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Abstract: Trajectory planning for a redundant manipulator is a classic problem. However, because it
is difficult to precisely evaluate its maximum performance, an optimization method has been typically
used. In this study, a novel time-optimal trajectory planning method for a redundant manipulator
is proposed using the model predictive control (MPC) augmented by the maximum performance
evaluation (MPE). First, the optimization formulation is expressed to evaluate the maximum perfor-
mance of the distributed-actuation-mechanism-based three-revolute-joint manipulator (DAM-3R),
which has a high level of redundancy, and the joint-actuation-mechanism-based three-revolute-joint
manipulator (JAM-3R) for comparison. The optimization is conducted by linking the multibody
dynamics analysis module and the optimization module. For time-optimal trajectory planning, the
MPC problem is then formulated using mathematical performance models for the DAM-3R and
JAM-3R based on the MPE results, which are considered as the upper bound of the manipulator
performance at each end-effector position. To verify the proposed method, a point-to-point task
with no predefined path is investigated. The simulation results show that the working time of the
DAM-3R is 19.1% less than that of the JAM-3R. Moreover, the energy consumption for the DAM-3R is
45.0% lower than that for the JAM-3R by optimally utilizing the higher redundancy of the DAM-3R.
Thus, it can be concluded that the proposed method is effective for time-optimal trajectory planning
for redundant manipulators.

Keywords: time-optimal trajectory planning; distributed actuation mechanism; maximum perfor-
mance evaluation; model predictive control

1. Introduction

Trajectory planning is an ever-challenging issue in robotics. A typical category of
trajectory planning problems is time-optimal trajectory planning [1–3]. Another popular
category is to minimize energy consumption [4–8]. In addition, limiting the joint speed
and acceleration [9] and minimizing the actuation force [10], joint torques [11], and joint
wear [12] have been widely studied. However, most studies have been limitedly conducted
under a predefined fixed path.

To overcome the above limitation, model predictive control (MPC) has been re-
cently used to solve time-optimal trajectory problems with given initial and end points
only [13,14]. This approach can create both the optimal path (i.e., the locus of points in
the task space) and the optimal trajectory (i.e., a path on which a timing law is specified)
for a minimal operation time. Note that this is essential for point-to-point motion control
with no predefined path. However, implementing MPC requires an explicit mathematical
model that can precisely express the dynamic performance of the system. Thus, there
exists a technical hurdle to implementing MPC-based trajectory planning for redundant
manipulators because it is difficult to determine their mathematical performance model.
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In robotics, redundant manipulators are widely used because they provide an in-
creased level of dexterity by virtue of having more degrees of freedom (DOFs) in the joint
space than those required to execute a given task. The additional DOFs in the joint space
can be used to avoid obstacles [15,16], joint limits [17], and collision with other robots [18],
and also to minimize joint velocity and acceleration [19] and joint torque [20]. They also
provide an advantage in performing maintenance and inspection tasks [21]. Among vari-
ous redundant manipulators, the distributed actuation mechanism (DAM) can enhance
the fingertip force through relocating a redundant actuation point of a slider along the
link without changing the posture [22,23]. However, such redundancy inevitably leads
to difficulty in precisely evaluating its performance and thereby determining an optimal
trajectory for a given task.

It is interesting to note that the bioinspired variable gearing of the three-link DAM
has been recently investigated to maximize the manipulation performance [24]. Because
the positions of the six redundant sliders, which actuate three joints, function as a gear
ratio, the DAM can achieve better performance than the power-equivalent joint actuation
mechanism (JAM). A gradient-based optimization algorithm was implemented to precisely
conduct maximum performance evaluation (MPE) under redundant DOFs.

This paper proposes a novel time-optimal trajectory planning method for redun-
dant manipulators by conducting MPC using the MPE results. First, the DAM-based
three-revolute-joint manipulator (DAM-3R) was analyzed to obtain the MPE results us-
ing gradient-based optimization. The MPE results were used to construct an explicit
performance model for the redundant DAM-3R as the upper bound of the manipulator
performance at each end-effector position. Then, MPC was conducted to determine a time-
optimal trajectory using the explicit performance model. For comparison, the JAM-based
three-revolute-joint manipulator (JAM-3R), which is also a redundant manipulator, was
constructed and analyzed to have equivalent power and geometric specifications.

This study is organized as follows. In Section 2, based on a brief explanation on the
concept of the MPE, the MPE results for the DAM-3R and JAM-3R are obtained using
gradient-based optimization. Section 3 describes the MPC formulation to determine
a time-optimal trajectory for the DAM-3R. The JAM-3R is compared to demonstrate the
validity and significance of the proposed method. The conclusions follow in Section 4.

2. Maximum Performance Evaluation
2.1. Optimization Formulation

The dexterity motion of a human finger is not achieved by lumped actuation, but by
spatially distributed actuation of opponens pollicis (Figure 1a). Based on the understanding
of such spatially distributed actuation, the DAM was designed to actuate one joint by
thrusting two sliders along a link [22] (Figure 1b)). Because its joint angular velocity and
torque vary depending on the position of the sliders (i.e., the application point of force),
the DAM is a redundantly actuated system.
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In principle, the optimization formulation can be expressed to precisely evaluate the
maximum performance of a manipulator [25], as follows:

Find x1, x2, · · · , and xn

To maxmize f (x) =|ve(x)|
Subject to h = dk · ve =|dk||ve| k = 1, · · · , K

gν(x) ≤ 0 ν = 1, · · · , N

x(l)i ≤ xi ≤ x(u)i i = 1, · · · , n

(1)

where the superscripts (l) and (u) denote the lower and upper bounds of the design variable
xi; the objective function f is the norm of the end-effector velocity; h is the equality constraint
that matches the direction of the end-effector velocity ve with the base direction dk; and gν

is the inequality constraint that represents motor performance.
Figure 2 shows a DAM-based three-revolute-joint manipulator (DAM-3R), which was

investigated in this study. The position and velocity of the sliders can be treated as control
variables that determine the end-effector velocity, ve= (vx, vy). For the DAM-3R, the design
variable vector becomes x = [θ1, s1, s2, s3, ṡ1, ṡ2, ṡ3, ṡ1

b, ṡ2
b, ṡ3

b], where θ1 is the first joint
angle; s1, s2, and s3 are the positions of the front sliders; ṡ1, ṡ2, and ṡ3 are the thrusting
speeds of the front sliders; and ṡ1

b, ṡ2
b, and ṡ3

b are the thrusting speeds of the back sliders.
In this study, the base direction dk was defined as follows:

dk = [cos α, sin α]T (2)

where α is at intervals of 22.5 degrees from 0 to 360 degrees. This generated a total of
16 base directions (i.e., K = 16 in (1)). Because the speed and force of the sliders must operate
within motor characteristics curves in four quadrants, gν was formulated as follows:

g1 = Fj ± Fmax.
smax

.
sj ± Fmax ≤ 0 j = 1, 2, 3

g2 = Fb
j ±

Fmax.
smax

.
sb

j ± Fmax ≤ 0 j = 1, 2, 3
(3)

where the subscript j indicates the joint number; Fj and Fj
b are the thrusting force of the

front slider and back slider, respectively; Fmax is the maximum thrusting force of the front
and back sliders; and ṡmax is the maximum thrusting speed of the front and back sliders. In
this study, gravitational force was applied as an external force to reflect inertia loads.

For comparison, a joint actuation mechanism (JAM)-based three-revolute-joint ma-
nipulator (JAM-3R) was also considered with power-equivalent motors and the same
geometric specifications (Figure 3 and Table 1). When the end-effector is free to rotate, the
first joint angle θ1 becomes a control variable. Accordingly, the JAM-3R is also a redundant
manipulator, but it has less redundancy than the DAM-3R. We note that, for both the
DAM-3R and JAM-3R, the motors for Joint 1 were set to have a higher gear ratio than
those for Joints 2 and 3 (Tables 2 and 3) because Joint 1 (Figure 2) requires a larger torque
due to its higher moment of inertia. The same optimization formulation except for the
design variables and motor characteristics can be used for the JAM-3R, as expressed in
(1). Here, the design variable vector became x = [θ1,

.
θ1,

.
θ2,

.
θ3], where

.
θ1,

.
θ2, and

.
θ3 are the

joint speeds. To express lumped joint actuation, the inequality constraint function g, which
represents the motor characteristics curve, was modified as follows:

g = τj ±
τmax
.
θmax

.
θ j ± τmax ≤ 0 j = 1, 2, 3 (4)

where τj is the joint torque; τmax is the maximum joint torque; and
.
θmax is the maximum

joint speed.
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Figure 2. A three-link planar manipulator equipped with the distributed actuation mechanism under
the effects of gravity [24].
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Table 1. Specifications of the commercial motors selected for the DAM-3R and JAM-3R.

DAM-3R JAM-3R

Motor

Model PGM12-1230 DCX 16 S

ω0 [rpm] 12,500 6340
τs [mNm] 3.12 12.5

ω–τ area [W] 2.04 4.15
Weight [g] 13 26
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Table 2. Design and control parameters of the DAM-3R.

Design
Variables

Joint 1 Joint 2 Joint 3

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

θ1 [◦] θ1
(l) θ1

(u) θ2
(l) θ2

(u) θ3
(l) θ3

(u)

sj [mm] 37.0 77.0 37.0 77.0 37.0 77.0
ṡj [mm/s] −1.8 7.1 −7.1 7.1 −7.1 7.1
ṡj

b [mm/s] −1.8 7.1 −7.1 7.1 −7.1 7.1

Design
Constants Joint 1 Joint 2 Joint 3

Lj [mm] 114.0 114.0 129.0
cj [mm] 80.0 80.0 80.0
Fmax [N] 195.9 55.8 55.8

ṡmax [mm/s] 1.8 7.1 7.1
M 16

Table 3. Design and control parameters of the JAM-3R.

Design
Variables

Joint 1 Joint 2 Joint 3

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

θ1 [◦] θ1
(l) θ1

(u) θ2
(l) θ2

(u) θ3
(l) θ3

(u)
.
θj [◦/s] −3.3 3.3 −13.2 13.2 −13.2 13.2

Design
Constants Joint 1 Joint 2 Joint 3

Lj [mm] 114.0 114.0 129.0
τmax [Nm] 12.3 3.5 3.5
.
θmax [◦/s] 3.3 13.2 13.2

M 16

2.2. Numerical Results

In this study, RecurDyn (FunctionBay, Inc., Seongnam, Korea, commercial multibody
dynamics software) was used to evaluate the dynamic behavior of the DAM-3R and JAM-
3R. To solve (1), the optimization framework was constructed based on the analysis module
(RecurDyn) and the optimization module (in-house code written in MATLAB) (Figure 4).
As shown in Figure 4, RecurDyn imports the CAD model of a target manipulator to create
an initial model for the multibody dynamics analysis. The updated design variables are
transferred to RecurDyn to translate and/or rotate the model. Then, RecurDyn performs
multibody dynamics analysis and sends the simulation results to the optimization module.
The optimization module evaluates the objective and constraint function values (end-
effector velocity and thrusting force, respectively) and then calculates the sensitivity of each
design variable by using the finite difference method (FDM). If the convergence criterion is
satisfied, the optimization process is terminated. Otherwise, the above process continues.
Sequential quadratic programming in the MATLAB optimization toolbox [26] was selected
as the optimization algorithm. The computing environment for the simulation was as
follows: AMD Ryzen 7 5800X 8-Core Processor (CPU), NVIDIA GeForce GTX 1080 Ti
(GPU), and DDR4 64GB (RAM). The parameters used in the simulation are summarized in
Tables 2 and 3.
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optimization module (MATLAB).

The MPE results at the end-effector position pe= (200 mm, −150 mm) can be repre-
sented in the form of polygons (the so-called allowable polygons in [25]), as shown in
Figure 5. The performance results of the DAM-3R and JAM-3R are expressed in solid
and dotted lines, respectively. It can be clearly seen that the end-effector velocity of the
DAM-3R was greater for all 16 base directions than that of the JAM-3R with no payload.
As explained in our previous work [24], this is due to an appropriate change in the gear
ratio depending on the position of the sliders.
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Figure 5. The maximum end-effector velocity evaluated for the DAM-3R (red solid line) and JAM-3R
(magenta dotted line) at the end-effector position (200 mm, −150 mm).

Figure 6 shows the MPE results for both the DAM-3R and JAM-3R at nine target
positions equidistantly distributed in the workspace (Figure 6). Although the DAM-3R
used a motor with 1.7% less power (Table 1), the maximum end-effector velocity was up to
31.9% higher at (200 mm, −150 mm).
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The MPE results obtained above can be considered as the upper bounds of the maxi-
mum end-effector velocity at each end-effector position. Under such velocity constraints,
the dynamics of the end-effector position can be expressed by using a first-order model
in MPC (see Section 3.2 for more details), which can significantly simplify the MPC for-
mulation for time-optimal trajectory planning without a significant loss of accuracy. We
note that it is difficult to precisely evaluate the maximum performance of a redundant
manipulator such as a DAM without the aid of the MPE.

3. Time-Optimal Trajectory Planning Based on the MPE and MPC

In an ideal case, the allowable velocity polygon at each end-effector position can
be expressed in the form of piecewise linear functions, as shown in Figure 6. However,
such polygons should be formulated at all positions in the workspace to conduct MPC. To
overcome the above computing issue, it is necessary to approximate the allowable velocity
polygon in the entire workspace in a more efficient way.

3.1. Approximation of the MPE Results

For practical purposes, the maximum end-effector velocity polygons at the end-effector
position pe can be approximated as an ellipse, as follows:

V(ve, pe) =
(vx cos c+vy sin c)

2

a2 +

(vx sin c−vy cos c)
2

b2 − 1 = 0,
(5)

where a and b are the radii of the major and minor axes of the ellipse, respectively, and c
is the angle between the major axis and vx-axis. Note that the parameters a, b, and c are
functions of pe because the shape of an ellipse varies depending on the end-effector position
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pe, as shown in Figure 5. After these parameters (a, b, and c) were determined at the nine
target positions by using the least squares method, second-order polynomials for a, b, and c
were constructed to cover the entire workspace via the least squares method. Consequently,
the MPE results were approximated by a mathematical form for the end-effector velocity,
i.e., V(ve, pe) ≤ 0.

3.2. Problem Formulation

Time-optimal trajectory planning can be formulated in the MPC framework [13]
as follows:

Find ∆T(l) and ve(l) for l = 0, 1, · · · , Np − 1

to minimize
Np−1

∑
l=0

∆T(l)

subject to pe(l + 1) = pe(l) + ∆T(l)ve(l)

V(ve(l), pe(l)) ≤ 0

∆T(l) > 0

pe(Np) = ptar
e

(6)

where l denotes a time step; ∆T(l) denotes the time interval of each time step; Np denotes the
prediction horizon length; and ptar

e denotes the target end point of the end-effector position.
By solving (6), the optimal trajectories of ∆T and ve (i.e., ∆T * and ve

*) can be obtained
to approach the target ptar

e in minimum time within the prediction horizon Np. Only the
optimal velocity at the first time step (i.e., ve

*(0)) was used to calculate the reference pe
* for

the end-effector position controller, as follows:

p∗e ← p∗e + Tsv∗e (0), (7)

where Ts is the control period of the end-effector position controller. In [7], the initial values
of pe

* were selected based on the MPE results of the DAM-3R and JAM-3R. Ts was used
instead of the optimal time interval ∆T*(0), which could be greater than Ts, so that the
reference pe

* could be tracked by the controller at each control step.
It should again be noted that the time-optimal MPC formulation in (6) requires

constraints on the maximum performance of the end-effector (i.e., V(·) ≤ 0). It is practically
difficult to solve such an MPC problem without having explicit and accurate performance
models of the manipulator. In this study, the mathematical performance models for the
DAM-3R and JAM-3R were generated based on the MPE results. We note that, in this study,
the dynamics of the end-effector position were simplified by using a first-order model
in the MPC (pe(l + 1) = pe(l) + ∆T(l)ve(l) in (6)) thanks to the MPE-based performance
models (V(ve(l), pe(l)) ≤ 0 in (6)). This led to a fast and accurate simulation.

3.3. Numerical Results

A point-to-point task (start position p4 and end position p6 in Figure 6) was set
with no predetermined path. To solve (6) for the DAM-3R and JAM-3R, a simulation
framework was constructed using MATLAB Simulink for time-optimal trajectory planning
and RecurDyn for multibody dynamics analysis (Figure 7). The time-optimal MPC was
solved using the Model Predictive Control Toolbox in MATLAB 2020a [27]. The prediction
horizon length Np was 10, and the control period Ts was 1 ms.

Figure 8 shows the time-optimal trajectory results for the end-effector reference posi-
tion (dashed line) and actually controlled position through the controller (solid line). The
arrival time of the JAM-3R was 1.57 s, whereas that of the DAM-3R was 1.27 s (19.1% faster).
It is interesting to note that the optimal trajectory in the y-axis for the DAM-3R and JAM-
3R slightly descended by 6.2 mm and 6.1 mm, respectively, at the center of the path,
p5 = (150 mm, −150 mm). This is because the direction of the time-optimal trajectory was
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well aligned with that of the maximum allowable velocities at p4, p5, and p6 (yellow
highlighted arrows in Figure 6).
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Figure 9 shows the detailed simulation results regarding the actuating forces and
output motion in the joint space. Figure 9a,c represents the resultant actuating force and
slider position, respectively, for the DAM-3R. Figure 9b,d also represents the resultant
actuating torque and joint angle, respectively, for the JAM-3R. The total energy consumption
of the DAM-3R was reduced by 45.0% compared with that of the JAM-3R (316.5 mJ for the
DAM vs. 575.3 mJ for the JAM in Table 4). The proposed MPE-augmented MPC can fully
and optimally utilize a high level of redundancy (additional design variables or control
degrees of freedom) so as to move in the quickest manner. Particularly, for the DAM-3R,
which has higher redundancy than the JAM-3R, the maximum velocity was achieved by
less actuating of Joints 1 and 2, which have larger inertia and therefore require larger
thrusting torque. This led to faster motion and less energy consumption for the DAM-3R
compared with the JAM-3R. Thus, it is clear that, by virtue of conducting MPC augmented
by MPE results (explicit and accurate performance models), a redundant manipulator
can achieve higher performance in terms of working time and energy consumption for
trajectory planning.
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Table 4. Energy consumption in the joint space for the DAM-3R and JAM-3R.

JAM-3R
Joint 1 Joint 2 Joint 3 Total

295.6 265.9 13.9 575.3

DAM-3R
s1 s1

b s2 s2
b s3 s3

b Total

72.9 103.5 80.6 53.0 1.1 5.4 316.5
Units are in mJ.

4. Conclusions

In this study, we proposed a novel concept of time-optimal trajectory planning for
a redundant DAM based on MPE and MPC. This optimization technique for the DAM-3R
and JAM-3R can precisely evaluate the maximum performance (velocity in this study) and,
at the same time, determine the optimal control parameters. The MPC for time-optimal
trajectory planning was then formulated with the mathematical performance models based
on the MPE results obtained. To verify the proposed method, a multibody dynamics
module and control analysis module were co-simulated for the DAM-3R and JAM-3R. The
simulation results clearly demonstrate that the proposed method can successfully provide
the time-optimal trajectory for redundant manipulators. In particular, the DAM-3R, which
has higher redundancy than the JAM-3R, outperforms the JAM-3R in terms of working
time and energy consumption.

Although we formulated a time-optimal optimization method for MPC, it could be
expanded to various performance measures (or tasks), such as minimizing total energy
consumption, minimizing the joint torques, and maximizing the end-effector force with
limited resources. Therefore, this study could be extended to broad areas of trajectory
planning, such as energy minimization, joint torque minimization, and end-effector force
maximization with limited resources. Also, in future work, if the proposed method is
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implemented in a more powerful computing environment such as a parallel multicore
system, the computing time could be significantly shortened.
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