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Abstract: Reliable estimates of peak particle velocity (PPV) from blasting-induced vibrations at a
construction site play a crucial role in minimizing damage to nearby structures and maximizing
blasting efficiency. However, reliably estimating PPV can be challenging due to complex connections
between PPV and influential factors such as ground conditions. While many efforts have been made
to estimate PPV reliably, discrepancies remain between measured and predicted PPVs. Here, we ana-
lyzed various methods for assessing PPV with several key relevant factors and 1191 monitored field
blasting records at 50 different open-pit sites across South Korea to minimize the discrepancies. Eight
prediction models are used based on artificial neural network, conventional empirical formulas, and
multivariable regression analyses. Seven influential factors were selected to develop the prediction
models, including three newly included and four already formulated in empirical formulas. The
three newly included factors were identified to have a significant influence on PPV, as well as the four
existing factors, through a sensitivity analysis. The measured and predicted PPVs were compared
to evaluate the performances of prediction models. The assessment of PPVs by an artificial neural
network yielded the lowest errors, and site factors, K and m were proposed for preliminary open-pit
blasting designs.

Keywords: peak particle velocity; blasting-induced vibration; prediction; artificial neural networks;
site factors K and m; open-pit blasting

1. Introduction

Drilling and blasting is typically used to fragment rock masses at various building and
civil construction sites because it is the most economical means of breaking rock for excava-
tion. However, blasting at construction sites is accompanied by undesirable environmental
side effects, such as vibration, noise, and scattering of debris. According to Korea’s Office
of National Environmental Conflict Resolution Commission, 3840 (approximately 84%)
of the 4557 environmental dispute cases on record involve noise and vibration, primarily
from construction sites [1]. Blasting vibrations occurring at a construction site account
for the majority of these environmental disputes because they result in damage to nearby
structures and present various safety concerns. Every country specifies a limit on the peak
particle velocity (PPV) of the induced vibrations to minimize damage to nearby structures.
According to DIN 4150-3 [2], the limits on PPV are 2 cm/s for buildings used for com-
mercial purposes, 0.5 cm/s for dwellings, and 0.3 cm/s for buildings under preservation
orders at a frequency of 1 to 10 Hz. Siskind et al. [3] proposed that 1.9 and 1.3 cm/s are
safe levels of blasting vibration for drywall and plaster under 10 Hz conditions. In South
Korea, the limits on PPV are 0.2 cm/s for cultural assets and 0.5 cm/s for apartments.
Blasting engineers try to accurately predict PPVs that will be induced by blasting and apply
the predicted PPVs to the design of blasting patterns to comply with these regulations.
Many researchers have studied and proposed various empirical formulas to predict and
control PPV [4]. Among the various empirical formulas, a conventional empirical formula
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developed by U.S. Bureau of Mines (USBM) researchers, Duvall and Petkof [5] has been
widely used to predict PPV and design blasting patterns. The current design approach
consists of two steps. First, several test blastings are conducted to determine site factors K
and m, which represent geological characteristics, before massive blasting. At each test, the
distances between blasting and monitoring points, the charge weights per delay, and the
PPVs are monitored and recorded. Based on these factors, K and m are calculated. Second,
PPV is predicted using an empirical formula with K, m, the distance between blasting and
monitoring points, and the charge weight per delay. However, this empirical formula often
results in significant discrepancies between measured and predicted PPVs. Due to the
discrepancies, blasting engineers are forced to use a high factor of safety (FoS) to prevent
problems resulting from excessive vibration velocity. A high FoS typically requires the use
of a more conservative charge weight per delay than the maximum allowable weight would
accommodate. The conservative charge weight per delay can decrease blasting efficiency
and increase construction time and total cost. A more accurate method of predicting PPV
is vital to protect the environment and increase the efficiency of blasting.

The artificial neural network (ANN) has been applied in various fields such as re-
newable energy systems [6], atmospheric science [7], and civil engineering [8,9] to predict
targets. In addition, research is also ongoing on predicting PPVs using ANN. To develop
an ANN model for PPV prediction, Nguyen et al. [10] gathered 185 blasting datasets from
a limestone mine in Vietnam, Azimi et al. [11] collected 70 blasting datasets from a copper
mine in Iran, and Bui et al. [12] obtained 83 blasting datasets from a quarry mine in Vietnam.
Every result of the research showed good agreement with the measured and predicted
PPVs. ANN is generally not limited by any assumptions such as linearity or normality,
thus ANN has the modeling power to derive excellent results even with irregular datasets
and complex phenomena [13,14]. However, in the previous studies, the largest number
of datasets was only 185 and the datasets were obtained from a limited local region. Each
ANN model developed in the previous studies is only strictly applicable to the site where
the study was conducted due to the limited region. Therefore, it is necessary to develop
the global prediction model and to select influential factors which can be obtained easily
from every blasting site. In this paper, an ANN was selected as one of the prediction
methods due to its strengths. Its performance for predicting PPVs was compared with the
performances of conventional empirical formulas and multivariate regression analyses
to find the best prediction methods for predicting PPVs with numerous datasets of field
blasting records from various sites.

2. Methodology

Figure 1 shows the process for this study, which consists of three steps; acquisition
and pre-processing of blasting datasets, development of prediction models using three
other methods, and testing and comparison of the prediction models.

2.1. Artificial Neural Network

An ANN is a prediction method based on causes and effects obtained through ex-
perience. It can be used as a tool for training, remembering, and analyzing using the
computational power of a computer [15]. The network calculates non-linear and complex
connections with an input layer, a hidden layer, and an output layer. Each layer has a node
for calculation, and their weights and biases act as interlayer connections. The input and
output layers consist of causal and result parameters, respectively. The training algorithm
of the ANN used in this study was back-propagation, which is the most efficient ANN
training algorithm available [16,17]. In back-propagation, the output values calculated in
the forward direction through weights and biases are used to calculate training errors from
the true values. Through these errors, weights and biases are corrected to minimize the
errors in the reverse direction. These sequences repeat until the errors meet the convergence
tolerance or other limit conditions. After the ANN model meets the conditions, it can be
used as a prediction model with final weights and biases.
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The ANN requires activation and normalization functions. The former converts the
sum of the input signals into the output signal in the nodes of a hidden layer. A non-
linear function should be used to determine a non-linear relationship between input and
output parameters. Generally, sigmoid, hyperbolic tangent, and rectified linear unit (ReLU)
functions, which are non-linear and represented by Equations (1)–(3), respectively, are used
as an activation function.

f(x) =
1

1 + e−x (1)

f(x) =
ex − e−x

ex + e−x (2)

f(x) =
{

0, x < 0
x, x ≥ 0

(3)

A normalization function converts all input values which have on different scales into
a common scale. It is necessary because the degrees of influence on the output parameter
can vary depending on the range of the input parameters. Usually, min-max scaling and
standard scaling are used as a normalization function represented by Equations (4) and (5),
respectively. In Equation (4), xMax and xmin are the maximum and minimum values for
each data type, respectively. In Equation (5), x and Sx are the mean and standard deviation
values for each data type, respectively.

N(x) =
x− xmin

xMax − xmin
(4)

N(x) =
x− x

Sx
(5)
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2.2. Empirical Formula

As mentioned, various PPV prediction techniques are available but only the empirical
formula of Equation (6) has been used to predict PPVs for blasting designs in South
Korea [18]. Therefore, in this study, the empirical formula developed by USBM was selected
to assess ground vibration and identify the optimal prediction method. In Equation (6), the
values of K and m are obtained through linear regression of the blasting datasets consisting
of PPV and the scaled distance (SD) expressed in Equation (7) [19]. Here, W is a charge
weight per delay, and D is the distance between blasting and monitoring points.

PPV = K(SD)m (6)

SD = D/
√

W (7)

2.3. Multivariate Regression Analysis

Multivariate regression analysis is defined as a regression analysis in which two or
more independent variables are used to account for changes in the dependent variable [20].
It is called multivariate linear regression analysis (MLRA) and the relationships between the
independent and the dependent variables are expressed linearly. The MLRA is expressed
as follows:

y = β0 + β1x1 + · · ·+ βpxp (8)

In Equation (8), y is the dependent variable, x1 to xp are the independent variables,
β0 to βp are regression coefficients, and p is the number of independent variables. The
regression coefficients, which make the summation of all square errors minimum, are
obtained through the method of least squares.

We defined expressing non-linearly the relationships between independent and depen-
dent variables as multivariate non-linear regression analysis (MnLRA). Among the various
forms of MnLRA, an exponential form was employed in this study and it is expressed
as follows:

y = β0(x1)
β1(x2)

β2 · · ·
(
xp
)βp (9)

After both sides of Equation (9) are logged, it is equivalent to the same form as
Equation (8), so MnLRA can be generated in the same way. Besides, since the empirical
formula of Equation (6) is also in exponential form, MnLRA was chosen as the exponential
form in this study. It is important to confirm that the model is statistically significant
through F and p-values of the results of an analysis of variance (ANOVA) and p-value of a
partial regression coefficient in the multivariate regression analysis.

3. Datasets

The authors collected 1191 blasting datasets, which are more than six times the datasets
used in the previous studies, from 50 diverse construction sites, representing each region
of South Korea. The locations of 50 diverse construction sites by 28 administrative districts
are depicted in Figure 2. The number of construction sites that were conducted in the same
administrative district is expressed in the circle. Even though the construction sites are
located in the same administrative district, they are different construction sites. Building
and road construction were the main site activities, and open-pit blasting was used at
all 50 construction sites. Of the total 1191 datasets, 714 (60%) and 179 (15%) were used
for prediction model development as training and validation datasets, respectively. The
remaining 298 (25%) were used to test the models. The datasets were randomly designated
for Training, Validation, and Testing via PYTHON code.

Predicting PPV requires a selection of influential factors. Since this study aims to
predict the PPV accurately and easily at any open-pit blasting site, the influential factors
should not only affect the PPV but also be easily obtained by untrained field staff.
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Eleven common initial influential factors satisfied these conditions from 1191 blasting
datasets: type of explosive (TE), charge weight per delay (W), specific weight (SW), length
of drilling hole (LH), the height of the bench (HB), burden spacing (BS), hole spacing (HS),
type of rock (TR), the distance between blasting and monitoring points (D), site factor K,
and site factor m. To use an influential factor as quantitative data, the TE and the TR must
be converted to values that express the velocity of detonation (VoD) and the velocity of
the P-wave (VoP). The explosive types used at the 50 sites were Megamex, New emulate,
Newmite, and Lovex manufactured by Hanwha Corporation [21]. The eight types of rock
were gneiss, granite, limestone, schist, shale, andesite, rhyolite, and tuff. The conversion
values are summarized in Tables 1 and 2.

It is necessary to remove or change the initial influential factors to avoid multicollinear-
ity that negatively affects prediction due to the high correlations between independent
variables [22]. As shown in Figure 3, factors W, LH, HB, BS and HS are strongly correlated
(>0.88) with each other. To remove a strong correlation between influential factors, we
removed the LH, HB, BS and HS since W is the most important factor to PPV among the
five factors. Finally, we selected seven influential factors relevant to PPV. The units and
ranges of the selected factors and PPV are shown in Table 3.

Table 1. Input values for types of explosive.

Explosive Type Megamex New Emulite NewMITE LoVEX

Velocity of Detonation (m/s) 6000 5900 5700 3400

Table 2. Input values for types of rock.

Rock Type P-Wave Velocity (m/s) Reference

Gneiss 5500 [23]
Granite 5300 [23]

Limestone 5470 [23]
Schist 4550 [23]
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Table 2. Cont.

Rock Type P-Wave Velocity (m/s) Reference

Shale 3500 [23]
Andesite 5121 [24]
Rhyolite 4100 [25]

Tuff 2750 [26]
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Table 3. Characteristics of influential factors and peak particle velocity (PPV).

Type Parameters Symbol Unit Range of Datasets

Input

Velocity of detonation VoD m/s 3400–6000
Charge weight per delay W kg 0.1–10

Specific weight SW kg/m3 0.25–0.56
Velocity of P-wave VoP m/s 2750–5500

Distance between blasting
and monitoring points D m 5–650

K K - 0.7–271,795
m m - −3.19 to −0.40

Output Peak Particle Velocity cm/s 0.005–6.514

4. Prediction Models
4.1. Artificial Neural Network

Trial-and-error analysis of hyper-parameters is required to obtain the optimal pre-
diction model which has the lowest validation loss. In this analysis, it was carried out
with a different number of hidden layers, nodes, normalization methods, and activation
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functions; one and two hidden layers; 3, 5, 7, 11, 14, 15, 21, 28 and 35 nodes for the hidden
layer; min-max and standard scalings; and three activation functions, sigmoid, hyperbolic
tangent, and ReLU. In other words, 54 (2 × 9 × 3) and 486 (2 × 9 × 9 × 3) structures were
assessed on 1 and 2 hidden layers, respectively. The number of nodes was determined
by Table 4. Here, Ni and No mean number of input and output parameters, respectively.
We added some equations in the final row of Table 4 to analyze many structures. The
Adam optimizer [27] was used to reduce the loss with a learning rate of 0.001. Also, we
used an early stopping to avoid overfitting and to obtain the best-fitted model. Every
structure of the ANN model was trained with the 714 training datasets and validated by
the 179 validation datasets. Every ANN model was developed with the software PYTHON
Version 3.7.6.

Table 4. Equations for determination of the number of nodes.

Equation Number of Nodes Reference
√

Ni × No 3 [28](
4N2

i + 3
)
/
(

N2
i − 8

)
5 [29]

3Ni/2 11 [30]

2Ni + 1 15 [31]

3Ni 21 [32]

Ni, 2Ni, 4Ni, 5Ni 7, 14, 28, 35 -

In the results of trial-and-error analysis, the average validation loss of 540 structures
was 0.126 cm/s. Among the 540 ANN models, the structure composed of two hidden
layers with 21 and 28 nodes, normalized by min-max scaling and combined with ReLU
showed the lowest validation loss of 0.115 cm/s. Therefore, we selected the ANN model,
which has the 7-21-28-1 structure depicted in Figure 4 as an optimal ANN model for a PPV
prediction. The training of this model was stopped at 4208 epochs by early stopping. Table 5
summarizes the characteristics of the selected ANN model. This model is represented by
Equations (10)–(12). PPV is calculated by Equation (10). Equations (11) and (12) represent
hidden layers 1 and 2, respectively.

PPV = [H2] · [W3] + [b3] (10)

[H2] = R([H1] · [W2] + [b2]) (11)

[H1] = R([m[I]] · [W1] + [b1]) (12)
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Table 5. Characteristics of the ANN model.

Characteristics Details

Datasets
Total datasets 1191

Training and validation datasets 714, 179
Test datasets 298

Structure

Number of input parameters 7
Number of output parameter 1

Number of hidden layers 2
Number of nodes 21, 28

Training parameters

Activation function ReLU
Optimization Adam

Normalization Standard scaling
Regularization Early-stopping

Number of epochs 4208
Training algorithm Back-propagation

In these equations, [I] is the matrix of input data sets, [W] is the matrix of weights, and
[b] is the matrix of biases. The weight and bias matrices are constants that were obtained
from the ANN training. Here, [W1], [W2], [W3], [b1], [b2], and [b3] are 7 × 21, 21 × 28,
28 × 1, 1 × 21, 1 × 28, and 1 × 1 matrices. When predicting i PPVs, [I] is an i × 7 matrix.
R is a ReLU function expressed by Equation (3), m is a min-max scaling expressed by
Equation (4).

4.2. Empirical Formula

Each empirical formula of the 50 construction sites was generated using Equation (6)
with the site factors, K and m. For instance, Equation (13) represents the empirical formula
of Site 1 with K and m values of 67.4 and −1.59, respectively. The site factors of each site
are represented in Figure 2. Through this method, 50 empirical formulas were generated
and defined as EF-1. Each of the formulas included in EF-1 can only be applied to the PPV
prediction at the site where it was generated. The K of Site 2, which is far higher than
the rest, seems to be noise. In geotechnical engineering, some noise could have happened
due to uncertainties. Thus, datasets obtained from Site 2 should also be analyzed with
other datasets.

V = 67.4(SD)−1.59 (13)

Test blasting is required to obtain site factors K and m, used in empirical formulas
such as EF-1. However, it is difficult to perform test blastings at the preliminary design
stage, and representative values of K and m are needed to compensate for this weakness.
Representative K and m values of 200 and −1.6 were proposed based on Design and Con-
struction Guidelines for Open-pit blasting in Road construction published by the Ministry
of Land, Infrastructure, and Transport in South Korea [33]. We defined Equation (14) as
EF-2 using the K and m. Many engineers have designed preliminary blasting patterns,
applying Equation (14).

PPV = 200(SD)−1.6 (14)

To derive one representative empirical formula for the 50 sites, we calculated K and
m values of 74.9 and −1.535 using datasets of 50 open-pit blasting construction sites.
Equation (15) expresses the representative empirical formula and it was defined as EF-3.
Since this is a representative equation of 50 sites, it will show lower prediction accuracy
than EF-1. However, it could be used at the preliminary design stage like EF-2. Figure 5
shows EF-3 (solid line) and the 893 datasets (circles) on a log-log plot where the vertical
axis is PPV and the horizontal axis is SD. As mentioned in Section 2.2, EF-3 was obtained
from the linear regression of the 893 blasting datasets.

PPV = 74.9(SD)−1.535 (15)
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Equations (16) and (17) are prediction models proposed by the International Society
of Explosives Engineers (ISEE) [34] and USBM [35], respectively. These two equations have
been widely used to predict PPVs. We defined Equations (16) and (17) as the ISEE model
and USBM model, respectively.

PPV = 172.5(SD)−1.6 (16)

PPV = 71.4(SD)−1.6 (17)

4.3. Multivariable Regression Analysis

Multivariable regression analyses were carried out using IBM SPSS Statistics Version
26.0 (SPSS), which is a powerful statistical software package [36] that generates a simple
equation for estimating output. Many researchers have performed multivariable regression
analyses with ANN to compare the performance of prediction methods [15,16,37]. In
this study, two types of multivariable regression analysis were carried out using training
and validation datasets from 50 open-pit blasting construction sites to identify linear or
non-linear relationships between influential factors and PPV. One was multivariable linear
regression analysis (MLRA) and the other was multivariable non-linear regression analysis
(MnLRA). The developed MLRA is represented by Equation (18). From seven influential
factors, SW and VoP were excluded, since their partial regression coefficients had higher
p-values than the significant level, 0.05. After the two factors were removed, the F and
p-values of the MLRA model showed approximately 49 and 0, respectively. In addition,
constant and five influential factors had p-values that were near 0. These F and p-values
mean that the MLRA model is statistically significant. However, this model showed a low
R of 0.495. The developed MnLRA is represented by Equation (19). This equation has been
developed in exponential form following the form of the conventional empirical formula.
p-values of all partial regression coefficients except for VoP were shown to be lower than
the significant level, 0.05. Therefore, we removed the VoP from the input parameters. F
and p-values of the MnLRA model showed approximately 898 and 0, respectively. Besides,
the R of this model was high, 0.927. Here, the influential factor m was converted to –m in
Equation (19) because all influencing factors and PPV are positive, while m is negative.

PPV = −0.588 + 1.2 × 10−4VoD + 0.092W − 0.003D − 1.45 × 10−6K − 0.193m (18)

PPV = 0.034VoD0.79W0.741 SW−0.37D−1.602K0.375 (−m)−2.248 (19)
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Note that test datasets were never used prior to the performance evaluation of the
prediction methods. This means only the training and validation datasets were used to
develop the ANN model, EF-1, 2 (K and m), MLRA, and MnLRA.

5. Prediction Results
5.1. Performance Comparisons of the Six Prediction Models

The 298 test datasets, which account for 25% of the total datasets obtained, were
predicted using the eight predictive analysis methods, ANN, EF-1, EF-2, EF-3, ISEE model,
USBM model, MLRA, and MnLRA, described in Chapter 4. First, the PPVs were predicted
using the weights and biases matrices of the optimal ANN model. Here, all seven influential
factors, VoD, W, SW, VoP, D, K, m were used as input parameters. Second, we used EF-1
which grouped 50 empirical formulas to predict PPVs of the test datasets. Here, each test
dataset was predicted by the empirical formula of the site where they were obtained. W and
D were used as input parameters. Finally, the test datasets were predicted by EF-2, 3, ISEE
model, USBM model, MLRA, and MnLRA expressed as Equations (14)–(19), respectively,
using input parameters of each method. In this study, three performance indicators, mean
absolute error (MAE), root mean square error (RMSE), and mean absolute percent error
(MAPE), were used to analyze prediction results. These performance indicators are listed
in Table 6.

Table 6. Equations of performance indicators.

Performance Indicator Equation

MAE MAE = 1
n

n
∑
i

∣∣Vmi −Vpi
∣∣

RMSE RMSE =

√
1
n

n
∑
i

(
Vmi −Vpi

)2

MAPE MAPE = 1
n

n
∑
i

∣∣∣Vm−Vp
Vm

∣∣∣× 100

Here, Vmi and Vpi are the i-th measured and predicted values, respectively, and n is the
total number of test datasets. Table 7 summarizes the performances of the eight prediction
models on the predicted PPVs. The developed ANN model achieved the lowest MAE of
0.064 cm/s, RMSE of 0.161 cm/s, and MAPE of 23.2%. These results were approximately
30%, 56%, and 11% lower than those from EF-1, which is currently the most commonly
used method to predict PPVs when designing blasting patterns for construction. However,
the EF-2 deduced the highest MAE of 0.305 cm/s and RMSE of 0.731 cm/s.

Table 7. Performances of the six prediction models.

Method MAE (cm/s) RMSE (cm/s) MAPE (%)

ANN 0.064 0.161 23.2
EF-1 0.092 0.370 26.1
EF-2 0.305 0.731 146.5
EF-3 0.123 0.309 47.8

ISEE model 0.244 0.601 115.7
USBM model 0.123 0.308 40.7

MLRA 0.202 0.370 175.1
MnLRA 0.108 0.298 39.1

Linear regression analyses were performed with a coefficient of determination known
as R2 to explain the correlation and similarity between the predicted PPVs from the six
predictive analysis methods and measured PPVs of the test datasets. The value of R2 can
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be found using Equation (20), where Vm and Vp are measured and predicted PPV values,
Cov is the covariation between two factors, and Var is the variation of a factor.

R2 =
Cov2(Vm, Vp

)
Var(Vm)×Var

(
Vp
) (20)

Each predicted PPV by the six prediction methods is plotted as a small circle in
Figure 6a to 6h respectively according to prediction methods. The x and y axes represent
the measured and predicted PPV, respectively, in cm/s. There are two lines in each figure.
The dashed line is the Measured PPV = Predicted PPV (1:1) line and the solid line is the
linear regression line. In the lower right corner of each figure, it shows the equation of the
linear regression line and R2. The linear regression line resulting from the ANN shows the
best result in terms of similarity to the 1:1 line as shown in Figure 6. The linear regression
line resulting from the MLRA displays the greatest distance between the two lines.
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Figure 6. Predicted PPV versus measured PPV by the six prediction methods. The graphs in (a–h) were made using
predicted PPVs by the ANN, EF-1, EF-2, EF-3, ISEE model, USBM model, MLRA, and MnLRA, respectively.

5.2. Sensitivity Analysis

A sensitivity analysis was performed using the cosine amplitude method for all seven
influential factors. This method has been applied previously [4,15,38] to determine the
relative significance of each factor on PPV. It calculates a relation, rij, and provides results
from a pairwise comparison of two factors, xi and xj, using Equation (21) [39].

rij =

∣∣∣∑m
k=1 xikxjk

∣∣∣√(
∑m

k=1 x2
ik

)(
∑m

k=1 x2
jk

) (21)

The influential factors and PPV of the 1191 datasets, which consist of both training
and test datasets, were logged and analyzed using Equation (21). The relative significances
of the seven influential factors are depicted in Figure 7. The relative significances between
VoD, W, SW, VoP, D, K, m, and PPV were deduced to be approximately 0.885, 0.729, 0.876,
0.886, 0.932, 0.844, and 0.833, respectively.
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6. Discussion

The ANN model showed the best agreement with measured PPVs among eight
prediction methods, including the globally used ISEE and USBM models. It would be due
to using the most influential factors, which has the ability to reproduce and model the non-
linear connections between input and output parameters, and to deal with noise. As shown
in Figure 7, the seven influential factors have similar strengths of relation. It indicates
that using these seven factors is more effective than using the only four factors which are
included in the conventional empirical formula to predict PPVs. The complex connections
between PPV and influential factors could be found in the comparison between the MLRA
and MnLRA. When we developed these two models, they showed a statistical significance;
however, the MLRA had a low R (0.495) while the MnLRA had a high R (0.927). The MAE
from the MLRA showed about twice that of the MnLRA. These two models differ in their
use of linear and non-linear relationships to explain PPV from influencing factors. Because
of this difference, the MnLRA showed better predictive performance than the MLRA. It
means that the relationships between the influential factors and PPV are non-linear. The
ability to deal with noise could be verified by the prediction results about the biggest
measured PPV, 4.58 cm/s, which is over 17 times the average measured PPVs, 0.26 cm/s.
The prediction results from the ANN, EF-1, EF-2, EF-3, ISEE model, USBM model, MLRA,
and MnLRA were 4.04, 8.7, 6.3, 2.72, 5.43, 2.25, 0.81 and 3.45 cm/s, respectively. The
prediction results from the ANN model showed the closest to the measured PPV. It implies
that the ANN has an excellent ability to deal with noise.

EF-2 showed the worst performances at MAE and RMSE and it would be due to its
applicability. EF-2 is suitable for road construction sites because it was developed using
only blasting datasets from road construction sites. These results mean that applying the
conventional representative formula for a preliminary blasting design from road construc-
tions has a limitation in applying it to other open-pit blastings. Therefore, a new alternative
prediction equation is required. EF-3 which was developed using datasets from 50 diverse
open-pit blasting construction sites would be suitable as the alternative prediction equation
since it has the same form as EF-2, and it showed better predictive performances than EF-2.

The proposed model has been applied only to open-pit blasting construction sites.
Future studies of PPV prediction models such as ANN model and EF-3 will include blasting
records from underground caverns, tunnels, and mines as well to ensure the prediction
models be generally applicable to any region and type of blasting.
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7. Conclusions

In this study, the prediction of PPV using eight predictive analysis methods of ANN,
EF-1, EF-2, EF-3, ISEE model, USBM models, MLRA, and MnLRA with 1191 datasets,
which are more than six times the maximum datasets used in the previous studies, was
carried out to assess PPV prediction methods at an open-pit construction site.

Seven key factors relevant to PPV were considered in the prediction models. The
seven key factors were selected according to the ease of obtaining them and their influence
on PPV. They consist of three factors, VoD, SW, and VoP, newly proposed in this study, and
four key factors, W, D, and the site factors K and m, currently included in the conventional
empirical formula. The use of three additional influential factors played a significant role
in identifying the prediction model that produced the lowest error. Their significant roles
were confirmed through a comparison of the performances of the ANN and others. These
roles were also apparent in the results of the sensitivity analysis. The seven key factors
have similar strengths of relations with PPV. It implies that not only are the previously
used factors important in predicting PPV but also the newly added factors.

The PPV prediction based on the ANN model achieved the lowest values at MAE,
RMSE, and MAPE among the eight prediction models. Even the ANN, which was gener-
alized for application to all sites, produced lower errors than those from the EF-1, which
can apply to only a specific site. In addition, the prediction accuracy of the ANN model
was higher than that of the ISEE and USBM models. It would be attributed to the ability
of ANN to express complex and non-linear relationships between influential factors and
PPV, and the ability of ANN to deal with noise. It is necessary to perform a grid search
for structures and hyper-parameters and early stopping to obtain an optimal prediction
model. In this study, we compared 540 ANN models, to which were applied the early
stopping method. These models have one or two hidden layers with the number of nodes
calculated using the number of input and output parameters and three activation functions.
Finally, a structure consisting of two hidden layers with 21 and 28 nodes using a ReLU
as an activation function was determined as the optimal model. Other hyper-parameters
were chosen following the previous studies. As a result, we generated the prediction model
showing the lowest errors among the six prediction methods. Therefore, we recommend
using an ANN for predicting PPVs whose hyper-parameters are selected from a grid search
and literature research.

The EF-2 was proposed by the Ministry of Land, Infrastructure, and Transport in
South Korea for designing preliminary blasting patterns. However, the MAE, RMSE, and
MAPE associated with the EF-2 were over two times higher than those associated with the
EF-3, which is newly proposed in this study. This difference might be a result of different
construction types in the datasets. EF-3 was developed by analyzing data from 50 open-pit
construction sites, including building construction sites in downtowns, road construction
sites, aggregate extraction sites, and restoration work sites while EF-2 was developed by
analyzing only datasets at road construction sites. Using the newly proposed EF-3, which
proposes a K value of 74.9 and an m value of −1.535, for a preliminary design of open-pit
blasting would be more accurate and reliable than using the EF-2.

The ANN model with the seven key factors and EF-3, proposed in this paper, can
predict PPVs more accurately and will help blasting pattern design to be more reliable. The
reliable blasting patterns will reduce environmental problems significantly and maximize
the efficiency of blasting in construction. Moreover, the use of the newly proposed predic-
tion methods will lessen civil complaints, and improve the efficiency in the construction
schedule, and reduce the overall construction budgets. These advantages will lead to
greater safety and sustainable urban development.
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