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Abstract: Extracellular vesicles (EVs) are important players in the communication between different
kinds of cells by delivering their content, consisting of different types of RNA, proteins, bioactive
lipids, or signaling nucleotides, into their target cells. Several types of EVs are distinguished: (1) exo-
somes with sizes from 30 to 150 nm originate from the endosomal pathway and form intracellular
multivesicular bodies (MVBs), which fuse to the plasma membrane before their secretion. (2) EVs
with sizes ranging from 100 to 1000 nm in diameter are formed during cell surface budding. (3) Apop-
totic bodies with diameters from 500 to 2000 nm are released from blebbing of the cell membrane
of apoptotic cells. It is well established that various RNA molecules such as coding RNAs and
noncoding RNAs (long noncoding RNAs, microRNAs, circular RNAs, and rRNAs) are present in
different amounts in EVs depending on the type and origin of EV. Here we will give an overview of
methods to isolate different types of EVs and to quantify and characterize different RNA species.

Keywords: extracellular vesicles; exosomes; extracellular RNA

1. Introduction

Extracellular vesicles (EVs) are a heterogenous family of membrane-limited vesicles,
which are distinguished by their different origins and sizes. EVs released from viable
cells are microvesicles (MVs or ectosomes), formed by plasma membrane budding with
sizes from 100 to 1000 nm and exosomes originating from the endosomal compartment by
fusion of multivesicular bodies with the plasma membrane with a size range from 30 to
150 nm. Apoptotic bodies and vesicles are produced during apoptotic cell death and have
diameters from 500 to 2000 nm [1,2]. However, there is some controversy regarding the
nomenclature and sizes of different types of vesicles, and one should be careful in using
size alone in defining different types of vesicles [3,4]. In the future, other criteria such as
mode of biogenesis or the method of isolation will be important features to characterize
different kinds of vesicles [5].

The release of EVs was first described as a disposal mechanism to discard unwanted
materials from cells. Later studies have shown that EVs are surrounded by a lipid bilayer
and shuttle various biological components such as proteins, different types of nucleic acid,
and lipids between secreting and recipient cells to promote angiogenic, proinflammatory,
and immune responses in target cells [6–10].

The content of EVs and their biological function depends on the cell of origin. Vesi-
cles derived from B-cells and dendritic cells have immune-stimulatory and antitumor
effects in vivo, whereas tumor-cell-derived EVs stimulate tumor growth and angiogene-
sis, and platelet-derived EVs promote tumor progression and metastasis of lung cancer
cells [11–13]. Vesicles have been isolated from diverse bodily fluids, including blood, urine,
ascites fluid, and cerebrospinal fluid [14–17]. Because EVs get their content from their
origin cells and, additionally, the number of EVs increase in different human diseases,
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EVs in blood are currently discussed as novel biomarkers. For example, levels of EVs
containing tumor-associated proteins increase in blood samples of cancer patients and
correlate with the clinical outcome [18,19]. Moreover, EVs are not only important for
diagnostic but also for therapeutic purposes by using exosome or exosome mimetics, such
as liposomes, for targeted drug delivery by loading a drug or a detectable agent into
appropriate vesicles [20–22]. Circulating vesicles are composed of different types of EVs.
Accordingly, it was demonstrated that a single cell type can release both exosomes and
MVs [23,24].

However, currently available purification methods do not allow fully discriminating
between these different types of EVs, and a major ongoing challenge is to establish methods
that will allow clearly distinguishing between exosomes and MVs.

Extracellular RNA (exRNA) has been identified as a prothrombotic and proinflamma-
tory factor, which is released from cells under pathological conditions by active and passive
processes [25–32]. exRNA is protected from ribonucleolytic digestion within EVs and other
vehicles such as lipoproteins, ribonucleoprotein particles, or protein complexes [8,33–35].
In this review, we will focus on the isolation and characterization of EVs and types of RNA
identified in different types of EVs.

2. Isolation and Characterization of EVs

Methods employed so far for the isolation of EVs from blood or cell culture super-
natants are mostly based on several centrifugation steps, size exclusion chromatography,
filtration, precipitation, or the use of magnetic or agarose beads. In most studies, EVs are
isolated from the supernatants of cultured cells or from blood samples by performing differ-
ential centrifugation steps, whereby at centrifugal forces of 200–1500× g, cells and cellular
debris of 10,000–20,000× g vesicles with a size between 100 and 800 nm (microvesicles)
and between 100,000× and 200,000× g, vesicles with a diameter <100 nm (exosomes) were
pelleted [36]. Additionally, filtration has been used to remove larger vesicles from smaller
ones [36]. Furthermore, the presence of characteristic surface proteins on certain EVs is
eligible for immunoaffinity isolation or magnetic activating cell sorting (MACS) [37–39].
For the isolation of exosomes, the highest yields were produced by using the method
of density gradient ultracentrifugation in comparison to the method using differential
ultracentrifugation [40]. However, stepped ultracentrifugation procedures cannot achieve
absolute separation by size because sedimentation also depends on other parameters such
as the type of anticoagulant used, the centrifugal speed to yield platelet-free plasma, the
sample viscosity, or the type of rotor used [4,41]. A variety of further methods to enrich EVs
has been described by groups of the Extracellular RNA Communication Consortium, which
include methods of density gradients, precipitation, and filtration such as membrane and
gel-filtration-based methods. Using syringe filters with successively smaller pore sizes, EVs
of different sizes from cell culture supernatants or biofluids were separated, whereas the
method of gel filtration or size exclusion chromatography is based on columns containing
a solid phase consisting of porous beads that retains smaller molecules whereby larger
molecules cannot enter the pores and are eluted from the column quickly [42]. The method
of affinity purification, whereby the solid phase is coupled to specific antigens or other
molecules present on the surface of EVs, is mostly used to isolate EVs that express disease-
specific antigens [4,42,43]. Furthermore, a number of commercially available kits were
developed to isolate exosomes and MVs, but these kits often fail to distinguish between
EVs and other membrane-free macromolecular particles such as protein aggregates [1].

Isolated MVs were characterized by several methods that were reviewed by
Witwer et al. [4]. Mostly, EVs isolated by differential centrifugation were subsequently stud-
ied by flow cytometry [44], whereby scattering flow cytometry requires bead calibration
with polystyrene/latex microspheres of known size. However, the detection limit of this
method is greater than or equal to 300 nm [45]. Fluorescence-activated cell sorting (FACS)
allows classification and specific sorting based on the fluorescence signal of EVs. Although
special methods of flow cytometry have been described, the limitation of flow cytometry
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is its ability to sort EVs <130 nm [5]. The gold-standard method to determine the size of
vesicles remains transmission electron microscopy (TEM), which has proven very useful in
EV research, as it detects not only the size but also the morphology of isolated vesicles [41].
Furthermore, membrane-surrounded EVs can be recognized and distinguished from other
particles such as ribonucleoprotein particles (RNPs) or lipoproteins [1,4]. In general, con-
centrated EV suspensions are applied to fixed grids, and membrane-surrounded vesicles
are recognized by staining with heavy-metal stains such as osmium tetroxide or uranyl
acetate [4]. TEM is frequently combined with the use of specific antibodies coupled to
nanogold particles for further specification of isolated EVs. Atomic force microscopy is
used to further study EV morphology, whereby a mechanical cantilever is passed over
a surface, and the presence of surface structures, such as surface-bound particles, can
be detected [46]. Furthermore, nanoparticle tracking analysis is useful to determine the
concentration and size of vesicles by using a laser beam, which is scattered by particles in
the sample [47]. Further characterization of EVs relies on different protein components of
different types of EVs and includes biochemical methods such as immunoblotting, Western
blot analysis, proteomic analysis, or imaging techniques. For example, exosomes contain
endosome-associated proteins, including tetraspanins such as CD9, CD63, CD81, or CD82,
which have been used to identify these vesicles [48,49]. However, new data indicate that
some proteins regarded as exosome markers (e.g., heat-shock proteins, flotillins, and ma-
jor histocompatibility complex) are present in all different EV types, and additionally, a
number of subpopulations, especially of exosomes, with diverse morphology and distinct
biological functions, have been described [50–54].

In summary, most of the strategies used for the isolation of EVs are still under devel-
opment. Fractions obtained after differential centrifugation steps always contain proteins
characteristic of other fractions [43]. Furthermore, EVs are rapidly cleared from peripheral
blood, and thus strategies need to be developed to stabilize them [55]. The number of EVs
isolated from plasma is also dependent on the type of anticoagulant used for the generation
of plasma samples [4,42]. Lipoproteins, microbes, microsomes, or protein aggregates may
be copurified in vesicle preparations.

3. Characterization of RNA in Extracellular Vesicles

EVs contain various biotypes of RNA that represent a selected portion of the RNA
content of the source cell, including noncoding RNA (ncRNA) such as microRNA (miRNA),
fragmented and intact mRNA, ribosomal RNA (rRNA), and long noncoding RNA (lncRNA).

Several reports have demonstrated that genetic exchange of miRNA or mRNA between
cells can be accomplished through microvesicle- or exosome-mediated transfer [34,56].
It was reported that circulating EVs in the plasma are mostly derived from platelets
and contain mainly miRNAs, whereby many of these miRNAs are predicted to regulate
hematopoiesis and cellular differentiation [57]. Furthermore, endothelial progenitor cell-
derived microvesicles activate an angiogenic program in endothelial cells by the horizontal
transfer of mRNA [23]. Tumor-derived MVs transfer mRNA to monocytes to activate these
cells to produce cytokines, which are involved to enhance tumor growth and dampen the
immune response [58]. Accordingly, glioblastoma tumor cells release exosomes containing
mRNA, miRNA, but no rRNA, and angiogenic proteins and are able to deliver genetic
information to recipient cells in the tumor environment [8]. Additionally, exosomes and
special types and sequences of extracellular MV-associated RNAs were useful biomarkers,
for example for monitoring prostate cancer invasion and metastasis [8,59,60].

Cellular mechanisms involved in the package of different types of RNA into different
types of EVs and their regulated uptake into specific target molecules are still under
investigation [61]. Differences in the EV-RNA versus the intracellular RNA profile were
described, and it has been suggested that several EV-sorting mechanisms such as different
stabilities of special RNA species, which might result from the presence of RNA-binding
proteins or special RNases in EVs, must be involved [8,59,62–65]. Furthermore, special
nuclear ribonucleoproteins were suggested to control the sorting of miRNAs into exosomes



Appl. Sci. 2021, 11, 7520 4 of 9

through binding to specific motifs [66]. RNA loading in EVs further depends on cell
activation or pathological conditions. For instance, it is well established that stressors such
as hypoxia alter the release of EVs and the RNA profile in EVs released in comparison to
the donor cells [67].

RNA concentrations in biofluids are very low, 20–50 ng/mL of total plasma, and
5 ng/mL of EV-associated RNA, and several methods have been attempted aiming to
quantify and identify different kinds of extracellular RNA in EVs [42,68].

As expected, the quantity and quality of EV-RNA depend on the method used for EV
isolation [40,43,69,70]. Furthermore, the method used for RNA isolation also has an influ-
ence on the yield and quality of RNA [42]. In most studies, quantification of isolated RNA
is performed using NanoDrop, the Qubit RNA assay, or a bioanalyzer (Agilent), which
differ in their detection limit [43]. Only the bioanalyzer, which has the lowest range limit of
50 pg/mL, is able to evaluate size distributions of the RNA molecules additionally. Quanti-
tative real-time polymerase chain reaction (qRT-PCR) is another valuable quantification
method [42]. Further molecular analysis of exRNA includes methods such as NanoString,
microarray, and next-generation sequencing (NGS) [42]. For further quantitative profiling
of small RNAs such as miRNAs, piwi-interacting RNAs (piRNAs), or small nucleolar (sno)
RNAs, small RNA sequencing using RNA spike-in molecules is used [71,72].

So far, most current studies have used microarray analysis and qRT-PCR to examine
EV-RNA with a focus on miRNAs. For example, exosomes have been found to contain
mainly functional mRNAs and miRNAs [34]. Because unknown miRNAs or other RNA
species are often undetectable, a sequencing-based RNA profiling analysis from exosomes
isolated from blood samples demonstrated that plasma-derived exosomes not only contain
miRNA and mRNA but also a large variety of other small noncoding RNA species, in-
cluding RNA transcript, repeat sequences, structural RNAs, and tRNA fragments [73–75].
Furthermore, deep sequencing or RNA in exosomes from the colon cancer cell line iden-
tified special miRNA sequences enriched in EVs compared to the parent cancer cell [76].
In future, the use of deep sequencing will ensure the characterization of the whole tran-
scriptome of blood-derived exosomes. However, the distribution of different kinds of
RNA in EVs is highly dependent on the method or kit used for the isolation of EVs,
and the co-precipitation of non-EV microparticles or RNA-binding proteins should be
excluded [74].

Size filtration of conditioned medium from glioblastoma stem-like cell cultures reveals that
mRNA is enriched in MVs, whereas exosomes have the highest fraction of miRNA [42,72]. Using
the method of differential centrifugation, the RNA profile showed that rRNA was preferred
detectable in apoptotic bodies and smaller RNAs, but no rRNAs were present in exosomes.
In these studies, detection, quality, yield, and size of vesicular RNAs were analyzed
using capillary electrophoresis by the bioanalyzer (Agilent) [48]. Accordingly, rRNA and
additionally DNA are mainly present in microparticles from cells undergoing apoptosis
in vitro [77,78]. Table 1 summarizes types of RNA isolated from different EV populations.

Type of RNA in EVs is furthermore dependent on the source used for EV isolation.
Subpopulations of EVs isolated from metastatic tumor tissue showed distinct size and
morphology and differed in their RNA cargo [79]. Type of RNA identified in different
EVs isolated from cell culture supernatants was not only dependent on the type of donor
cell but also on the type of stimulation [48,80]. After culturing the mast cell line HMC-1
in normal growth medium, MVs isolated from supernatants did not contain rRNA, but
when HMC-1 was treated with degranulating agents such as ionomycin or complement
factor in serum-free medium, MVs contained high amounts of rRNA and fewer small
RNAs [48,80]. Other studies confirmed that the type of RNA, present in EVs isolated from
cell-culture-conditioned medium, is dependent on culture conditions. For example, bovine
serum also contains RNA in EVs, and methods to remove exRNA from bovine serum
through ultracentrifugation or affinity purification are only partly successful so far [81,82].
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Table 1. Type of RNA in different EVs. Exosomes (30–150 nm) originate from the endosomal pathway by fusion of
multivesicular bodies (MVBs) with the plasma membrane, microvesicles (MVs, 100–1000 nm) are formed by cell surface
membrane blebbing, and apoptotic bodies (500–2000 nm) are vesicles released from apoptotic cells.

Type of EV Purification of EVs Type of RNADNA Characterization of
RNA References
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In summary, many studies failed to demonstrate whether identified extracellular
RNAs were associated with EVs or rather with RNA–protein complexes, viral particles,
RNPs, and lipoproteins (HDL and LDL) that might have been co-isolated with EVs [1,43].
However, in this regard, it has been reported that EVs isolated by ultracentrifugation may
become aggregated and are contaminated by nonvesicular macromolecules. Additional
purification techniques such as high-resolution density gradient fractionation and direct im-
munoaffinity capture techniques were used to characterize EVs and nonvesicular material
precisely [83]. DNA known to be present in several biological fluids was also demonstrated
to be present in EV-RNA preparations and thus can interfere with the downstream analysis
of RNA [84]. rRNA might also become associated with EVs during centrifugation steps.
This might explain the variable presence of rRNA in EVs described in the literature, and
the question of whether rRNAs are naturally associated with EVs or if they are impurities
or contaminants is still to be discussed [43]. To remove outside bound DNA and RNA and
destroy protein complexes such as RNPs, EVs that will be used for the isolation of RNA
have to be pretreated with DNase, RNase, and proteinase [43]. Small RNA-seq analysis
has indicated that EVs are associated with various fragments from coding and noncoding
RNA, including rRNA, tRNA, snRNA, lncRNA, and vault RNA [65,75,85]. Currently, there
is no knowledge whether these fragments are artifacts produced during the isolation or
are formed by specific processing steps either in the cytoplasm of donor cells or inside the
vesicles [86].
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4. Conclusions

EVs are identified as a very important tool in almost all biological processes in the
body by facilitating the cross-talk between different cells, resulting in maintaining tissue
homeostasis and angiogenesis and in pathologies such as cancerogenesis, chronic inflam-
mation, or atherosclerosis. So far, different methods have been used to isolate EVs and to
characterize RNA inside these vesicles. The development of standardized approaches is
needed to obtain reproducible and comparable results that will allow the implementation
of EVs as clinical biomarkers or their usefulness as drug delivery devices.
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