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Abstract: Machine learning techniques generally require or assume balanced datasets. Skewed data
can make machine learning systems never function properly, no matter how carefully the parameter
tuning is conducted. Thus, a common solution to the problem of high skewness is to pre-process
data (e.g., log transformation) before applying machine learning to deal with real-world problems.
Nevertheless, this pre-processing strategy cannot be employed for online machine learning, especially
in the context of edge computing, because it is barely possible to foresee and store the continuous data
flow on IoT devices on the edge. Thus, it will be crucial and valuable to enable skewness monitoring
in real time. Unfortunately, there exists a surprising gap between practitioners’ needs and scientific
research in running statistics for monitoring real-time skewness, not to mention the lack of suitable
remedies for skewed data at runtime. Inspired by Welford’s algorithm, which is the most efficient
approach to calculating running variance, this research developed efficient calculation methods for
three versions of running skewness. These methods can conveniently be implemented as skewness
monitoring modules that are affordable for IoT devices in different edge learning scenarios. Such
an IoT-friendly skewness monitoring eventually acts a cornerstone for developing the research field
of skewness-aware online edge learning. By initially validating the usefulness and significance of
skewness awareness in edge learning implementations, we also argue that conjoint research efforts
from relevant communities are needed to boost this promising research field.

Keywords: edge computing; online edge learning; open methods; running skewness; Welford’s
algorithm

1. Introduction

Skewness measures the asymmetry of a probability distribution against the normal
distribution, which plays a crucial role in the data-intensive machine learning implementa-
tions. From the perspective of exploitation, skewness can act as one of the statistical and
representative features of datasets for building machine learning models [1,2]. In a special
case, the skewness values of different datasets are even utilized as a boundary detection
reference to facilitate clustering [3]. From the perspective of adverse effects, high skewness
in training datasets can result in poor learning models that will make wrong estimation in
prediction tasks [4,5]. In fact, it has been identified that machine learning models can never
work well with skewed data, no matter how comprehensive their parameter tuning is [6].
Therefore, it is valuable and often necessary for both practitioners and machine learning
systems to be aware of data skewness, so as, for example, to mitigate the negative influence
of skewed data on model training [7].

When it comes to calculating skewness, according to the modern software systems
of statistics, the most widely employed method is the adjusted Fisher–Pearson skewness
coefficient [8,9], as formulated in Equation (1).

S =
n

(n− 1)(n− 2)
· ∑n

i=1(xi − x̄)3

s3 (1)
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where S represents the skewness of sample data x1, x2, . . . , xn, while x̄ and s are the mean
and standard deviation of the n samples respectively.

By using Equation (1), it is clear that the skewness calculation requires all the historical
data. However, this methodof skewness calculation can be impractical in IoT and edge
environments. Firstly, due to the limited storage capability of IoT devices, it would be
impossible or expensive to keep all the collected data on the edge [10]. Secondly and
more importantly, given continuous data flows at the edge side, the monitoring inevitably
needs frequent skewness updates, while using Equation (1) to frequently obtain skewness
values will be extremely inefficient due to the heavily repeated calculations and the limited
computing capability of IoT and edge devices [11,12].

Therefore, the online skewness monitoring must resort to a real-time calculation
strategy that fits in the characteristics of running statistics [13]. Unlike the standard
method of skewness calculation, a running method should be able to recursively update
skewness without storing the historical data. It should be noted that this recursive fea-
ture naturally matches the requirement of online machine learning. Surprisingly, there
seems to be a lack of suitable skewness formulas or algorithms that can satisfy the var-
ious needs of skewness-aware online learning techniques. It is then no wonder that
little work on skewness-aware online learning has been reported in the literature. For
example, to our best knowledge, there is no practical running skewness method to work
with the forgetting mechanism in the modern edge learning proposals (e.g., [14]). Al-
though we can use a rolling window to “forget” old data, the typical approach to updating
skewness is to supplement a negative datum of the tail when the data window moves
ahead, (see the function remove() at https://github.com/alexander-yu/stream/blob/
master/moment/core.go, accessed on 10 August 2021), and eventually it doubles both
the calculation workload and the execution time. In the simplest case, the cumulative
version of running skewness from several mathematical libraries can work for the ba-
sic online sequential learning (e.g., [15]). Nevertheless, we find that the corresponding
algorithms are either inefficient or improper for skewness monitoring on the edge (cf.
Sections 4.3.3 and 4.3.4).

After observing frequent inquiries about running skewness in the open source com-
munity [16–18], we further affirmed the gap between practitioners’ needs and the scientific
research on this topic. In detail, by studying the existing running skewness algorithms and
the relevant statistical methods (i.e., running mean and running variance), we identified
that the currently inefficient algorithms of cumulative running skewness are due to the
inefficient calculation of running variance. Meanwhile, the missing of the other running
skewness versions is mainly due to the lack of an efficient (or concise) cumulative version.
Driven by these findings, this research develops IoT-friendly equation systems for calcu-
lating three popular running skewness versions and initially validates the usefulness and
significance of skewness awareness in the implementation of online edge learning.

Correspondingly, this research makes a fourfold contribution:

• From the statistics community’s perspective, this research enriches skewness mon-
itoring solutions in the running statistics domain. It is worth highlighting that our
solutions can conveniently be implemented into efficient algorithms and deployed on
IoT devices for practical usage. In fact, compared with the pervasive discussions about
mean, median, and variance (or standard deviation), skewness has been considered
“a forgotten statistic” [8], not to mention running skewness. In particular, this research
reminds the statistics community of the real-world needs of running skewness in the
context of IoT and edge learning.

• From the machine learning community’s perspective, this research paves the way
for developing skewness-aware online learning techniques, which is particularly
valuable and useful in the edge computing domain. It should be noted that although
traditional skewness-aware machine learning has been studied [5,19], their generic
strategy of curing high skewness (i.e., data pre-processing) cannot be applied to the
online mode. In particular, this research reminds the machine learning community

https://github.com/alexander-yu/stream/blob/master/moment/core.go
https://github.com/alexander-yu/stream/blob/master/moment/core.go


Appl. Sci. 2021, 11, 7461 3 of 25

of the significance and the available methods of online skewness monitoring. After
all, the slightest difference at the model training stage can lead to a huge error in the
machine learning results.

• In addition, the shared formula derivation details (in Appendix A) can help both
researchers and practitioners investigate other versions of running skewness and
develop corresponding algorithms, so as to satisfy the diverse needs in practice.
It should be noted that not only has our work developed an efficient cumulative
version of running skewness, but we have also investigated the other two versions
that can satisfy the forgetting mechanism in the modern edge learning proposals. This
contribution essentially follows the spirit of open methods that can act “as a higher-
level strategy over open-source tools and open-access data” to facilitate scientific
work [20]. In fact, this research has revealed that the obscurity in some advanced
statistical methods may hinder their recognition and employment (cf. Section 3.1.2).

• Overall, our work advocates and fosters cross-community research efforts on IoT-
friendly online edge learning. Given the booming of edge intelligence [21] accompa-
nied with the resource limits of IoT equipment (e.g., the embedded RAM is only 4KB
in the current taxi-mounted GPS devices), multi-domain knowledge and expertise
need to fuse together to address the challenges of online edge learning. Through this
paper, we particularly expect to attract more attention from the statistics community
and to inspire more skewness monitoring algorithms and techniques for the various
needs in the diverse edge environments.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
background of online machine learning in edge computing, and discusses the research gap
in skewness-aware online learning. Section 3 specifies the IoT-friendly equation systems of
the three versions of running skewness. For the ease of reading, their derivation details
are separately shared in Appendix A. Section 4 particularly focuses on the cumulative
version of running skewness and reports its algorithm performance evaluation, while
the evaluation result is representative for all the three versions of running skewness.
Section 5 initially validates the usefulness of applying skewness monitoring to online
learning implementations. The conclusions are drawn in Section 6, together with our future
work plans.

2. Related Work

The proliferation and interconnection of numerous data sources across various IoT
devices are speeding up the digital explosion in our everyday lives [22]. For example, the
International Data Corporation estimates that about 80 billion devices will be connected
to the Internet by 2025, and as a result, the globally generated data will be as tremendous
as 163 zettabytes [23]. Since it is often impractical and even impossible to centralize
the explosive data due to the bandwidth limits and privacy concerns, some research
organization have predicted that the majority of the data (over 90 percent) will be stored
and processed locally in a distributed manner [24]. Correspondingly, along with the
revolutionary development of ubiquitous mobile equipment, wearable gadgets and smart
sensors, innovative data analytical solutions are increasingly developed and deployed on
the edge of the Internet.

In particular, driven by the intensive interests in the “intelligent edge” [23], there is
a clear trend in implementing machine learning techniques on various and distributed
IoT devices on the edge. Although the implementation of edge machine learning is still
at an early stage [25], it is evident that IoT and edge devices are complementary to cloud
resources for scaling machine learning systems [24]. Furthermore, considering that the
data in production for edge learning are generated gradually instead of being available
all at once, the trained models must be updated “in an online fashion to accommodate
new data without compromising its performance on old data” [26]. Thus, online machine
learning has become a distinctive research topic in the edge learning field [27], which can
be characterized by the real-time streaming processing computation model [28].
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In fact, the revival of online learning in edge computing can be traced back to se-
quential learning, which was studied decades ago [29]. Nevertheless, as identified in [15],
those early studies may still require (estimating) the samples’ statistical information in
advance for their sequential learning implementations. On the other hand, although recent
studies have tried to simplify the online learning mechanisms, the solutions seem to be
bypassing, ignoring, or tolerating the missing of the statistical characteristics of data, e.g.,
pre-setting suitable skewness values for simulations [30,31], using robust-to-skewness
metrics to measure performance [32], etc.

It should be clarified that the machine learning community is well aware of the im-
portance of skewness. For example, since canonical machine learning techniques assume
balanced datasets [19], not only class skewness but also skewed features will bias the
classification of dataset samples [33]. More generally, it has been identified that machine
learning models cannot do a good job with skewed data, no matter how well the param-
eter tuning is conducted [6]. Unfortunately, to our best knowledge, little research into
online machine learning has taken into account the real-time awareness of skewness. The
study [34] is the only one we have found to monitor data skewness at runtime, which
aims to balance the skewness of labels to train weak classifiers more equally. However, its
skewness calculation is not compatible with the de facto adjusted Fisher–Pearson skewness
coefficient (cf. Equation (1)). In addition, this use case only corresponds to the cumulative
version of running skewness (cf. Section 3).

In contrast, this research investigates three running skewness versions and their
calculation methods, by aligning with the adjusted Fisher–Pearson skewness coefficient.
The proposed calculation methods can conveniently be converted into efficient algorithms
and be implemented as skewness monitoring modules on IoT devices in order to satisfy
the different needs of skewness-aware online edge learning.

3. Three Versions of Running Skewness and Efficient Calculation Methods

Given the continuous nature of online data flows, it is improper to assume online
learning to be based on a complete data population. Therefore, we treat the processed data
always to be samples, and correspondingly, we investigate the sample skewness instead
of the population skewness of data. Furthermore, we take into account three versions of
running skewness that may be the most useful ones for implementing skewness-aware
online edge learning, such as the following:

• Running Cumulative Sample Skewness recursively measures the skewness of the time
series data filtered from the beginning of measurement up until the current moment.
This skewness version is suitable for the situation when the individual data points in
a time series are all equally important (e.g., [15]).

• Running Rolling (Simple Moving) Sample Skewness recursively measures the skewness
of the time series data within a fixed-size while continuously moving sample window.
This skewness version is able to match the learning scenario in which each datum is
valid only for a period of time (e.g., [35]).

• Running Exponentially Weighted Sample Skewness also recursively and cumulatively
measures the skewness of time series data. Different from the cumulative version, the
data are accompanied with weighting factors that decrease exponentially as the data
recede into the past. This skewness version would be more practical in the process
industry [36] and in the financial sector, as the more recent data can better reflect the
current system/market status.

To facilitate explaining and distinguishing between these skewness versions, we clarify
the terminology used in this research. Firstly, we follow GNU’s naming convention to em-
phasise the recursive feature of running statistics by highlighting the term “Running” [13],
because “Moving” also means the moving activity and might result in confusions from time
to time (e.g., [16]). Secondly, since “rolling window” is widely used when describing the
moving activity in the literature, we employ the term “Rolling” to characterize the second
skewness version. Thirdly, we refer to “exponentially weighted sample statistics” [37] to
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shorten the name of the third skewness version. Overall, for both reference convenience
and distinctiveness, we use Cumulative Sample Skewness (CSS), Rolling Sample Skewness
(RSS), and Exponentially Weighted Sample Skewness (EWSS), respectively, to indicate the
three running skewness versions in the rest of this paper.

Furthermore, to facilitate reading and verifying the equations presented in the rest of
this paper, we summarise the relevant notations in Table 1.

Table 1. Notations used in the rest of this paper.

Notation Explanation

n Amount of observations (samples) within a time series.
dnek The most recent k items from a time series of n samples, and n > k > 0.

sn Sample standard deviation of n observation values x1, x2, . . . , xn.
s2

n Sample variance of n observation values x1, x2, . . . , xn.

s2
dnek

Sample variance of the most recent k out of n observation values
xn−k+1, xn−k+2, . . . , xn.

s2
w(n) Exponentially weighted sample variance of a time series of n observation values.
Sn Sample skewness of n observation values x1, x2, . . . , xn.

Sdnek

Sample skewness of the most recent k out of n observation values
xn−k+1, xn−k+2, . . . , xn.

Sw(n) Exponentially weighted sample skewness of a time series of n observation values.
xi The ith observation value within a time series, and i > 0.
xo Value of the oldest observation within the most recent k out of n observation values.
x̄n Sample mean of a time series of n observation values x1, x2, . . . , xn.

x̄dnek

Sample mean of the most recent k out of n observation values
xn−k+1, xn−k+2, . . . , xn.

x̄w(n)
Sample mean of a time series of n observation values x1, x2, . . . , xn with
exponentially decreasing weights.

α, β constant coefficients between 0 and 1 for discounting the contribution of older data.
Sn Auxiliary variable that carries the crucial information of the third Central Moment.

Sdnek
Auxiliary variable that is associated with, and is to update, Sdnek

.
Vn Auxiliary variable that carries the crucial information of the second Central Moment.

Vdnek
Auxiliary variable that is associated with, and is to update, s2

dnek
.

C2, C3 Auxiliary variables (similar to Vn and Sn) that are used in the Go Library.
M2, M3 Auxiliary variables (similar to Vn and Sn) that are used in GNU Scientific Library.

3.1. Cumulative Sample Skewness (CSS)

In this research, the efficient calculation of CSS relies on the efficient intermediate
steps for calculating running mean and running variance. To make the reasoning process
clear to readers, this paper also includes and explains cumulative sample mean (CSM) and
cumulative sample variance (CSV).

3.1.1. Calculation of Cumulative Sample Mean (CSM)

Following the previous naming convention, we define CSM as implying the recursive
calculation of the arithmetic average of a random sample from some population, as shown
in Equation (2).

x̄n+1 = x̄n +
xn+1 − x̄n

n + 1
, x̄0 = 0, n > 0 (2)

where x̄n represents the sample mean of a time series of n observation values x1, x2, . . . , xn,
while x̄n+1 indicates the updated sample mean after the new value xn+1 joins the observa-
tion time series. Although the derivation of Equation (2) is straightforward, we still briefly
report it in this paper (cf. Appendix A.1) for the purpose of completeness.

3.1.2. Calculation of Cumulative Sample Variance (CSV)

In practice, standard deviation is commonly used to measure how far a set of data
spread out from their average value. In order to make the derivation concise, this research
focuses on sample variance instead of sample standard deviation, as shown in the equation
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system (3). Note that the sample standard deviation can conveniently be obtained by taking
the square root of the sample variance.

s2
n =

Vn

n− 1
, V0 = V1 = 0, n > 1

Vn+1 = Vn + (xn+1 − x̄n+1)(xn+1 − x̄n)

(3)

where sn is the sample standard deviation of n observation values x1, x2, . . . , xn. The sample
variance s2

n is defined as a proportional function of the auxiliary variable Vn that can be
calculated in a recursive way, while Vn essentially carries the crucial information of the
second Central Moment, i.e., ∑n

i=1(xi − x̄n)2.
Despite the usage of different notations, Equation System (3) is the same as the

algorithm proposed by B. P. Welford in 1962 [38]. However, Welford’s algorithm does
not seem to be widely recognised and employed, possibly because “it is not obvious that
the method is correct even in exact arithmetic” [39]. As a result, the straightforward but
inefficient formula of recursive variance is still frequently shared in the community [40–42].
Therefore, we have managed to go through the derivation of Equation System (3) and
shared the details as proof in Appendix A.2.

3.1.3. Calculation of Cumulative Sample Skewness (CSS)

By trying to minimize the amount of multiplication and exponentiation from the
coding’s perspective, we developed Equation System (4) to calculate CSS.

Sn =
n · Sn

(n− 1)(n− 2) · s3
n

, S0 = S1 = S2 = 0, n > 2

Sn+1 = Sn − 3 · (x̄n+1 − x̄n) ·Vn + (Vn+1 −Vn)[xn+1 − x̄n+1 − (x̄n+1 − x̄n)]

(4)

where Sn is the sample skewness of n observation values x1, x2, . . . , xn. In this equation
system, Sn is defined as a proportional function of the auxiliary variable Sn that can be
calculated in a recursive fashion, while Sn essentially carries the crucial information of the
third central moment, i.e., ∑n

i=1(xi − x̄n)3.
It should be noted that (x̄n+1 − x̄n) and (Vn+1 −Vn) can directly be obtained from

the intermediate results in Equation (2) and Equation System (3), respectively. To our best
knowledge, this is the most efficient way to calculate CSS, as derived in Appendix A.3 and
validated in Section 4.3.

3.2. Rolling Sample Skewness (RSS)

The calculation of RSS proposed in this research is based on the same derivation logic
of CSS. Here we also include and specify the formulas of rolling sample mean (RSM) and
rolling sample variance (RSV) to facilitate sharing the proof details of RSS. In particular,
we introduce a special symbol dnek to represent the most recent k items from a time series
of n samples.

3.2.1. Calculation of Rolling Sample Mean (RSM)

Given the rolling window size k for a time series of observation values x1, x2, . . . , xn, xn+1,
their RSM can be calculated via Equation (5).

x̄dn+1ek = x̄dnek +
xn+1 − xo

k
, n > k > 0 (5)

where x̄dnek stands for the sample mean of the most recent k observation values
xn−k+1, xn−k+2, . . . , xn, while x̄dn+1ek indicates the updated sample mean after rolling the
observation window to include the new value xn+1 while removing the oldest one xo
(i.e., xn−k+1). The brief derivation of Equation (5) is shared in Appendix A.4.
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3.2.2. Calculation of Rolling Sample Variance (RSV)

Here we adapt Welford’s algorithm [38] of CSV (cf. Section 3.1.2) to the rolling window
scenario. It is noteworthy that although the adaptation of Welford’s algorithm has been
discussed in the open source community [43], there does not seem to be any consensus
answer yet. The main reason could still be the little disclosure of derivation details of
Welford’s algorithm.

Following the previous notations, we let RSV be recursively calculated via Equation
System (6). To our best knowledge, this is the most efficient approach to calculating RSV,
as it requires less multiplication operations than the other methods [44].

s2
dnek =

Vdnek
k− 1

, n > k > 1

Vdn+1ek = Vdnek + (xn+1 − xo)(xn+1 + xo − x̄dn+1ek − x̄dnek )

(6)

where s2
dnek

denotes the sample variance of the most recent k observation values
xn−k+1, xn−k+2, . . . , xn; and it can recursively be updated through its corresponding aux-
iliary variable Vdnek by rolling the observation window to include new values while
removing the oldest ones. The derivation details of Equation System (6) are shared in
Appendix A.5.

3.2.3. Calculation of Rolling Sample Skewness (RSS)

Through the derivation specified in Appendix A.6, we define the Equation System (7)
to calculate RSS.

Sdnek =
k · Sdnek

(k− 1)(k− 2) · s3
dnek

, n > k > 2

Sdn+1ek = Sdnek − 3 · (x̄dn+1ek − x̄dnek ) ·Vdnek+
(xn+1 − xo)[(xo − x̄dnek )(xo − 2x̄dn+1ek + x̄dnek ) + (xn+1 − x̄dn+1ek )(xn+1 + xo − 2x̄dn+1ek )]

(7)

where Sdnek represents the sample skewness of the most recent k observation values
xn−k+1, xn−k+2, . . . , xn. When the observation window keeps rolling forward, the con-
tinuous update of Sdnek will be realized through the recursive calculations of the auxiliary
variables Vdnek and Sdnek .

It should be noted that compared with the other peer formula forms, the multiplication
operations in Equation System (7) have been minimized. When implementing algorithm
from this equation system, the item 2x̄dn+1ek should be further expanded, so as to reuse the
intermediate results, for instance (xn+1 − x̄dn+1ek ) and (xo − x̄dn+1ek ).

3.3. Exponentially Weighted Sample Skewness (EWSS)

This research derives the calculation method of EWSS by referring to the formula
form of CSS, i.e., Equation System (4). In other words, different formula forms of CSS will
result in different calculation methods of EWSS. Given the efficiency in the CSS calculation
(cf. Section 3.1.3), we claim that the EWSS method in this research is also efficient.

In particular, we argue for the relationship between exponentially weighted sample
statistics and cumulative sample statistics by reusing the well-known derivation logic of
exponentially weighted sample mean (EWSM) [36]. Thus, this paper also includes EWSM
and exponentially weighted sample variance (EWSV) to facilitate explaining how we obtain
the formula for calculating EWSS.
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3.3.1. Calculation of Exponentially Weighted Sample Mean (EWSM)

As specified in Appendix A.7, Equation (8) for calculating EWSM is essentially a
formula transformation from CSM.

x̄w(n+1) = (1− α) · x̄w(n) + α · xn+1, n > 0, α ∈ (0, 1) (8)

where x̄w(n) represents the sample mean of a time series of n observation values x1, x2, . . . , xn
with exponentially decreasing weights, while x̄w(n+1) indicates the updated EWSM after
the new value xn+1 joins the observation time series. In particular, α is a constant coefficient
between 0 and 1, and a bigger α discounts the contribution of older data faster in the EWSM
calculation.

3.3.2. Calculation of Exponentially Weighted Sample Variance (EWSV)

Benefiting from the CSV formula (3), we define Equation (9) to calculate EWSV. Despite
different notations, this equation is also available in the open source community [17].

s2
w(n+1) = (1− β) · s2

w(n) + β · (xn+1 − x̄w(n+1))(xn+1 − x̄w(n)), n > 0, β ∈ (0, 1) (9)

where s2
w(n) denotes the EWSV of a time series of n observations; s2

w(n+1) represents the
updated EWSV after a new observation xn+1 joins the time series, and β is also defined as
a constant coefficients between 0 and 1, for discounting the contribution of older data in
the EWSV calculation. In addition, we further constrain the relation between α and β, as
shown in Equation System (10) and explained in Appendices A.8 and A.9.

3.3.3. Calculation of Exponentially Weighted Sample Skewness (EWSS)

Following the same derivation strategy as specified in Appendix A.9, we obtain the
equation system (10) for calculating EWSS.

1
α
− 1

β
= 1, α, β ∈ (0, 1), n > 0

(1− 2α) · s3
w(n+1) · Sw(n+1) = (1− β)(1− 2β) · s3

w(n) · Sw(n) − 3 · (x̄w(n+1) − x̄w(n))(1− β) · s2
w(n)+

β · (xn+1 − x̄w(n+1))(xn+1 − x̄w(n)) · [xn+1 − x̄w(n+1) − (x̄w(n+1) − x̄w(n))]

(10)

where α and β are constant coefficients directly reused from Equations (8) and (9), respec-
tively; Sw(n) denotes the EWSS of a time series of n observations; and Sw(n+1) is the updated
EWSS after a new observation xn+1 joins the time series.

Note that we intentionally deliver the current form of the EWSS formula in order to
highlight the reusable intermediate results for algorithm design, e.g., (1− β) · s2

w(n) from
Equation (9).

4. Algorithm Performance Evaluation

To verify the effectiveness and efficiency of our developed running skewness methods,
we decided to compare them against the third-party methods reported in the open source
community. However, as mentioned previously, we only found comparable counterparts
for the cumulative version of running skewness i.e., CSS. Therefore, we conducted perfor-
mance evaluation and comparison for CSS only. Considering that the cumulative version
plays a fundamental role in developing the rolling window version and the exponentially
weighted version (i.e., RSS is based on the derivation logic of CSS and EWSS is based
on the formula form of CSS), the CSS evaluation results will still be able to represent the
performance of RSS and EWSS.
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4.1. The CSS Calculation Method from GNU Scientific Library

The first third-party method involved in our comparison is from GNU Scientific
Library (GSL) (the source code is located in the folder rstat within the zipped library
gsl-latest.tar.gz at https://www.gnu.org/software/gsl/, accessed on 10 August 2021).
GSL is a well-known numerical library covering a wide range of mathematical routines
in C language. At the time of this research, the stable version is GSL-2.6, released on 20
August 2019. To facilitate the contrast between the GSL method and ours, we abstract
GSL’s source code into an equation system using our notations, as shown in (11).

x̄n+1 = x̄n +
xn+1 − x̄n

n + 1
, x̄0 = 0, n > 0

M2n+1 = M2n +
n · (xn+1 − x̄n)2

n + 1
, M20 = 0

M3n+1 = M3n − 3 · xn+1 − x̄n

n + 1
·M2n +

n · (n− 1)
(n + 1)2 · (xn+1 − x̄n)

3, M30 = 0

Sn+1 =
(
√

n)3

n + 1
· M3n+1

(
√

M2n+1)3

(11)

where x̄n and Sn, respectively, represent the sample mean and sample skewness of n
observation values x1, x2, . . . , xn. x̄n+1 and Sn+1 are the updated sample mean and sample
skewness after a new value xn+1 joins the observation dataset. (The equation of Sn+1 is
extracted from the code Line 184 to Line 186 of rstat.c.) As for the auxiliary variables M2
and M3, GSL generally defines Mkn = ∑n

i=1(xi − x̄n)k (in gsl_rstat.h).
When it comes to designing algorithms from formulas, a popular and practical strategy

is to save reusable intermediate results to minimize computational workloads and to speed
up programs. Thus, compared to Equation System (11), the source code of GSL employs a
set of temporary variables to reuse the intermediate results, as shown in Algorithm 1. It
should be noted that the equation systems (4) and (11) require n > 2 and n > 1 respectively
to avoid the error of division by zero. To ensure “apple-to-apple” performance comparison
among different algorithms, we intentionally set n > 2 in the if statement in Algorithm 1.

Algorithm 1 Cumulative Sample Skewness in GSL
Input: The incoming observation value x.
Global Parameters: The current amount of observations n, the sample mean mean of

the current observation values, and the current values of auxiliary variables M2 and M3.
Output: Cumulative sample skewness of the n + 1 observations.

1: n← n + 1 . The new observation is counted.
2: delta← x−mean . i.e., (xn+1 − x̄n) in Equation System (11).
3: delta_n← delta/n
4: term1← delta ∗ delta_n ∗ (n− 1) . i.e., n·(xn+1−x̄n)2

n+1 in Equation System (11).
5: mean← mean + delta_n
6: M3← M3− 3 ∗ delta_n ∗M2 + term1 ∗ delta_n ∗ (n− 2)
7: M2← M2 + term1 . The if statement is originally “if(n > 0)” in GSL’s source code.
8: if n > 2 and (optionally) not in a chunk then
9: f ac← (

√
n− 1)3/n

10: return f ac ∗M3/(
√

M2)3

11: else
12: return 0 . Numeric 0 or Boolean false depending on contexts.
13: end if

4.2. The CSS Calculation Method from a Go Library

Although not specified by GSL, according to Equation System (11), the GSL method
corresponds to the Fisher–Pearson coefficient of skewness. To reinforce the comparison re-

https://www.gnu.org/software/gsl/
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sults, we further identified an online statistical library written in Go (GoL) (an open-source
Go library for online statistical algorithms at https://github.com/alexander-yu/stream,
accessed on 10 August 2021), which employed the adjusted Fisher–Pearson coefficient of
skewness. Despite the generic algorithms [45] cited by GoL, we also extract a skewness-
specific equation system from GoL’s source code, as shown in Equation System (12), in
order to facilitate the formula comparison.

x̄n+1 = x̄n +
xn+1 − x̄n

n + 1
, x̄0 = 0, n > 2

C2n+1 = C2n +
n · (xn+1 − x̄n)2

n + 1
, C20 = 0

C3n+1 = C3n − 3 · xn+1 − x̄n

n + 1
· C2n +

n · (n− 1)
(n + 1)2 · (xn+1 − x̄n)

3, C30 = 0

Sn+1 =

√
n · (n + 1)

n− 1
·

C3n+1
n+1

(
√

C2n+1
n+1 )3

(12)

In addition to the same notations x, x̄, and S used in Equation System (11), we define
C2 and C3 as two auxiliary variables in this equation system, by referring to Core.sums [2]
and Core.sums [3], respectively, in the source code of GoL. By contrasting between the
equation systems (12) and (11), it is clear that C2 and C3 are exactly the same as M2 and
M3 for tracking the second and the third central moments, while only the calculations of
Sn+1 are different. (The equation for calculating Sn+1 in Equation System (12) is extracted
from the code Line 96 to Line 105 of skewness.go at https://github.com/alexander-yu/
stream/blob/master/moment/skewness.go, accessed on 10 August 2021).

Similarly, we follow GSL’s code optimisation strategy to describe the GoL method’s
CSS calculation into Algorithm 2. Note that similar temporary variables are used in this
algorithm. Moreover, we use C2/n and C3/n respectively to replace the calculations
of variables variance and moment (i.e., n

n+1 ·
C2
n and n

n+1 ·
C2
n ) in the source code, for the

convenience of algorithm comparison. This replacement does not have a negative impact on
the representation of the original algorithm in GoL, because the simplified math operations
have even improved the algorithm efficiency.

Algorithm 2 Cumulative Sample Skewness in GoL
Input: The incoming observation value x.
Global Parameters: The current amount of observations n, the sample mean mean

of the current observation values, and the current values of auxiliary variables C2
(i.e., Core.sums [2]) and C3 (i.e., Core.sums [3]).

Output: Cumulative sample skewness of the n + 1 observations.
1: n← n + 1 . The new observation is counted.
2: delta← x−mean . i.e., (xn+1 − x̄n) in Equation System (12).
3: delta_n← delta/n
4: term1← delta ∗ delta_n ∗ (n− 1) . i.e., n·(xn+1−x̄n)2

n+1 in Equation System (12).
5: mean← mean + delta_n
6: C3← C3− 3 ∗ delta_n ∗ C2 + term1 ∗ delta_n ∗ (n− 2)
7: C2← C2 + term1
8: if n > 2 and (optionally) not in a chunk then
9: f ac←

√
n ∗ (n− 1)/(n− 2) . i.e., adjust in the code.

10: return f ac ∗ C3/n/(
√

C2/n)3 . variance and moment in the source code have
been simplified as C2/n and C3/n here.

11: else
12: return 0 . Numeric 0 or Boolean false depending on contexts.
13: end if

https://github.com/alexander-yu/stream
https://github.com/alexander-yu/stream/blob/master/moment/skewness.go
https://github.com/alexander-yu/stream/blob/master/moment/skewness.go
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4.3. Performance Comparison among the Three CSS Calculation Methods

To facilitate our experimental design and analysis for the performance comparison,
we refer to DoKnowMe [46], which is a domain-knowledge-driven methodology for perfor-
mance evaluation. For example, we prepared different sizes of workloads as the benchmark,
and we pre-decided running time and correctness as two metrics to measure the experi-
mental responses. Furthermore, since DoKnowMe is compatible with the discipline Design
of Experiments (DOE) [47], we followed the principle of repeated measures design to
conduct multiple trials and measurements at each experimental setting. For the purpose of
conciseness, we only report critical components of the complete evaluation workflow in
this paper.

4.3.1. Experimental Preparation

To help guide and replicate the experimental implementations, we also use a language-
independent algorithm to describe the CSS calculation method developed in this research.

First of all, by using the two auxiliary variables V and S in the equation systems
(3) and (4), we further derive Equation (13) for calculating Sn+1.

Sn+1 =
(n + 1) · Sn+1

n · (n− 1) · s3
n+1

=
(n + 1) · Sn+1

n · (n− 1)(
√

Vn+1
n )3

=
(n + 1) ·

√
n

n− 1
· Sn+1

(
√
Vn+1)3

(13)

Then, we follow GSL’s naming convention to include temporary variables to design
the corresponding algorithm, as shown in Algorithm 3.

Algorithm 3 Cumulative Sample Skewness in this Research
Input: The incoming observation value x.
Global Parameters: The current amount of observations n, the sample mean mean of

the current observation values, and the current values of auxiliary variables bbV (i.e., Vn)
and bbS (i.e., Sn).

Output: Cumulative sample skewness of the n + 1 observations.
1: n← n + 1 . The new observation is counted.
2: delta← x−mean
3: delta_n← delta/n . i.e., (x̄n+1 − x̄n) in Equation System (4).
4: mean← mean + delta_n
5: delta2← x−mean . i.e., (xn+1 − x̄n+1) in Equation System (4).
6: delta_m← delta ∗ delta2 . i.e., (Vn+1 −Vn) in Equation System (4).
7: bbS← bbS− 3 ∗ delta_n ∗ bbV + delta_m ∗ (delta2− delta_n)
8: bbV ← bbV + delta_m
9: if n > 2 and (optionally) not in a chunk then

10: f ac← n ∗
√

n− 1/(n− 2)
11: return f ac ∗ bbS/(

√
bbV)3

12: else
13: return 0 . Numeric 0 or Boolean false depending on contexts.
14: end if

Since these three algorithms have the same time complexity, we employ running time
as the metric to compare their performances. To facilitate “apple-to-apple” comparison and
the following visualization, we implemented all the algorithms into Python (version 3.7.6)
programs on a machine with Intel(R) Core(TM) i7-8550U CPU. @ 1.80 GHz and 8 GB RAM.
The benchmark dataset (price2.txt shared at http://doi.org/10.5281/zenodo.4583508,
accessed on 10 August 2021) is composed of 9,089,285 price records in total from Amazon’s
spot service price history, and we used different amounts of price records as different
sample sizes to test the performances of the three Python programs. In addition to varying
sample sizes, we further distinguish between two types of workloads:

http://doi.org/10.5281/zenodo.4583508
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• The first workload type is to process data one by one. In this research, the programs
screen the sample dataset and return the updated CCS value right after every single
new price record is included in the processing.

• The second workload type is to process data chunk by chunk. In this research, the
programs return the updated CSS value after every a new price records are included
in the processing, while skipping the skewness calculation within the update intervals
(i.e., supplementing n% a == 0 to the if statement in all the algorithms). Note that
the intermediate variables outside the if-else block are still updated continuously
when screening the sample dataset.

4.3.2. Experimental Results

Inspired by the principle of repeated measures design [47] and by the suggestion of
the minimum observation amount [48], we ran the programs ten or more times at each
experimental setting. At last, we obtained the three programs’ average running times with
respect to different workloads, as exemplified and illustrated in Figure 1.
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Figure 1. CSS algorithm performance comparison among the GSL method, the GoL method, and this research’s method
with respect to different workloads.

In general, the running time increases along with the size of the first-type workloads
(from N = 104 to N = 106). As for the second-type workloads (from N = 106, C = 2 to
N = 106, C = 106), it is not surprising that the running time keeps decreasing when skipping
more and more skewness calculations. Nevertheless, skipping skewness calculations will
have little impact on the running time if the update interval is larger than 100 price records.
The reason is the diminishing marginal returns from the reduced workloads. Given the
predefined sample size N = 106, when the sample skewness is updated after every 100+
price records, the code within the if-else block will be executed less than 104 times. Our
extensive experiments have shown that on our testbed, the program execution at such a
workload level is so fast that the corresponding running time would be negligible.

Specifically, when dealing with the first-type workloads, the method from this research
is slightly slower than the GSL method (about 10 ms on average in our tests), while it is
clearly faster than the GoL method (almost 200 ms at the workload size N = 106). When
dealing with the second type of workloads, this research shows a clear advantage over
both the GSL method and the GoL method. By using the metric speedup to measure the
performance difference, our method can be more than 10% times faster than the other two
methods in this case, as demonstrated in Figure 1.

It should be noted that in addition to fitting in the chunk-by-chunk scenario [15], the
second workload type is also practical and meaningful when practitioners only need to
monitor some samples of CSS values. In practice, the three algorithms can conveniently
be modified to update CSS only when receiving request signals. As such, in the case of
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data-intensive skewness monitoring, we can obtain significant performance enhancement
even by halving the update frequency (i.e., updating CSS after every two data records).
For example, by switching the workload from N = 106 to N = 106, C = 2 (cf. Figure 1), the
GSL method and the GoL method receive about 15% and 27% performance improvements,
respectively, while our method sees more than 22% performance improvement.

4.3.3. Correctness Verification

Driven by the discussions in [8,9], we decided to use modern software systems of
statistics to empirically validate the correctness of our method. For our convenience, we
employ Microsoft Excel’s native function SKEW() to return different data samples’ skewness
as reference, to verify and compare the calculation results from the GSL method, the GoL
method, and our method. In particular, we choose the top N prices records (ranging
from the first three records to the first one million records) as data samples from the
aforementioned benchmark dataset. The selected validation results are listed in Table 2.

By referring to the output from Microsoft Excel, we claim that both our method and the
GoL method can accurately calculate CSS. In contrast, the GSL method delivers different
sample skewness values, although the difference becomes smaller and smaller as the sample
size grows. This further confirms that due to the employment of Fisher–Pearson skewness
coefficient, the GSL method may not be suitable for modern applications. More importantly,
considering that online learning only uses a small set of data for its initial training, the big
error of skewness from the GSL method may lead to a huge threat to the implementations
of skewness-aware online edge learning. Thus, from the perspective of correctness, we
suggest avoiding the GSL method when implementing skewness monitoring in production.
Note that we have double-confirmed the GSL method’s calculation results by running a C
program that directly utilizes the relevant libraries.

Table 2. Three Methods’ CSS Calculation Results against EXCEL Output.

Sample Size GSL Method GoL Method This Research Excel Skew( )

3 −0.378753 −1.704387 −1.704387 −1.704387
4 −0.749576 −1.998869 −1.998869 −1.998869
5 −0.292042 −0.608421 −0.608421 −0.608421
10 −0.944882 −1.312336 −1.312336 −1.312336

100 4.593622 4.734717 4.734717 4.734717
1000 6.075131 6.093399 6.093399 6.093399

10,000 5.882105 5.883870 5.883870 5.883870
100,000 44.200905 44.202232 44.202232 44.202232

1,000,000 43.528738 43.528869 43.528869 43.528869

4.3.4. Performance Analysis

In addition to the correctness, we analyse the root causes of the performance difference
in the three methods by investigating their algorithms together with the experimental
results. First, we discuss the reason why the GSL method has the fastest speed when dealing
with one-by-one data. Considering that GSL employs the Fisher–Pearson coefficient of
skewness whereas GoL and this research employ the adjusted Fisher–Pearson coefficient
(cf. Appendix A.3), both the GoL method and our method have involved adjustment
overhead in the CSS calculations. However, as mentioned in Section 4.3.3, the de facto
software packages/products generally include an adjustment for sample size [8], and thus
the GSL method may not be suitable for modern applications.

Then, we discuss the reason why our method has the fastest speed when coping with
chunk-by-chunk data. Due to the benefit of the unified pseudo code, it is convenient to
count that Algorithm 3 has fewer math operations outside the if-else block than the
other two algorithms. Although the operation difference is as small as one multiplication
only, the performance difference will be magnified due to large sample sizes, especially in
the long-term data streaming scenario. Since there is no need to obtain skewness values
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within a data chunk (i.e., the code inside the if-else block is not executed in this case),
the aforementioned adjustment overhead will be tangibly reduced even if the chunk size is
two, which eventually makes our method faster than the GSL method.

As for the GoL method, in addition to the overhead of adjustment and extra multiplica-
tion, Algorithm 2 also suffers an avoidable performance loss inside its if-else block. It
should be noted that the math operations here can further be simplified into the same form
as our method. The current form of Algorithm 2 will be reasonable if the variance value
and the skewness value are both needed. However, as shown in Algorithms 1 and 3, the
explicit variance calculation is not required when monitoring skewness values only.

Overall, the performance advantage of this research is particularly meaningful and
valuable in the context of online edge learning, because practitioners “strive for millisecond-
level learning; everything else comes second” [49]. Moreover, considering that IoT devices
generally have limited computing and memory capabilities, minimizing operations will
be more IoT-friendly and be able to bring significant marginal utility. Even in the broader
context of edge cloud computing, any (even small) performance improvement will matter,
as “every drop of 20 ms . . . latency will result in a 7–15% decrease in page load times” [50].

5. Validation and Discussion about Skewness-Aware Online Edge Learning

According to the existing studies on skewness-aware machine learning, the typical
strategies of dealing with skewed data include: (1) collecting a suitable number of observa-
tions to build a balanced training dataset [5,19], (2) using log transformation to normalise
the distribution [19], (3) removing the skewed features when training models [33], (4)
employing a penalty function to reduce the impact of skewness [7], etc. Benefiting from the
running skewness methods developed in this research, we argue that practitioners will be
able to adapt (at least some of) these strategies to different scenarios of online edge learning.
As described in the following subsections, we conducted an experimental investigation
and proposed a theoretical mechanism to justify the feasibility and usefulness of being
aware of skewness in online edge learning.

5.1. Automatic Decision Making in Sample Size for Initial Training

Before making predictions at runtime, online learning needs to accumulate a cer-
tain number of training data to obtain the first version of model. The de facto strategy
seems to use a random or an experience-based size of samples for initial training. For
example, the study [14] initializes online learning models using the first 100 observations
by default, or using a manually input number of observations. (The variable numLags
at https://github.com/chickenbestlover/Online-Recurrent-Extreme-Learning-Machine/
blob/master/run.py, accessed on 10 August 2021).

Inspired by the aforementioned first strategy of dealing with skewed data, we propose
employing CSS to monitor the skewness of accumulated samples against a predefined
threshold, so as to decide the initial training dataset automatically. For ease of comparison,
we directly reused the online learning implementations in [14] and slightly modified
the source code into a skewness-aware version. Firstly, we commented out the code of
standardising the whole dataset, because the online learning “model does not know how
many data will be presented” [26]. Secondly, we supplemented Algorithm 3 to the original
source code for real-time monitoring of skewness. In particular, since the reported datasets
are generally balanced (cf. Section 5.2), we define the skewness threshold to be 0.05 after
taking the absolute value.

When the online-sequential extreme learning machine (OS_ELM) over the New York
City taxi passenger dataset (i.e., nyc_taxi.csv) is used as an example, the time-series
prediction results from executing the original program and our skewness-aware version
are both plotted in Figure 2. It should be noted that we kept the default neural network
setting (i.e., 100 input neurons, 23 hidden neurons, and 1 output neuron) in this test.
In general, every single neuron in a neural network will receive a group of weighted
inputs and then return an output after applying an activation function. Given this typical

https://github.com/chickenbestlover/Online-Recurrent-Extreme-Learning-Machine/blob/master/run.py
https://github.com/chickenbestlover/Online-Recurrent-Extreme-Learning-Machine/blob/master/run.py
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three-layer architecture of the default setting, the input-layer neurons represent individual
attributes of the dataset to be learned, the hidden-layer neurons are equipped with non-
linear activation functions to be able to solve non-linear problems, and the output-layer
neurons can eventually deliver an output that represents the neural network’s prediction.
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Figure 2. Time-series prediction of the online-sequential extreme learning machine (OS_ELM) over the nyc_taxi dataset.

Compared with the original implementation that uses 100 observations (with skewness
value −0.5589) in the initial training, our skewness-aware program automatically selects
the first 26 observations (with skewness value−0.0157) to train the initial model. According
to the plot shown in Figure 2, intuitively, using fewer training data does not seem to make
negative impact on the predication results. On the contrary, the predicted values from the
skewness-aware version even better fit the observed values in many cases, e.g., the time
series points from 12,150 to 12,160 and from 12,200 to 12,210.

To compare our skewness-aware model with the original model in an objective way,
we decided to assess their prediction accuracy quantitatively. Specifically, we follow the
study [14] to employ the normalised root-mean-square error (NRMSE) to measure the
difference between the observed values and the predicted values. Without standardising
the whole dataset, the NRMSE of the original OS_ELM is about 70.06%, while the skewness-
aware OS_ELM has a clearly better forecast accuracy at a lower NRMSE value 53.88%.

We further tested different neural network sizes by gradually increasing the number
of hidden neurons. The skewness-aware OS_ELM seems always to have an advantage over
the original OS_ELM implementation, as listed in Table 3, although the advantage may
become trivial with large neural networks. This finding reveals that given a better-trained
initial model, the following online learning work can have a higher prediction accuracy,
which also makes common sense that “the slightest difference leads to a huge error”.

Table 3. Prediction Accuracy Comparison between Original OS_ELM and Skewness-aware OS_ELM.

Number of Hidden Neurons Original OS_ELM Skewness-Aware OS_ELM

23 NRMSE: 70.06% NRMSE: 53.88%
50 NRMSE: 50.85% NRMSE: 48.14%
100 NRMSE: 41.41% NRMSE: 38.77%
200 NRMSE: 36.33% NRMSE: 33.11%

5.2. A Redundancy Mechanism for Skewness-Aware Online Edge Learning

When it comes to the skewness awareness after the initial training stage, inspired
by using log transformation to deal with high skewness, we propose maintaining two
online learning models respectively over the observed data and over the transformed data
at runtime. As such, given a predefined threshold, the online learning system can keep
monitoring skewness and accordingly switch between the two models to output predicted
values, as illustrated in Figure 3. As for the threshold, according to the suggestions from
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the literature [51], we distinguish between balanced data and skewed data by checking
whether or not the absolute skewness value is less than three. 
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Figure 3. The redundancy mechanism for skewness-aware online edge learning.

Such a redundancy mechanism may be particularly suitable for the partially skewed
scenario where the online learning logic involves a time/observation window or a forget-
ting mechanism. Correspondingly, RSS or EWSS can be employed to monitor skewness in
this case. It should be noted that this redundancy inevitably requires double computing
resources for a single online learning task. Therefore, the cost–benefit analysis should play a
prerequisite role in applying the redundancy mechanism to real-world edge environments.
In addition, the log transformation can be replaced with other suitable techniques of curing
skewed data when implementing this redundancy mechanism.

At the time of writing this paper, we are still exploring suitable (partially skewed) time
series data to validate the proposed redundancy mechanism. As discussed in Section 2, it
seems that few skewed time series are employed and shared in the community. The lack of
reusable skewed data confirms the widely known fact of publication bias, i.e., the existing
research may (have to) have intentionally selected balanced datasets to study and publish,
because researchers can barely obtain positive results from the online learning techniques
over skewed data [6].

Considering the ever-evolving nature of the discipline, we hope to use this proposed re-
dundancy mechanism to inspire more collaboration in skewness-aware online edge learning.

6. Conclusions and Future Work

It is known that machine learning can never do a good job with skewed data. Thus,
pre-processing the whole datasets for curing high skewness (e.g., log transformation)
has been a common practice before applying machine learning technologies. In edge
computing, however, there is no way to conduct such data pre-processing, because it is
impractical and impossible to store all the past observations and foresee all the future
observations. For the same reason, machine learning at the Internet edge is generally
implemented in an online fashion. Correspondingly, it will be valuable to monitor the
running skewness of continuous observations before being able to take suitable actions to
cure high skewness at runtime.

Nevertheless, when trying to integrate skewness monitoring to online edge learning,
we identified a surprising gap between practitioners’ needs and the scientific research in
running skewness algorithms. This research bridges the gap by developing a set of IoT-
friendly statistical methods to facilitate monitoring skewness at runtime. These methods
are essentially based on Welford’s algorithm, which is the most efficient way to calcu-
late running variance. We believe that as an innovation in computer science, Welford’s
algorithm might have been overlooked in the statistics community.

More importantly, this research has initially validated the usefulness and significance
of being aware of skewness in the implementations of online edge learning. To help boost
this promising research field, our future work will unfold along two directions. Firstly, we
plan to keep exploring and employing more datasets to strengthen the current validation
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results. Secondly, we will try to collaborate with more online learning researchers on
developing real-time skewness remedies.
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Appendix A. Opening the Developed Methods

Following the spirit of open methods that act “as a higher-level strategy over open-
source tools and open-access data” to facilitate scientific work [20], we also share the
proofs of the developed methods in this paper. In fact, the formula derivation details are
particularly crucial in the context of running statistics, as discussed in Section 3.1.2.

Appendix A.1. Proof of Equation (2) for Calculating Cumulative Sample Mean (CSM)

Proof. Given a series of n observation values x1, x2, . . . , xn, their arithmetic average x̄n can
be calculated by Equation (A1):

x̄n =
∑n

i=1 xi

n
(A1)

https://github.com/chickenbestlover/Online-Recurrent-Extreme-Learning-Machine
https://github.com/chickenbestlover/Online-Recurrent-Extreme-Learning-Machine
https://github.com/alexander-yu/stream
https://github.com/alexander-yu/stream
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When a new observation value xn+1 arrives, the sum of the first n values can be
substituted by n · x̄n for calculating the arithmetic average of the n + 1 values, i.e.,

x̄n+1 =
∑n+1

i=1 xi

n + 1
=

∑n
i=1 xi + xn+1

n + 1
=

n · x̄n + xn+1

n + 1
= x̄n +

xn+1 − x̄n

n + 1
(A2)

It is clear that x̄0 is zero by default when no value is involved in the average calculation.
This completes the proof of Equation (2).

Appendix A.2. Proof of Equation System (3) for Calculating Cumulative Sample Variance (CSV)

Proof. Given a series of n discrete random values x1, x2, . . . , xn as the sample dataset, the
unbiased estimator for the population variance is:

s2
n =

∑n
i=1(xi − x̄n)2

n− 1
(A3)

By introducing the auxiliary notation V, this can be rewritten as:

Vn = (n− 1) · s2
n =

n

∑
i=1

(xi − x̄n)
2 (A4)

When a new value xn+1 arrives, a straightforward modification of the unbiased
estimator can be:

Vn+1 = n · s2
n+1 =

n+1

∑
i=1

(xi − x̄n+1)
2 (A5)

Then, we calculate the differences between Vn+1 and Vn via Equation (A6).

Vn+1 −Vn =
n+1

∑
i=1

(xi − x̄n+1)
2 −

n

∑
i=1

(xi − x̄n)
2 = (xn+1 − x̄n+1)

2 +
n

∑
i=1

[(xi − x̄n+1)
2 − (xi − x̄n)

2]

= (xn+1 − x̄n+1)
2 +

n

∑
i=1

(2xi − x̄n+1 − x̄n)(x̄n − x̄n+1)

= (xn+1 − x̄n+1)
2 + (x̄n − x̄n+1)

n

∑
i=1

(2xi − x̄n+1 − x̄n)

(A6)

Recall that ∑n
i=1 xi = n · x̄n; we have:

n

∑
i=1

(2xi − x̄n+1 − x̄n) = 2
n

∑
i=1

xi − n · x̄n+1 − n · x̄n =
n

∑
i=1

xi − n · x̄n+1

= (n + 1) · x̄n+1 − xn+1 − n · x̄n+1

= x̄n+1 − xn+1

(A7)

Eventually,

Vn+1 −Vn = (xn+1 − x̄n+1)
2 + (x̄n − x̄n+1)(x̄n+1 − xn+1) = (xn+1 − x̄n+1)(xn+1 − x̄n+1 − x̄n + x̄n+1)

= (xn+1 − x̄n+1)(xn+1 − x̄n)
(A8)

i.e.,
Vn+1 = Vn + (xn+1 − x̄n+1)(xn+1 − x̄n) (A9)

The sample standard deviation can conveniently be obtained by taking the square root
of the unbiased estimator s2

n+1. In addition, x̄0 and s2
0 are initialised as zero by default when

no value is involved in the calculation. This completes the proof of Equation System (3).
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Appendix A.3. Proof of Equation System (4) for Calculating Cumulative Sample Skewness (CSS)

Proof. Given a series of n observation values x1, x2, . . . , xn, the symmetry of their distribu-
tion is measured by the sample skewness Sn:

Sn =
n

(n− 1)(n− 2)
· ∑n

i=1(xi − x̄n)3

s3
n

(A10)

By introducing the auxiliary notation S, this can be rewritten into:

Sn =
(n− 1)(n− 2)

n
· s3

n · Sn =
n

∑
i=1

(xi − x̄n)
3 (A11)

When the dataset includes a new value xn+1, we have:

Sn+1 =
n(n− 1)

n + 1
· s3

n+1 · Sn+1 =
n+1

∑
i=1

(xi − x̄n+1)
3 =

n

∑
i=1

(xi − x̄n+1)
3 + (xn+1 − x̄n+1)

3 (A12)

By focusing on ∑n
i=1(xi − x̄n+1)

3 only,

n

∑
i=1

(xi − x̄n+1)
3

=
n

∑
i=1

[(xi − x̄n)− (x̄n+1 − x̄n)]
3

=
n

∑
i=1

[(xi − x̄n)
3 − 3 · (xi − x̄n)

2(x̄n+1 − x̄n) + 3 · (xi − x̄n)(x̄n+1 − x̄n)
2 − (x̄n+1 − x̄n)

3]

=
n

∑
i=1

(xi − x̄n)
3 − 3 · (x̄n+1 − x̄n)

n

∑
i=1

(xi − x̄n)
2 + 3 · (x̄n+1 − x̄n)

2(
n

∑
i=1

xi − n · x̄n)− n · (x̄n+1 − x̄n)
3

=
n

∑
i=1

(xi − x̄n)
3 − 3 · (x̄n+1 − x̄n)

n

∑
i=1

(xi − x̄n)
2 − (n · x̄n+1 − n · x̄n)(x̄n+1 − x̄n)

2

=
n

∑
i=1

(xi − x̄n)
3 − 3 · (x̄n+1 − x̄n)

n

∑
i=1

(xi − x̄n)
2 − [n · x̄n+1 − (n + 1) · x̄n+1 + xn+1](x̄n+1 − x̄n)

2

= Sn − 3 · (x̄n+1 − x̄n) ·Vn − (xn+1 − x̄n+1)(x̄n+1 − x̄n)
2

(A13)

Thus,

Sn+1 = Sn − 3 · (x̄n+1 − x̄n) ·Vn − (xn+1 − x̄n+1)(x̄n+1 − x̄n)
2 + (xn+1 − x̄n+1)

3

= Sn − 3 · (x̄n+1 − x̄n) ·Vn + (xn+1 − x̄n+1)[(xn+1 − x̄n+1)
2 − (x̄n+1 − x̄n)

2]

= Sn − 3 · (x̄n+1 − x̄n) ·Vn + (xn+1 − x̄n+1)(xn+1 − x̄n)(xn+1 − 2x̄n+1 + x̄n)

= Sn − 3 · (x̄n+1 − x̄n) ·Vn + (Vn+1 −Vn)[xn+1 − x̄n+1 − (x̄n+1 − x̄n)]

(A14)

In particular, x̄0, s0, and S0 are all initialized as zero by default when no observation is
involved in the calculation. This completes the proof of Equation System (4).

Appendix A.4. Proof of Equation (5) for Calculating Rolling Sample Mean (RSM)

Proof. Given n observations, the arithmetic average x̄dnek of the most recent k values is:

x̄dnek =
∑n

i=n−k+1 xi

k
(A15)
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After observing a new value xn+1, the sample mean within the same size of rolling
window can be updated as x̄dn+1ek in a recursive manner.

x̄dn+1ek =
∑n+1

i=n−k+2 xi

k
=

∑n
i=n−k+1 xi + xn+1 − xo

k
=

k · x̄dnek + xn+1 − xo

k
= x̄dnek +

xn+1 − xo

k
(A16)

In practice, the sample mean x̄dkek of the first k values should be initialized before
rolling the observation window, and thus the total amount of observations n must be at
least equal to k and the rolling window size k should not be zero. This completes the proof
of Equation (5).

Appendix A.5. Proof of Equation System (6) for Calculating Rolling Sample Variance (RSV)

Proof. Given n observations, the sample variance s2
dnek

of the most recent k values is:

s2
dnek =

∑n
i=n−k+1(xi − x̄dnek )

2

k− 1
(A17)

By using the notation V to simplify the representation, we rewrite this equation into:

Vdnek = (k− 1) · s2
dnek =

n

∑
i=n−k+1

(xi − x̄dnek )
2 (A18)

After observing a new value xn+1, the k-item sample variance should be updated as:

Vdn+1ek = (k− 1) · s2
dn+1ek =

n+1

∑
i=n−k+2

(xi − x̄dn+1ek )
2 (A19)

Following the same strategy as in Appendix A.2, we calculate the differences between
Vdn+1ek and Vdnek via Equation (A20).

Vdn+1ek −Vdnek

= ∑n+1
i=n−k+2(xi − x̄dn+1ek )

2 −∑n
i=n−k+1(xi − x̄dnek )

2

= (xn+1 − x̄dn+1ek )
2 − (xo − x̄dn+1ek )

2 + ∑n
i=n−k+1[(xi − x̄dn+1ek )

2 − (xi − x̄dnek )
2]

= (xn+1 + xo − 2x̄dn+1ek )(xn+1 − xo) + (x̄dnek − x̄dn+1ek )∑n
i=n−k+1(2xi − x̄dnek − x̄dn+1ek )

(A20)

In particular,

∑n
i=n−k+1(2xi − x̄dnek − x̄dn+1ek ) = 2 ∑n

i=n−k+1 xi − k · x̄dnek − k · x̄dn+1ek

= 2k · x̄dnek − k · x̄dnek − k · x̄dn+1ek

= k · (x̄dnek − x̄dn+1ek )

= xo − xn+1

(A21)

Thus,

Vdn+1ek −Vdnek = (xn+1 + xo − 2x̄dn+1ek )(xn+1 − xo) + (x̄dnek − x̄dn+1ek )(xo − xn+1)

= (xn+1 − xo)(xn+1 + xo − x̄dn+1ek − x̄dnek )
(A22)

Similarly, the sample variance s2
dkek

of the first k values should be initialised before
rolling the observation window, and thus the total number of observations n must be at
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least equal to k, while the rolling window k must be bigger than 1 to avoid the error of
division by zero. This completes the proof of Equation System (6).

Appendix A.6. Proof of Equation System (7) for Calculating Rolling Sample Skewness (RSS)

Proof. Given n observations, the sample skewness Sdnek of the most recent k values is:

Sdnek =
k

(k− 1)(k− 2)
·

∑n
i=n−k+1(xi − x̄dnek )

3

s3
dnek

(A23)

By using the notation S to simplify the representation, we rewrite Equation (A23) into:

Sdnek =
(k− 1)(k− 2) · s3

dnek
· Sdnek

k
=

n

∑
i=n−k+1

(xi − x̄dnek )
3 (A24)

After observing a new value xn+1, Equation (A24) can be updated as:

Sdn+1ek =
n+1

∑
i=n−k+2

(xi − x̄dn+1ek )
3 =

n

∑
i=n−k+1

(xi − x̄dn+1ek )
3 + (xn+1 − x̄dn+1ek )

3 − (xo − x̄dn+1ek )
3 (A25)

Following the same strategy as in Appendix A.3, we can firstly focus on ∑n
i=n−k+1(xi−

x̄dn+1ek )
3.

n

∑
i=n−k+1

(xi − x̄dn+1ek )
3

=
n

∑
i=n−k+1

[(xi − x̄dnek )− (x̄dn+1ek − x̄dnek )]
3

=
n

∑
i=n−k+1

[(xi − x̄dnek )
3 − 3(xi − x̄dnek )

2(x̄dn+1ek − x̄dnek )− 3(xi − x̄dnek )(x̄dn+1ek − x̄dnek )
2 − (x̄dn+1ek − x̄dnek )

3]

=
n

∑
i=n−k+1

(xi − x̄dnek )
3 − k · (x̄dn+1ek − x̄dnek )

3 − 3(x̄dn+1ek − x̄dnek )
n

∑
i=n−k+1

(xi − x̄dnek )
2

= Sdnek − 3(x̄dn+1ek − x̄dnek ) ·Vdnek − (k · x̄dn+1ek − k · x̄dnek )(x̄dn+1ek − x̄dnek )
2

= Sdnek − 3(x̄dn+1ek − x̄dnek ) ·Vdnek − (xn+1 − xo)(x̄dn+1ek − x̄dnek )
2

(A26)

On the other hand,

(xn+1 − x̄dn+1ek )
3 − (xo − x̄dn+1ek )

3

= (xn+1 − xo)[(xn+1 − x̄dn+1ek )
2 + (xn+1 − x̄dn+1ek )(xo − x̄dn+1ek ) + (xo − x̄dn+1ek )

2]

= (xn+1 − xo)[(xn+1 − x̄dn+1ek )(xn+1 + xo − 2x̄dn+1ek ) + (xo − x̄dn+1ek )
2]

(A27)

Then,

Sdn+1ek = Sdnek − 3(x̄dn+1ek − x̄dnek ) ·Vdnek + (xn+1 − xo)[(xn+1 − x̄dn+1ek )(xn+1 + xo − 2x̄dn+1ek )

+ (xo − x̄dn+1ek )
2 − (x̄dn+1ek − x̄dnek )

2]

= Sdnek − 3(x̄dn+1ek − x̄dnek ) ·Vdnek + (xn+1 − xo)[(xn+1 − x̄dn+1ek )(xn+1 + xo − 2x̄dn+1ek )

+ (xo − x̄dnek )(xo − 2x̄dn+1ek + x̄dnek )]

(A28)
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To initialise the sample skewness S2
dkek

of the first k values before rolling the obser-
vation window, the total number of observations n must be at least equal to k, while the
rolling window k must be bigger than two to avoid the error of division by zero. This
completes the proof of Equation System (7).

Appendix A.7. Proof of Equation (8) for Calculating Exponentially Weighted Sample
Mean (EWSM)

Proof. We refer to [36] to briefly rephrase the derivation of the EWSM formula. Similarly,
the derivation starts from the discussion about CSM by rewriting (2) as:

x̄n+1 = x̄n +
xn+1 − x̄n

n + 1
=

n
n + 1

· x̄n +
1

n + 1
· xn+1 (A29)

It is clear that when the observation amount n approaches infinity, the new observation
value xn+1 will barely play a part in the calculation of the sample mean, which violates the
EWSM scenario where the more recent data are more valuable/significant. In contrast, by
replacing the item 1

n+1 with a constant coefficient α between 0 and 1, and correspondingly
replacing n

n+1 with (1− α), the contribution of older observations will become progressively
smaller. Eventually, we obtain the equation for calculating EWSM as follows.

x̄w(n+1) = (1− α) · x̄w(n) + α · xn+1 (A30)

In particular, to avoid confusion with the notation x̄n, we use x̄w(n) to denote the
sample mean that involves all the existing weighting effects. Moreover, in this form, a
bigger α discounts older data faster. This completes the proof of Equation (8).

Appendix A.8. Proof of Equation (9) for Calculating Exponentially Weighted Sample
Variance (EWSV)

Proof. Following the same strategy of drawing the EWSM formula, we start the derivation
from rewriting the CSV formula (3) into:

n · s2
n+1 = (n− 1) · s2

n + (xn+1 − x̄n+1)(xn+1 − x̄n) (A31)

and then:
s2

n+1 = (1− 1
n
) · s2

n +
1
n
· (xn+1 − x̄n+1)(xn+1 − x̄n) (A32)

There is no doubt that increasing observation amount n will decrease the contribution
of new value xn+1 to the variance calculation. By fixing a constant coefficient β between 0
and 1 to replace 1

n , we obtain Equation (A33) for calculating EWSV:

s2
w(n+1) = (1− β) · s2

w(n) + β · (xn+1 − x̄w(n+1))(xn+1 − x̄w(n)) (A33)

We use the notation s2
w(n) to indicate the sample variance that involves the past

weighting effects. Similar to α, a bigger β also discounts older data faster in this case. This
completes the proof of Equation (9).

Appendix A.9. Proof of Equation System (10) for Calculating Exponentially Weighted Sample
Skewness (EWSS)

Proof. Given the previous proofs for EWSM and EWSV, a natural deduction is that the
EWSS formula can be obtained from the CSS formula by replacing its n-related parameters
with suitable constant coefficients. Therefore, we can rewrite Equation System (4) as:

n · (n− 1)
n + 1

· s3
n+1 · Sn+1 =

(n− 1)(n− 2)
n

· s3
n · Sn − 3 · (x̄n+1 − x̄n)(n− 1) · s2

n +

(xn+1 − x̄n+1)(xn+1 − x̄n)[xn+1 − x̄n+1 − (x̄n+1 − x̄n)]

(A34)
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and then:

n− 1
n + 1

· s3
n+1 · Sn+1 = (1− 2

n + 1
) · s3

n+1 · Sn+1

= (1− 1
n
)(1− 2

n
) · s3

n · Sn − 3 · (x̄n+1 − x̄n)(1−
1
n
) · s2

n +

1
n
· (xn+1 − x̄n+1)(xn+1 − x̄n)[xn+1 − x̄n+1 − (x̄n+1 − x̄n)]

(A35)

By reusing the predefined constant coefficients, i.e., replacing 1
n+1 and 1

n with α and β
respectively, we have:

(1− 2α) · s3
w(n+1) · Sw(n+1) = (1− β)(1− 2β) · s3

w(n) · Sw(n) − 3 · (x̄w(n+1) − x̄w(n))(1− β) · s2
w(n) +

β · (xn+1 − x̄w(n+1))(xn+1 − x̄w(n)) · [xn+1 − x̄w(n+1) − (x̄w(n+1) − x̄w(n))]
(A36)

where Sw(n) differs from Sn and denotes the sample skewness that involves the past
weighting effects. As regulated previously, the constant coefficients α and β are two
decimal numbers between 0 and 1. Since both of them are used in the EWSS formula, for
the purpose of consistence, we further regulate their relationship as follows through the
replaced items.

1
α
− 1

β
= 1 (A37)

This completes the proof of Equation System (10).
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27. Aral, A.; Erol-Kantarci, M.; Brandić, I. Staleness Control for Edge Data Analytics. Proc. ACM Meas. Anal. Comput. Syst. 2020, 4,
38. [CrossRef]

28. Huang, Z.; Lin, K.J.; Tsai, B.L.; Yan, S.; Shih, C.S. Building edge intelligence for online activity recognition in service-oriented IoT
systems. Future Gener. Comput. Syst. 2018, 87, 557–567. [CrossRef]

29. Kadirkamanathan, V.; Niranjan, M. A Function Estimation Approach to Sequential Learning with Neural Networks. Neural
Comput. 1993, 5, 954–975. [CrossRef]

30. Li, Y.; Wang, X.; Gan, X.; Jin, H.; Fu, L.; Wang, X. Learning-Aided Computation Offloading for Trusted Collaborative Mobile Edge
Computing. IEEE Trans. Mob. Comput. 2020, 19, 2833–2849. [CrossRef]

31. Qi, K.; Yang, C. Popularity Prediction with Federated Learning for Proactive Caching at Wireless Edge. In Proceedings of the
2020 IEEE Wireless Communications and Networking Conference (WCNC 2020), Seoul, Korea, 25–28 May 2020; pp. 1–6.

32. Scardapane, S.; Comminiello, D.; Scarpiniti, M.; Uncini, A. Online Sequential Extreme Learning Machine With Kernels. IEEE
Trans. Neural Netw. Learn. Syst. 2015, 26, 2214–2220. [CrossRef]

33. Shahadat, N.; Pal, B. An empirical analysis of attribute skewness over class imbalance on Probabilistic Neural Network and
Naïve Bayes classifier. In Proceedings of the 1st International Conference on Computer and Information Engineering (ICCIE
2015), Rajshahi, Bangladesh, 26–27 November 2015; pp. 150–153.

34. Pham, M.T.; Cham, T.J. Online Learning Asymmetric Boosted Classifiers for Object Detection. In Proceedings of the 2007 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

35. Zhao, J.; Wang, Z.; Park, D.S. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 2012,
87, 79–89. [CrossRef]

36. Tham, M.T. Exponentially Weighted Moving Average Filter. 2009. Available online: https://web.archive.org/web/200912120135
37/http://lorien.ncl.ac.uk/ming/filter/filewma.htm (accessed on 17 January 2021).

37. Serel, D.A.; Moskowitz, H. Joint economic design of EWMA control charts for mean and variance. Eur. J. Oper. Res. 2008,
184, 157–168. [CrossRef]

38. Knuth, D.E. Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley Professional: Boston, MA,
USA, 1997.

39. Cook, J.D. Accurately Computing Running Variance. Available online: https://www.johndcook.com/blog/standard_deviation/
(accessed on 17 January 2021).

40. StackExchange. Recursive Formula for Variance. 2013. Available online: https://math.stackexchange.com/questions/374881
/recursive-formula-for-variance (accessed on 12 January 2021).

41. Teknomo, K. Proof Recursive Variance Formula. 2006. Available online: https://people.revoledu.com/kardi/tutorial/
RecursiveStatistic/ProofTime-Variance.htm (accessed on 12 January 2021).

http://dx.doi.org/10.1109/TNN.2006.880583
https://www.mathworks.com/matlabcentral/answers/426189-moving-skewness-and-moving-kurtosis
https://www.mathworks.com/matlabcentral/answers/426189-moving-skewness-and-moving-kurtosis
https://stats.stackexchange.com/questions/6874/exponential-weighted-moving-skewness-kurtosis
https://stats.stackexchange.com/questions/6874/exponential-weighted-moving-skewness-kurtosis
https://stackoverflow.com/questions/57097809/is-there-any-built-in-function-in-numpy-to-take-moving-skewness
https://stackoverflow.com/questions/57097809/is-there-any-built-in-function-in-numpy-to-take-moving-skewness
http://dx.doi.org/10.1109/JIOT.2020.3034891
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.3390/bdcc2030026
http://dx.doi.org/10.1016/j.camwa.2010.03.023
http://dx.doi.org/10.1145/3392156
http://dx.doi.org/10.1016/j.future.2018.03.003
http://dx.doi.org/10.1162/neco.1993.5.6.954
http://dx.doi.org/10.1109/TMC.2019.2934103
http://dx.doi.org/10.1109/TNNLS.2014.2382094
http://dx.doi.org/10.1016/j.neucom.2012.02.003
https://web.archive.org/web/20091212013537/http://lorien.ncl.ac.uk/ming/filter/filewma.htm
https://web.archive.org/web/20091212013537/http://lorien.ncl.ac.uk/ming/filter/filewma.htm
http://dx.doi.org/10.1016/j.ejor.2006.09.084
https://www.johndcook.com/blog/standard_deviation/
https://math.stackexchange.com/questions/374881/recursive-formula-for-variance
https://math.stackexchange.com/questions/374881/recursive-formula-for-variance
https://people.revoledu.com/kardi/tutorial/RecursiveStatistic/ProofTime-Variance.htm
https://people.revoledu.com/kardi/tutorial/RecursiveStatistic/ProofTime-Variance.htm


Appl. Sci. 2021, 11, 7461 25 of 25

42. Weisstein, E.W. Sample Variance Computation. From MathWorld—A Wolfram Web Resource. Available online: https:
//mathworld.wolfram.com/SampleVarianceComputation.html (accessed on 12 January 2021).

43. StackOverflow. Rolling Variance Algorithm. 2018. Available online: https://stackoverflow.com/questions/5147378/rolling-
variance-algorithm (accessed on 19 January 2021).

44. Taylor, M. Running Variance. 2010. Available online: http://www.taylortree.com/2010/11/running-variance.html (accessed on
19 January 2021).

45. Pébay, P.; Terriberry, T.B.; Kolla, H.; Bennett, J. Numerically stable, scalable formulas for parallel and online computation of
higher-order multivariate central moments with arbitrary weights. Comput. Stat. 2016, 31, 1305–1325. [CrossRef]

46. Li, Z.; O’Brien, L.; Kihl, M. DoKnowMe: Towards a Domain Knowledge-driven Methodology for Performance Evaluation. ACM
SIGMETRICS Perform. Eval. Rev. 2016, 43, 23–32. [CrossRef]

47. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019.
48. Jenkins, D.G.; Quintana-Ascencio, P.F. A solution to minimum sample size for regressions. PLoS ONE 2020, 15, e0229345.

[CrossRef] [PubMed]
49. Pagels, M. What Is Online Machine Learning? 2018. Available online: https://medium.com/value-stream-design/online-

machine-learning-515556ff72c5 (accessed on 27 February 2021).
50. Strom, D.; van der Zwet, J.F. Truth and Lies about Latency in the Cloud. White Paper, Interxion. 2021. Available online:

https://www.interxion.com/whitepapers/truth-and-lies-of-latency-in-the-cloud/download (accessed on 19 July 2021).
51. Chen, K.C.; Jang, S.J. Motivation in online learning: Testing a model of self-determination theory. Comput. Hum. Behav. 2010,

26, 741–752. [CrossRef]

https://mathworld.wolfram.com/SampleVarianceComputation.html
https://mathworld.wolfram.com/SampleVarianceComputation.html
https://stackoverflow.com/questions/5147378/rolling-variance-algorithm
https://stackoverflow.com/questions/5147378/rolling-variance-algorithm
http://www.taylortree.com/2010/11/running-variance.html
http://dx.doi.org/10.1007/s00180-015-0637-z
http://dx.doi.org/10.1145/2897356.2897360
http://dx.doi.org/10.1371/journal.pone.0229345
http://www.ncbi.nlm.nih.gov/pubmed/32084211
https://medium.com/value-stream-design/online-machine-learning-515556ff72c5
https://medium.com/value-stream-design/online-machine-learning-515556ff72c5
https://www.interxion.com/whitepapers/truth-and-lies-of-latency-in-the-cloud/download
http://dx.doi.org/10.1016/j.chb.2010.01.011

	Introduction
	Related Work
	Three Versions of Running Skewness and Efficient Calculation Methods
	Cumulative Sample Skewness (CSS)
	Calculation of Cumulative Sample Mean (CSM)
	Calculation of Cumulative Sample Variance (CSV)
	Calculation of Cumulative Sample Skewness (CSS)

	Rolling Sample Skewness (RSS)
	Calculation of Rolling Sample Mean (RSM)
	Calculation of Rolling Sample Variance (RSV)
	Calculation of Rolling Sample Skewness (RSS)

	Exponentially Weighted Sample Skewness (EWSS)
	Calculation of Exponentially Weighted Sample Mean (EWSM)
	Calculation of Exponentially Weighted Sample Variance (EWSV)
	Calculation of Exponentially Weighted Sample Skewness (EWSS)


	Algorithm Performance Evaluation
	The CSS Calculation Method from GNU Scientific Library
	The CSS Calculation Method from a Go Library
	Performance Comparison among the Three CSS Calculation Methods
	Experimental Preparation
	Experimental Results
	Correctness Verification
	Performance Analysis


	Validation and Discussion about Skewness-Aware Online Edge Learning
	Automatic Decision Making in Sample Size for Initial Training
	A Redundancy Mechanism for Skewness-Aware Online Edge Learning

	Conclusions and Future Work
	Opening the Developed Methods
	Proof of Equation (2) for Calculating Cumulative Sample Mean (CSM)
	Proof of Equation System (3) for Calculating Cumulative Sample Variance (CSV)
	Proof of Equation System (4) for Calculating Cumulative Sample Skewness (CSS)
	Proof of Equation (5) for Calculating Rolling Sample Mean (RSM)
	Proof of Equation System (6) for Calculating Rolling Sample Variance (RSV)
	Proof of Equation System (7) for Calculating Rolling Sample Skewness (RSS)
	Proof of Equation (8) for Calculating Exponentially Weighted Sample Mean (EWSM)
	Proof of Equation (9) for Calculating Exponentially Weighted Sample Variance (EWSV)
	Proof of Equation System (10) for Calculating Exponentially Weighted Sample Skewness (EWSS)

	References

