNN) performances are validated.

RMSE:
DT = 0.42

WK-NN = 0.37
MLR = 0.44
LDA = 0.48
BT = 0.73
GPR = 0.4

NBC = 0.51
SVM = 0.14
RNN = 0.36

Training time:
DT = 0.91 s

WK-NN = 0.78 s
MLR = 6.17 s
LDA = 2.32 s
BT = 2.35 s

GPR = 5.04 s
NBC = 8.56 s

SVM = 1.1178 s
RNN = 8.9 s

Simulation (Mat-
lab/Simulink)

Give the possibility to
compare different ML

algorithms

2020 [106] FL and ANFIS

An FLC with a reduced number of rules-based MPPT and ANFIS based MPPT
have been developed and tested in MATLAB/Simulink environment, based on
the simulation it can be concluded that with both controllers the PV panel can
deliver the maximum power. However, the performance of fuzzy with
reduced rules MPPT is better than ANFIS based MPPT in terms of tracking
speed and static error due to its reduced number of rules (8) Table instead of
conventional (25) which makes it lighter and improves global performance.

Static error = 0.016% (FLC
With reduced Rules)

0.020% (ANFIS)

Tracking time =
0.005 s (FLC With

reduced Rules)
0.011 s (ANFIS)

Simulation (Mat-
lab/Simulink)
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Table 7. Cont.

Year Reference ML Method Description Results on
Reached Power

Transient
Response

Simulation/
Experimental Advantages

2019 [94] Fuzzy neural network
(FNN)

An FNN controller based on the MPPT technique has been designed and
implemented to control the duty cycle of a boost converter and to elicit the
maximum power from the PV cells. The FNN controller is also refined using a
gradient descent-based back-propagation algorithm to obtain optimal results.

MPP_ratio =
[96.09–96.67%] - Simulation

(Matlab/Simulink)

The FNN controller has good
stable sets of responses

where there is no oscillation
around the optimal value.

2019 [92] Sequential Monte–Carlo
(SMC) filtering + ANN

An improved MPPT method for PV systems method is proposed utilizing the state
estimation by the sequential Monte–Carlo (SMC) filtering, which is assisted by the
prediction of MPP via an ANN. A state-space model for the sequential estimation
of MPP is proposed in the framework of the INC MPPT approach.
The ANN model is based on the input of the voltage and current or the irradiance
measurements and predicts the generalised local log-likelihood ratio (GLLR) given
the knowledge learned from training data. Furthermore, the ANN-based
refinement is triggered only when the proposed GLLR change detector declares the
irradiance change, which decreases the number of redundant ANN predictions
when the irradiance is steady.

Prediction quality
index = [87.7–96.2%]

SMC = 0.22 s
I-C = 0.35 s

Simulation
(Simscape Power

Systems in Matlab)

Efficient and economical
MPPT solution

2019 [78]
Reinforcement learning

-Q-Table and the
RL-Q-Network (QN)

Two reinforcement learning-based MPPT (RL MPPT) methods are proposed by the
use of the Q-learning algorithm. One constructs the Q-table and the other adopts
the Q-network. These two proposed methods do not require the information of an
actual PV module in advance and can track the MPP through offline training in two
phases: the learning phase and the tracking phase. A Markov decision process
model is suitable for describing the interaction between the circuit connected to the
PV module and the controller. An MDP model consists of four elements, which are
state, action, transition and reward. With the MDP model described, an RL-QT
MPPT method is proposed by constructing the Q-table to perform MPPT control.
However, the state representation is needed to be discretized for the tabular
method, which may cause the loss of MPPT control accuracy. Therefore, a
Q-network-based MPPT method is proposed. In the RL-QN MPPT method, the
Q-table is approximated by a neural network, so that the discretization of the states
is not needed.

Quantitative evaluation Experimental Small oscillations and high
average power

2019 [107] Transfer reinforcement
learning (TRL)

The paper aims to introduce a novel maximum power point tracking (MPPT)
strategy called TRL, associated with space decomposition for PV systems under PS
conditions (PSC). The space decomposition is used for constructing a hierarchical
searching space of the control variable, thus the ability of the global search of TRL
can be effectively increased.

Quantitative evaluation - Simulation Fast convergence and a high
convergence stability

2019 [108] ANN + Backstepping
Sliding Mode (BSM)

The paper presents a novel hybrid technique for tracking the maximum power
point of the photovoltaic panel. This approach includes two loops: the first one is
the ANN loop that is used to quickly predict the desired voltage, which minimizes
the calculation and allows a rapid system response. While the second loop consists
of a combination of the sliding mode and the backstepping control approaches, the
main aim is to track the reference voltage that is generated by the ANN loop, the
second purpose is to have a rapid, robust and accurate system under various and
difficult changes of meteorological conditions. The proposed technique is
compared with the conventional algorithms and the hybrid controllers, ANN
combined with the Integral sliding mode controller and ANN combined with the
backstepping controller, to prove its effectiveness and tracking performance.

Figures show the
effectiveness of the
proposed approach

Simulation (Matlab) A robust controller
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Table 7. Cont.

Year Reference ML Method Description Results on
Reached Power Transient Response Simulation/

Experimental Advantages

2019 [109] Neuro-fuzzy

In the paper, an IC-based variable step size Neuro-Fuzzy MPPT controller
has been propose and investigated. The proposed NF MPPT controller is
developed firstly in the offline mode required for testing a different set of
neural network parameters to find the optimal neural network controller
used secondly in the online mode to track the output power of the PV
system under different atmospheric conditions. The inputs variables for
NF MPPT are the same as the IC algorithm inputs i.e., I and V, while the
output power is the PWM ratio used to drive the DC-DC boost converter.

Figures show the
effectiveness of the
proposed approach

Simulation (Mat-
lab/Simulink)

Response time, ripple,
steady-state oscillation

accuracy

2019 [110] ANN

The authors design an MPPT controller based on an ANN for a solar
structure using Boost and Cuk converter topology. The performances of
the proposed solution are analyzed under uniform and varying climatic.
Cuk converter provides good performance under all climatic conditions
but the main disadvantage is its cost which is comparatively high than
that of the Boost converter.

MPP_ratio = 95.5%
(boost) and 99.56% (Cuk)

Rise Time (µs) = 600.6 (boost)
465.1 (cuk)

Settling time (µs) = 801 (boost)
757.4 (cuk)

Simulation (Mat-
lab/Simulink)

Good performance with
accurate tracking, high

efficiency and low
oscillation under

uniform and rapidly
changing climatic

conditions

2018 [111] SVM and extreme learning
machine (ELM)

A customized MPPT design was proposed to determine the optimal step
sizes according to three different weather types. The weather-type
labelling was automatically provided by a supervised learning
classification system. Two classical machine learning technologies were
employed and compared, including SVM and ELM. The classification
probability from SVM or ELM is deployed as the confidence level and is
designed as a fuzzy-weighted classification system to further improve the
MPPT design.

Classification accuracy
reaches over 90% for
both SVM and ELM

methods

Simulation (Mat-
lab/Simulink)

High MPPT efficiency by
using a low-cost simple

micro-controller

2018 [98] Bayesian fusion

An intelligent Bayesian network technique is proposed for global MPP
tracking of a PV array under partial shading conditions. The algorithm
sweeps the output voltage of a DC-DC converter, measures the
corresponding current, computes the resulting power, and uses the Bayes
rule to compute an estimate of the MPP. A PID controller is used for a
more efficient real-time controller with minimum overshoot and
minimum rise time in output power.

η = 98.9% (simulation)
η = 98.4%

(Experimental)

1.72 s (simulation) and
1.86 (experimental)when the

time interval of the irradiation
change is 10 s–20 s when

G = 1000 W/m2 to
G = 500 W/m2

1.81 s (simulation) and
1.88 (experimental)when the

time interval of the irradiation
change is 20 s–30 s when

G = 500 W/m2 to
G = 800 W/m2

Simulated
(Matlab) and then

experimentally
validated

Enhanced response time
and efficiency

2018 [99] ANN + hill climbing

A global maximum power point tracking algorithm including an ANN
and a hill-climbing method is combined. The proposed solution is
suitably designed for handling fast-changing partial shading conditions
in photovoltaic systems. Through only a limited number of preselected
current measurements, the proposed algorithm is capable of
automatically detecting the global maximum power point of the
photovoltaic array and also minimizing the time intervals required to
identify the new optimal operating condition.

QI1 = [8.96–14.26%] - Simulation

Does not require any
information on the

environmental operating
conditions and it is

cost-effective, with no
additional hardware

requirements
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Table 7. Cont.

Year Reference ML Method Description Results on Reached Power Transient
Response

Simulation/
Experimental Advantages

2018 [112] ANN and FL

Authors propose a new MPPT algorithm based on FL and an ANN to improve
the performances of a system that consists of three main parts: PVG, a DC-DC
boost converter and a DC motor coupled with a centrifugal water pump. The
ANN is used to predict the optimal voltage of the PVG, under different
environmental conditions (temperature and solar irradiance) and the fuzzy
controller is used to command the DC-DC boost converter. The proposed
algorithm gives better stability and accuracy to the system compared to
P&O-based MPPT.

Comparison based on figures - Simulation
(Matlab/Simulink)

2018 [113]

2018 [114] Coarse-Gaussian SVM
and ANN

The paper introduces an innovative MPPT algorithm that combines two
powerful ML techniques of coarse-Gaussian SVM (CGSVM) (a particular type
of classification learning technique) and an ANN as the ANN-CGSVM
technique. The results of the proposed MPPT algorithm were compared with
that of Adaptive Neuro-Fuzzy Inference Systems (ANFIS), conventional ANN
and the hybrid of ANN and P&O (ANN-PO) results to verify the proposed
algorithm performance for the MPPT task. The obtained results suggested that
the CGSVM classifier could extract considerable power from the PV panel
under varied weather conditions.

MPP_ratio = [69.34–98.99%]
Tracking time

between 0.006 s
and 1.486 s

Simulation Good efficiency and the
convergence speed
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As it is possible to note in Table 7, almost all the papers propose simulations to test
their algorithms. Only in [78] do authors propose both simulation and experimental results.
This can be because ML algorithms have a computational load that is hardly in accordance
with the characteristics of the hardware that can be used in PV fields.

7. Other Applications in the PV Field

In few cases, ML algorithms have been used to improve the performance of concen-
trating PV (CPV).

In particular, in [115] authors studied a Random-Forest (RF) model for the temperature
analysis of two different triple-junction solar cells mounted on an experimental CPV system.
The cell temperature evaluation is a basic parameter to determine the energy production
of a CPV/T system. Moreover, an ANN model and an LRM have been also studied to
compare the RF model results in terms of absolute error and fit capability. The RF model to
evaluate the performances of a CPV system from electric and thermal presents the lowest
values for RMSE, MAE and MAPE. In particular, RMSE is 1.95 ◦C, the MAE is 1.17 ◦C
and the MAPE is 3.67%. These values are two or three times lower than the LR and ANN
models results. However, it should be noted that the ANN model shows better statistical
results with respect to the LRM. This proves that a non-linear method represents a better
solution than a linear one for the cell temperature evaluation. The good forecast capability
of the RF technique is also proved by the values of the goodness of fit(R2). In particular,
the estimated values are 0.95, 0.79 and 0.76, respectively, for the RF, ANN and LRM models.
Finally, the RF model constitutes the best method both in terms of absolute error and
fit capability.

Another paper where ML algorithms are used in the field of CPV is [116]. The
authors developed four machine-learning algorithms (support vector machine, ANN,
kernel, nearest-neighbour and deep learning) to predict the power outputs of a CPV
system. The authors concluded that all machine learning algorithms used in the paper can
successfully predict PV module output power. However, the SVM algorithm performed
reasonably well throughout the day. The k-NN algorithm shows a prediction trend similar
to SVM at the beginning of the observations. However, it is possible to say that this
algorithm gives a better result than SVM, especially in the initial and final observations.
As the predictions with ANN are analyzed, it is seen that this algorithm is successful in
predicting peak points as in the SVM algorithm. On the other hand, the DL approach
predicted power output higher than the measured value. On the other hand, the reason for
the higher deviation in the DL algorithm is probably related to the availability of data.

In [117] an RBFNN is used in the field of CPV. More specifically, it is used to predict
the output power of a high CPV (HCPV) facility. The RBFNN has been designed using
MATLAB. Two coefficients have been used to verify the accuracy of the adopted solution,
the RMSE and the R2. The results were compared to those obtained by the ASTM E-2527
model using the same dataset. Results have been divided for sunny and cloudy days,
obtaining an RMSE of 3.3 kW and 4 kW, respectively, in the case that the ASTM model is
used. In the case of R, BFNN the RMSE is equal to 1.3 kw for sunny days and 2.24 kW for
cloudy days. The obtained value of R2 is 0.322 for sunny days and 0.339 for cloudy days in
the case of the ASTM model.

Another application in the PV field where ML has been used to improve the per-
formance of the system is PV/T hybrid systems. They consist of conventional thermal
collectors with an absorber covered by a PV layer. The PV modules produce electricity and
simultaneously the absorbed thermal energy is transported away by the working fluids.

In [118] different PV/T systems (conventional PV, water-based PV/T, water-nanofluid
PV/T and nanofluid/nano-PCM) under the same conditions and environment have been
tested using one ANN-based MLP system. The parameters used in simulating the neural
models were input parameters such as Solar Irradiation and Ambient Temperature, whereas
the output parameters were PV/T Current (A), PV/T Voltage (V), PV/T Electrical Efficiency
(%) and PV/T Thermal Efficiency (%). The MLP based on the backpropagation algorithm
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using momentum learning function was used. The proposed ANN approach proved that
using nanofluid/nano-PCM enhanced the electrical efficiency from 8.07% to 13.32% and its
thermal efficiency reached 72%.

In [119] authors examined the feasibility of several ML techniques to forecast the
energetic performance of a building-integrated PV/T (BIPV/T) collector. In particular, they
tested the following techniques: multiple linear regression (MLR), MLP, RBF regressor,
sequential minimal optimization improved support vector machine (SMO Improved),
lazy.IBK, RF and random tree (RT). Moreover, it implements the performance evaluation
criteria (PEC) to evaluate the system’s performance from the perspective of exergy. The
results for the testing dataset showed the RF model is superior to other proposed models
with an RMSE equal to 0.8153 compared with an RMSE of 18.9966 for MLR, 4.5751 for MLP,
8.9168 for RBF Regressor, 22.7223 for SMO Improved, 8.4233 for lazy.IBK and 2.115 for RT.

The prediction of thermal efficiency of PV/T setups is studied in [120], regarding
input temperature, recirculation flow rate and solar irradiation by modifying MLP-ANN,
ANFIS and least-squares SVM (LSSVM) approaches. An experimental dataset of 100 data
points (empirical measurements performed on a fabricated water-cooled PV/T setup) has
been used. Graphical and statistical methods were employed to determine the credibility of
the proposed models in accurate prediction of the thermal efficiency. The proposed ANN
model provided the best performance compared to ANFIS and LSSVM models due to the
MSE and R2 values of 0.009 and 1.00, respectively.

In [121] ML methods of ANNs (MLP-ANN and RBF-ANN), LSSVM and ANFIS have
been used for advancing prediction models for the thermal performance of a PV/T solar
collector. As the input variables for the proposed models, authors have considered: inlet
temperature, flow rate, heat, solar radiation and the sun heat. The electrical efficiency
yield has been used as the output. The data set has been extracted through experimental
measurements from a novel solar collector system. Results show that the proposed LSSVM
model outperforms other models with an R2 equal to 0.987 and an MSE equal to 0.004.
Further, in [121] the sensitivity analysis demonstrates that the water inlet temperature has
the most significant relevancy factor and therefore it is the parameter that most affects the
efficiency of the PV/T system.

Finally, in [122] a comparison study of prediction data system of PV/T output power
by using ANN techniques considered published studies in data sets for the years 2008–2017.
The results show that ANN models are the most suitable for the prediction of global solar
radiation. The presented study offers a cheap and easy method for implementing PV
models and choosing the desired location for providing good performance for the system.
Several models were used to simulate and measure the production of energy in solar cells
including ANN such as MLP, Bayesian NN (BNN), RNN (Recurrent NN), Generalized
Feed-Forward (GFF), SVM, Self-organization feature map (SOFM) and LSTM. To obtain
the most significant benefit from the best model, several mathematical coefficients have
been adopted to determine the validity of accurate results such as MAPE, MSE, RMSE,
MBE, Mean Percentage Error (MPE) and R2. The comparative study can clarify the best
implementation method and address the scope of weakness in any of the proposed models
based on the results of scientific verification and operation.

Furthermore, in [123,124] ML is used to improve the efficiency of control algorithms
used in PV-storage systems. In particular, in [123] an algorithm using ML to effectively
control PV-storage systems has been developed. The algorithm uses an offline policy
planning stage and an online policy execution stage. In the planning stage, a suitable
machine learning technique is used to generate models that map states (inputs) and
decisions (outputs) using training data. In the execution stage, the model generated by the
ML algorithm is then used to generate fast real-time decisions.

In [124] authors introduce a supervised ML approach to predict and schedule the
real-time operation mode of the next operation interval for residential PV/battery systems
controlled by mode-based controllers. The performance of the mode-based economic
model-predictive control approach is used as the benchmark. The optimal operation mode



Appl. Sci. 2021, 11, 7550 27 of 34

for each control interval is first derived from the historical data used as the training set.
Then, four ML algorithms (i.e., ANN, SVM, logistic regression and RF algorithms) are
applied. Simulation results show that using the ML approach can effectively improve the
performance of the mode-based control system and reduce the computation effort of local
controllers because the training can be completed on a cloud-based ML engine.

8. Concluding Remarks and Future Trends

In this paper, a literature review of recent (from the year 2018 till 2021) applications
of ML methods on many different fields of PV has been carried out. Fields touched
within this discussion are forecasting of PV production, anomalies detection and fault
analysis, tracking MPP, PV systems efficiency optimization, PV/T and CPV system design
parameters optimization and efficiency improvement and energy management of PV
storage systems. In almost all fields reported above, ML methods have proven to be an
effective and reliable solution. The field of forecasting PV production is, by far, the most
investigated one where many ML-based models have been proposed. Most research papers
in this field are focused on point-forecast, though in the last several years some papers
have also evaluated probabilistic forecasting that, in the authors’ opinion, is the most
interesting as provide the additional prediction interval associated with point forecasting.
Due to the rise of DL and to the availability of ML frameworks such as Tensorflow or
Pytorch, to cite a few, many DL models, mainly based on LSTM architectures, have proven
to provide state of the art accuracy. These LSTM architectures mostly use historical values
of PV production as well as environmental features and some techniques of an analogue
ensemble. For probabilistic forecasting, methods based on some variation of Quantile
regressions are the most common. Regarding forecasting horizon, the short-term horizon,
from one hour to few days, is the most investigated. In this field, some ensemble methods
such as LGBM have shown promising results. Only a few papers have investigated
techniques such as TF and AML, techniques that could be of great usefulness in future
applications, especially thinking on real-time applications. Regarding anomalies detection
and fault analysis, the reviewed models employ electrical features and/or images (usually
IFR or EL). Typically, SNNs, mainly MLP, RBF and ELMs, are employed in the first case
while, as could be expected, DNNs, mainly CNNs, are more common for the detection of
permanently visible faults. The models tested in the FDD field employ for most cases a
simulated dataset and the more frequent faults taken into consideration are short circuits
and partial shading. Regarding the metrics used to evaluate models for FDD, only a few
papers correctly employ a broader range of metrics (e.g., F1, balanced accuracy and MCC)
apart from the common accuracy that is adequate only for a balanced dataset. Transfer
Learning is a useful technique that probably will be more and more adopted in FDD,
at least for models employing images as features. In this field it would be advisable to
promote sharing of public datasets (a common repository for images related to faults in PV,
IFR and EL images). Ensemble models such as RF have seen only a few applications in the
field of FDD but seem very promising. For all fields here analyzed, and more generally
for research papers, it would be desirable to promote reproducible research results using
technologies based on containers as Docker.
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Nomenclature

AI Artificial Intelligence
ABC Artificial Bee Colony
ACO Ant Colony Optimization
AD Anomaly Detection
AM Attention Mechanism
AML Auto-ML
AnEn Analog Ensemble
ANFIS Adaptive Neuro-Fuzzy Inference Systems
ANN Artificial Neural Networks
ARD Automatic Relevance Determination
BE Bagging Ensemble
BIPV/T Building-integrated PV/T
BPNN Backpropagation NN
BR Bayesian Regression
BSM Back-stepping Sliding Mode
BT Bagged Tree
BTSMC Backstep-ping terminal sliding mode control
CEEMD Complementary Ensemble Empirical Mode Decomposition
CGSVM coarse-Gaussian SVM
CI Confidence Interval
CNN Convolutional Neural Network
CPRS Continuous Ranked Probability Score
CPV Concentrating PV
DDPG Deep Deterministic Policy Gradient
DELM Deep Extreme LM
DIFPSO Dynamic Factor PSO
DL Deep Learning
DNN Deep Neural learning/Network
DQN Deep Q-network
DQR Direct Quantile Regression
DT Decision Tree
DWT Discrete Wavelet Transform
ECBO Enhanced Colliding Bodies Optimization
EI Error Indicator
EL Electroluminescence
ELM Extreme Learning Machines
EM Ensemble Methods
EMD Empirical Mode Decomposition
E-MVFTS Evolving Multivariate Fuzzy Time Series
FD Fault Detection
FDD Fault Detection and Diagnosis
FFNN Feedforward Neural Network
FL Fuzzy Logic
FLC Fuzzy Logic Control
FNN Fuzzy neural network
GA Genetic Algorithm
GAN Generative Adversarial Network
GFF Generalized Feed-Forward
GLLR Generalized Local Log-likelihood Ratio
GMPP Global MPP
GPR Gaussian Process Regression
GRNN Generalized Regression Neural Network
GRU Gated Recurrent Unit
HCPV High CPV
HIF High Impedance Fault
IFR Infrared
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IGIVA Improved Grey Ideal Value Approximation
IMPP Current at MPP
INC Incremental Conductance
IR Infrared
IRT Infrared Thermography
IS Isolation Forest
ISC SC current
KDE Kernel Density Estimation
KNN k-Nearest Neighbour
LDA Linear Discriminant Analysis
LG Line to Ground fault
LL Line-to-Line
LLG Double Line to Ground fault
LLLG Three-phase fault
LOF Local Outlier Factor
LSSVM Least-squares SVM
LSTM Long short-term memory
MAE Mean Absolute Error
MAPE Mean Average Percentage Error
MCC Matthews Correlation Coefficient
ME Mean Error
ML Machine Learning
MLP Multilayer Perceptron
MLR Multivariate Linear Regression
MPE Mean Percentage Error
MPP Maximum Power Point
MSE Mean Square Error
MVFTS Multivariate Fuzzy Time Series
NBC Naïve Bayes classifier
NNQF Nearest Neighbours Quantile Filter
NWP Numerical Weather Prediction
OC Open Circuit
P&O Perturb and Observe
PDF Probability Density Function
PDPP Partial Daily Pattern Prediction
PDPP Partial Daily Pattern Prediction
PEC Performance Evaluation Criteria
PI Prediction Interval
PINAW Prediction Interval Normalized Average Width
PS Partial Shading
PSC PS Conditions
PSO Particle Swarm Optimization
PV/T PV/Thermal
QCNN Quantile CNN
QDA Quadratic Discriminant Analysis
QELM Quantile Extreme Learning Model
QESN Quantile Echo State Network
QI1 quality indicator
QN Q-Network
QR Quantile Regression
QRF Quantile Regression Forest
RBF Radial Basis Function
RF Random Forest
RGAN Recurrent Generative Adversarial Network
RL Reinforcement Learning
RMSE Root Mean Square Error
RMSQP Root Mean Squared Percentage Error
RT Random Tree
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SC Short Circuit
SI Swarm Intelligence
SMBO Sequential Model-Based Optimization
SMC Sequential Monte–Carlo
SMO Sequential Minimal Optimization
SNN Shallow Neural Networks
SOFM Self-organization feature map
SOL-LSTM Share-Optimized-Layer LSTM
SVM Support-Vector Machines
SVR Support Vector Regression
TCM Time Correlation Modification
TCM Time Correlation Modification model
TEDA Typicality and Eccentricity Data Analytics
TEDA Typicality and Eccentricity Data Analytics
TL Transfer Learning
TRL Transfer Reinforcement Learning
TS-SOM Tree-Structured Self-Organized Map
UAV Unmanned Aerial Vehicle
VMD Variational Mode Decomposition
VMPP Voltage at MPP
VOC OC voltage
WK-NN Weighted K-Nearest Neighbors
WPD Wavelet Packet Decomposition
WPT Wavelets Packet Transform
WT Wavelet Transform

Greek symbols
σ Standard Deviation error
η Overall power tracking efficiency
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