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Abstract: In this paper, the authors present a mathematical and engineering model to optimally
calculate the dynamic equation on the pantograph–catenary interaction when considering a rigid
catenary with an overlapping span. The model starts from well-known methods adapted to the
special features of rigid catenary. As a result, an algorithm for the integration of a dynamic equation
based on explicit methods is provided. Moreover, from this algorithm, a reliable, efficient, and user-
friendly software tool called RICATI is developed in order to approach the model to railway-based
companies. The results show the usefulness of an application. such as RICATI, to check the behavior
of the configuration initially established for a catenary, allowing solutions to be obtained for the
problems encountered when simulating the passage of the pantograph (or pantographs), not only for
the overlapping span but also for the entire catenary. That encourages us to continue future works.

Keywords: transportation; pantograph/catenary interaction; rigid catenary; software tool; infras-
tructure engineering; information technology

1. Introduction

Rail transportation is fundamentally important in modern societies. As a result, the
development of railway technologies that allow the efficient circulation of people and goods
faces challenges related to a variety of technical problems. Addressing these challenges
is the object of study in research centers and universities. Throughout the history of the
railway, different types of traction have been proposed for the tractor units. Traction by
electric power is currently the most widely used system, in which the power is mainly
supplied via an overhead contact line or catenary, and the pantograph is the mechanism of
the tractor unit used to capture this energy.

Two types of catenaries can be considered. Flexible catenary, or elastic catenary, is
an extensional component (bending is almost negligible but has to be considered). On
the other hand, a rigid catenary is a bending component (axial extension is negligible).
The study of the pantograph–catenary dynamic interaction to achieve optimum operating
conditions for railways is therefore a fundamental technological problem. For this purpose,
the contact force must be as uniform as possible. Contact losses or take-offs must be
avoided, for which it is necessary to establish optimal assembly parameters. Thus, there
is significant research interest in the development of a mathematical model that allows
realistic simulations, and that is also computationally efficient.

The problem of pantograph–catenary dynamic interaction is highly important when
the pantograph interacts with the elastic catenary, which has been the subject of a wide
range of publications (see references [1–18]). This number of studies on flexible catenary
is due to the wide use of this type of catenary in high-speed railways that require higher
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performance. However, this issue also has special relevance when the interaction occurs
with a rigid catenary, as is the case in tunnels and underground roads; however, few
scientific studies have been conducted for this problem. In the case of this power system,
the element that transmits the electrical energy is not a wire but a rigid rail. Due to
its weight, this rigid rail cannot be maintained parallel to the track using tension or by
suspending it from another wire with an amount of deflection; rather, it is necessary to
increase the number of supports on which it must be suspended to decrease the distance
between them. For example, a typical span of a rigid catenary has a length of about
10–12 m, whereas the span for the flexible catenary is around 50–60 m.

It is well known that, in the cases of rigid catenary, the speed of the units is restricted
to maximum values of around 100–120 km/h. A small number of studies have been
published for this type of line (see references [19–21]). Thus, it is an important goal of
scientific research to raise this maximum speed limit.

In addition, to achieve greater rigidity of the catenary, which may be a cause of a
significant fluctuation of the contact force, the sudden variation of this force must be added
when the pantograph circulates through the spans of transition between two series of spans.
These variations are more frequent because the length of the spans is notably less than
in the case of flexible catenaries. No publications in the scientific literature address this
problem in a satisfactory and detailed manner. In the case of overlapping spans, it is also
necessary to configure the beams with a special slope-shaped geometry that ensures that
the flow of the pantograph is as smooth as possible between the sequences of spans.

In this study, we addressed the problem of dynamic pantograph–rigid catenary inter-
action with an overlapping span. This problem has significant practical importance and,
as previously indicated, has not been closely studied in the scientific literature. For this
purpose, we present a methodology based on the combination of well-known mathematical
models. Based on this model, a computer application for the study and simulation of the
dynamic interaction of the pantograph with a rigid catenary is developed. This model
is applied to two catenary series with an overlapping span and several pantographs in
circulation. In the first section of this paper, the mathematical foundations of the model
are explained and the algorithm of the developed computer program is presented. In the
subsequent section, the computational aspects and results of the simulations are discussed.

The main novelty of this work lies in the application of well-known methods to study
the dynamic interaction between the pantograph and rigid catenary, and the establishment
of a development methodology. Therefore, the methods used in this paper are not novel.
However, the application of all of them together to solve the problem of pantograph–
rigid catenary interaction is a novelty. Much of the work found in the literature has been
developed for flexible catenary. However, in this paper, existing methods and algorithms
have been adapted in order to solve the case of pantograph–rigid catenary interaction. It
should be noted that the mechanical characteristics of a rigid catenary are different from
those of a flexible catenary. As a result, a specific study is necessary for this type of catenary
because it is not feasible to consider a flexible catenary with extreme rigidity

In addition, a software tool is introduced that addresses the problem of pantograph–
rigid catenary dynamic interaction practically and efficiently from the perspective of both
the accuracy of the results and the response time.

To sum up, these results for rigid catenary, as well as the underlying application,
constitute the novelty of this method.

2. Materials and Methods
2.1. Dynamic Equations of the Catenary Pantograph System

The pantograph–catenary system is initially composed of two subsystems interacting
with each other under restricted conditions. The dynamic equations for a time instant tn
are shown in Equation (1), where M is the mass matrix, assumed to be constant; Cn is the
damping matrix; Kn is the stiffness matrix; ϕn is the matrix of the constraint conditions; Rn
is the vector of external loads on the system; qn is the vector of coordinates that define the
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position of the system; and λn is the vector corresponding to the restriction forces. All of
the latter elements are assumed to be variables, either in totality or in some of their terms
for each instant tn. This results in a non-linear system of differential equations of second
order whose integration in time will yield the evolution of the coordinates qn and contact
forces λn. The subscript n represents the value of variables at the instant tn.(

M 0
0 0

)( ..
qn..
λn

)
+

(
Cn 0
0 0

)( .
qn.
λn

)
+

(
Kn ∅t

n
∅n 0

)(
qn
λn

)
=

(
Rn
0

)
(1)

When considering two series of spans, as shown in Figure 1, it is necessary to partition
the system coordinates and the different elements of the equation. In the case of two
pantographs, as represented in Figure 1, this results in the following structure:

qn =


qc1
qc2
qp1
qp2

 , λn =

( .
λ1.
λ2

)
, Kn =


Kc1 0
0 Kc2

0 0
0 0

0 0
0 0

Kp1 0
0 Kp2

, Rn =


Rc1
Rc2
Rp1
Rp2

 (2)

where qc1, qc2, qp1, and qp2, represent, respectively, the coordinates of the two series of
spans (subscript c for catenary) and the two pantographs (subscript p). A similar notation
may be used for the stiffness matrix and the other terms of Equation (1). The mass and
damping matrices will have a structure similar to that of the stiffness matrix according to
Equation (2). The vector λn of the restraining forces or contact forces is divided into terms
corresponding to the internal forces between each of the pantographs and catenaries of the
two series of spans. The subscript n represents the value of variables at an instant tn.
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Figure 1. Interaction of one pantograph with two catenaries.

2.2. Beam Model for Rigid Catenary

In this work, the rigid catenary is modeled as a flexible beam. To derive a model
for the catenary, the finite element method is used, as explained in references [22,23]. As
the flexible beam is a simpler structure, the stiffness matrix is a band matrix with fewer
elements which has a positive impact, not only on the computational cost in terms of
calculation, but also in terms of storage, as it is treated as a sparse matrix.

The total length of the catenary is divided into a series of segments that behave as
beams with flexural rigidity, according to the Euler–Bernoulli equation. In the discretization,
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each node presents two coordinates corresponding to the displacement and rotation,
resulting in matrices of 4 × 4 for each element, according to Figure 2.
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A punctual mass matrix is assumed for the masses. Thus, the components of the
coordinates and matrices for the beam element are:

qc =


yi
θi
yj
θj

 , Mc =
m
2


1 0
0 L2

12

0 0
0 0

0 0
0 0

1 0
0 L2

12

, Kc =
EI
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6L 4L2

−12 6L
−6L −2L2

−12 −6L
6L 2L2

12 −6L
−6L 4L2
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− pL

2

− pL2

12
− pL

2
pL2

12

 (3)

where yi and θi represent the displacement and rotation in the node i, respectively; L rep-
resents the length of the element; m represents its mass; p is the weight of the beam per
unit of length; E is the elastic modulus of the beam material; and I is the inertia moment of
the section. These matrices are repeated for the different elements of the two catenaries.
It can be seen that the different terms of the mass and stiffness matrices, and the vector
of external loads, are constant in this case. For the catenary damping matrix, Rayleigh
damping is assumed according to references [22,23], wherein the said matrix is a linear
combination of the stiffness and mass matrix, per the equation:

Cc = αKc + βMc (4)

where α and β are two constants that are determined from two assumed values of the
critical damping for two different frequencies of interest. In our case, for 1 Hz, a critical
damping percentage of 0.5% is assumed, and for 15 Hz, the assumed percentage is 1%.
These values are obtained experimentally by trial and error. The experiment consists of
the following. A video recording is made on two points along the line and the movement
of the two points after passing the pantograph is recorded. Then, two points on the line
coinciding with the real points are considered in the simulation program, and for two
frequencies of interest (1 Hz and 15 Hz in this case) various damping percentages are
assumed. The results of the simulation are compared with those obtained in the recording;
it is then verified that the percentages given in the article are the ones that most closely
match the real results.

2.3. Properties of the Rigid Catenary Section and the Supports

Figure 3 shows the details and geometric characteristics of a section of Furrer rigid
beam, which is used in Spanish railways. The figure shows a normal section and a section
with a joint flange. It can be seen that the normal beam is composed of two elements:
the body of the beam itself, which is made of aluminum; and the contact wire, made of
copper, through which the electric energy flows [20,21]. Obviously, Figure 3 consists of
two elements: an aluminum beam and a copper wire. As we have two materials, we
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should have two moments of inertia and two elastic moduli. However, according to [24],
it is possible to obtain an equivalent single beam representing the composite beam. This
approach is considered in this paper in order to simplify the model.
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As in the treatment by finite elements, according to Equation (3), we assume that
the beam is composed of a single material. It is necessary to determine the equivalent
values for the section of the area, the position of the center of gravity, the moment of inertia,
and the density, as if this section is formed by a single material. Thus, assuming that the
entire section is exclusively aluminum, we first define the relationship between the elastic
modulus or Young’s modulus, where the subscript 1 corresponds to copper, and subscript 2
to aluminum. This notation is also adopted for the remainder of the properties, and thus
we have:

m =
E1

E2
(5)

In Equation (5), m describes the relationship between the moduli. To simplify the
notation, the subscripts are excluded.

Equation (6) shows the area of the equivalent section Aeq; the new position of the
center of gravity of section G with respect to the position of the center of gravity of the
aluminum section G2 yeq; the moment of inertia of the equivalent section with respect to
the x-axis that passes through G Ixeq; and the density of the equivalent section:

Aeq = A2 + mA1, yeq =
mA1y1

A2 + mA1
, Ixeq = Ix2 + mIx1, ρeq =

ρ1 A1 + ρ2 A2

mA1 + A2
(6)

The details of the section of the rigid catenary section are shown in Figure 3, and the val-
ues for the Furrer beam are taken from reference [20,21]. After applying Equations (5) and (6)
for the materials and sections of the beam, respectively, moments of inertia for the normal
section of Ixeq = 4,228,994 mm4 and the flanged section of Ixeq = 5,421,787 mm4 are obtained.
More details can be found in reference [20]. In addition, the spans of the beam are delimited
by the supports, the detail of which is shown in Figure 3. The effect of the supports on
the dynamic equations is assumed to be equivalent to that of a linear spring with stiffness
ks = 1 × 105 N/m.

2.4. Pantograph Model

The pantograph is an articulated system whose purpose is to capture the electrical
energy circulating through the contact wire and transmit it to the traction unit. To take into
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account its effect on dynamic equations, it is usually modeled as a set of masses, springs,
and shock absorbers, on which different forces can act: pushing force, aerodynamic force,
friction, etc. The manufacturer usually provides the values of these parameters. Figure 4
shows a drawing of a pantograph interacting with two rigid catenaries and some models
of point masses. In the proposed simulation, a pantograph of a single head mass is
assumed, whose properties correspond to those in the European standard EN50318 (see
reference [25]), as shown in Table 1.
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Table 1. Pantograph parameters according to EN5038.

Effective Mass (kg) Rigidity (N/m) Cushioning (Ns/m)

Contact element - k3 = k4 = kcont = 50,000 -

Head collector m2 = 7.2 k2 = 4200 c2 = 10

Base element m1 = 15 k1 = 50 c1 = 90

Thrust force applied to the base: Femp = 120 N

According to the cited EN50318 standard, to establish the contact model with the
catenary, it is necessary to add a contact element of zero mass with a spring to the head mass
of the collector m2. Furthermore, because the pantograph can interact with two catenaries
in our case, we assumed two contact elements with their corresponding stiffening springs,
initially k3 = k4 = kcont, although these values can be canceled out when take-off occurs, as
explained below. In addition, it is assumed that each mass has a coordinate corresponding
to its vertical displacement, resulting in four coordinates, including the contact elements,
for the standard model. In the case in which the pantograph has two head masses, two
contact elements must be added to each mass with the corresponding springs, according
to Figure 4. Based on the above, the matrices of mass, rigidity, and the vector of external
forces corresponding to the point mass model of the norm are:

Mp =


m1 0
0 m2

0 0
0 0

0 0
0 0

0 0
0 0

, Kp =


k1 + k2 −k2
−k2 k2 + k3 + k4

0 0
−k3 −k4

0 −k3
0 −k4

k3 0
0 k4

, Rp =


Femp

0
0
0

 (7)

The damping matrix has a structure similar to that of the stiffness matrix. It should
also be noted that the terms of the stiffness matrix are not constant because, when take-off
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occurs, the contact disappears and the stiffness of the contact element k3 or k4 is canceled
out. Furthermore, in the pantograph path, there are intervals in which the pantograph
interacts only with a single catenary. In contrast, when the pantograph crosses the common
transition zone, it interacts with the two catenaries, which also modify the structure of the
stiffness matrix, as explained in later sections. In addition, in the data provided by the
manufacturers, non-linearities can appear due to variations in the stiffness and damping,
or the presence of friction forces. The mass matrix is always constant. Notice that the mass
matrix is rank-deficient, meaning it is not possible to calculate its inverse. In this case,
only the inverse of non-zero diagonal elements is calculated. More explanations about the
calculation of the inverse of mass matrix will be given in Section 2.7.

2.5. Contact Pantograph/Catenary Model

The systems of pantograph and catenary are dependent but interact with each other
under constraint conditions. In particular, the pantograph contact element slides on the
contact wire of the catenary. Thus, a relationship between the positions is established
with the pantograph contact element, represented by the contact element, and the position
of the nodes of the catenary corresponding to the discretization using finite elements.
In addition, this relationship varies depending on the time as the pantograph advances.
The relationship between the coordinates of the catenary and the contact element of
the pantograph corresponds to the term ϕn that appears in the dynamic Equation (1).
We suppose the distribution of the contact using a law that facilitates the sliding of the
pantograph contact element along with the nodes of the catenary without any abruptness,
as represented in Figure 5. This situation is also equivalent to assuming that the contact
force is not punctual, but it is distributed over the surface of the pantograph contact
element, according to the supposed distribution law (see Figure 5).
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For convenience, an Oxy axis system is assumed which moves with the pantograph,
centered on the surface of the pantograph contact element. The variable x represents the
position of the different points of the catenary along the horizontal axis, in contact with
the plate. If L is the length of the friction surface, y3 is the coordinate corresponding to the
vertical position of the pantograph contact element, and yc(x) is the vertical position of the
different points of the catenary, then y = f(x), the function of contact distribution, will be
fulfilled as follows: ∫ ∝

−∝
f (x)(yc(x)− y3)dx = 0 (8)

with the condition: ∫ ∝

−∝
f (x)dx = 1 (9)

Equations (8) and (9) allow the position of the contact element of the pantograph to be
obtained, when the configuration of the catenary is known at time tn, as a weighted average
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of the position of the nodes of the catenary located on the surface of rubbing, according to
the expression:

(y3)n =
∫ ∝

−∝
f (x)yc(x)dx (10)

This results in a similar equation for (y4)n. For f(x), we assumed a polynomial function
defined as follows:

f (x) =


− 32

L4 x3 − 24
L3 x2 + 2

L , − L
2 ≤ x ≤ 0

32
L4 x3 − 24

L3 x2 + 2
L , 0 ≤ x ≤ L

2
f (x) = 0, x< − L

2 ∪ x > L
2

(11)

The vertical position of any point of the catenary on the rubbing surface can be
established from the position of the discretization nodes and the interpolation functions
according to the finite element method, finally yielding the following relationship:

∅nqn = 0 (12)

2.6. Formulation of Restriction Conditions

Equation (12) should be repeated for all system restrictions, corresponding to all
pantograph–catenary contacts. The number of restrictions will depend on the number of
possible contacts. Thus, for the pantograph with one head mass, two possible contacts exist
because the pantograph can interact with up to two catenaries when crossing the common
contact zone.

If the pantograph has two head masses, there will be four possible contacts, and if two
pantographs are considered in the simulation, the restriction conditions must be repeated
for the second pantograph. Thus, Equation (12) is a matrix equation whose number of
rows corresponds to the number of restriction conditions and whose number of columns
corresponds to the number of degrees of freedom.

To simplify the model, we assume a single pantograph with a single head mass.
Because there can be up to two contacts, the matrix of constraint conditions expressed for a
moment tn has the form:

∅n =

(
∅1n
∅2n

)
(13)

where the row vector ϕ1n represents the restriction conditions of contact element 1 on
catenary 1, and ϕ2n represents the restriction conditions of contact element 2 on cate-
nary 2, according to Figure 5. In the formulation of Equation (13), the following cases are
considered, as shown in Figure 6.

1. The pantograph circulates through catenary 1 without reaching the common tran-
sition zone of the two catenaries, defined from the overlapping spans. In this case,
interaction only exists with catenary 1 through contact element 1, and contact element
1 is activated and contact element 2 is deactivated.

2. The pantograph circulates through catenary 2, having exceeded the common transi-
tion zone. In this case, there will only be interaction with catenary 2 through contact
element 2; thus, contact element 2 is activated and contact element 1 is deactivated.

3. The pantograph circulates in the common transition zone between the two catenaries.
In this case, the pantograph interacts with the two catenaries, and the two contact
elements are activated.

In the first case, the vector ϕ1n is calculated according to Equation (8), whereas the
position of contact element 1, (y3)n, is calculated according to Equation (10). Because
contact element 2 is deactivated, the restriction condition ϕ2n is formulated by requiring
that the position of contact element 2, (y4)n, and the position of the head mass, (y2)n, at
time tn, be coincident; that is:

(y2)n − (y4)n = 0 (14)
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The second case is similar to the first, but with alternating conditions: ϕ1n is obtained
by imposing the condition that the position of contact element 1, (y3)n, and the position of
the head mass, (y2)n, at instant tn are coincident:

(y2)n − (y3)n = 0 (15)

Matrix ϕ2n and the position of contact element 2, (y4)n, are calculated with equations
similar to Equations (8) and (10). Finally, it must be taken into account that, regardless
of the catenary with which the interaction occurs, the contact force can be canceled out
because of a take-off or can appear suddenly after a take-off when a new coupling occurs.
These circumstances must be considered when integrating Equation (1), as explained in the
following section.
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2.7. Integration of Dynamic Equations

To proceed with the integration of the differential Equation (1), we applied the ex-
plicit method of the central differences. Explicit methods are more suitable than implicit
methods for dealing with non-linearities, in the particular case of the pantograph–catenary
interaction [23], because they correctly take into account the variation of the stiffness ma-
trix. Non-linearities occur due to debonding and coupling. Due to the obvious stability
problems of explicit methods, the integration step must be carefully adjusted, which is
undertaken in this development. The critical integration step that conditions the stability
can be estimated as the element length divided by the wave propagation speed, as shown
in Equations (13.10)–(16) (p. 401) of [23]. Regarding the element length, in this work all
elements have the same length. If this is not the case, the shortest element would have to
be taken for the calculation of the step. With respect to the propagation speed, it depends
on the mechanical characteristics of the beam section. However, the authors have deduced
the critical integration step by trial and error so that, when the integration step is above the
critical time, the algorithm degenerates. Otherwise, the algorithm gives reasonable results.
Therefore, different increments of t have tried to determine the critical value below when
the algorithm is stable, and the results are feasible.

Thus, for this proposal, the speed and acceleration in the coordinates are initially
approximated for a moment of time tn, and an interval ∆t, in accordance with:

.
qn = 1

2∆t (qn+1 − qn−1)..
qn = 1

∆t2 (qn+1 − 2qn + qn−1)
(16)
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Substituting these equations into Equation (1) yields the following expression:(
1

∆t2 M +
1

2∆t
Cn

)
qn+1 = Rn − Knqn −∅t

nλn +
1

∆t2 M(2qn − qn−1) +
1

2∆t
Cnqn−1 (17)

Equation (17) allows the coordinates qn+1 at time tn+1 to be obtained from the elements
of the equation and the coordinates at the previous instant tn. However, for this calculation,
it is necessary to solve a system of linear equations because, although the mass matrix M is
diagonal, the same does not occur with the damping matrix Cn. After all, we assumed a
Rayleigh damping model for the catenary according to Equation (4). Although it is possible
to assume a diagonal matrix for Cn, we preferred to use the Rayleigh model because
we think it is a more realistic approach. The same problem exists for the pantograph–
damping matrix.

One of the main advantages of the explicit integration methods is that the integration
variables can be obtained directly without having to solve a system of equations, resulting
in a more computationally efficient integration. However, for this purpose, it is necessary
to slightly modify the dynamic equation by correcting the velocity vector in the coordinates
by half a step, which results in:(

M 0
0 0

)( ..
qn..
λn

)
+

(
Cn 0
0 0

)( .
qn− 1

2.
λn− 1

2

)
+

(
Kn ∅t

n
∅n 0

)(
qn
λn

)
=

(
Rn
0

)
(18)

Equation (18) involves the calculation of the inverse of a rank-deficient mass matrix.
However, the algorithm actually works by firstly calculating the position of the nodes,
for which the values of the mass matrix are non-zero following the method of central
differences. This method appears in [23]. Thus, to calculate the inverse of a diagonal matrix
of non-zero elements, it is only necessary to calculate the inverse of the particular element
mi, that is, 1/mi.

Once these positions are calculated, the contact forces are calculated for which the
mass matrix is no longer necessary following Hooke’s law where the nodes, which are the
ends of the contact spring, and the stiffness of the spring are known.

In Equation (18), these terms appear together although they can be calculated, as
mentioned above, in a decoupled manner.

According to reference [23], this approach introduces a small error that can be ignored
in structural systems with low damping, as seen in our case. Next, the velocity and
acceleration in the coordinates are approximated by the following equations:

.
qn− 1

2
= 1

2∆t (qn − qn−1)
..
qn = 1

2∆t

( .
qn+ 1

2
− .

qn− 1
2

)
= 1

∆t2 (qn+1 − 2qn + qn−1)
(19)

Substituting the previous equations into Equation (18) and solving for the vector
qn+1 yields:(

1
∆t2

)
Mqn+1 = Rn − Knqn −∅t

nλn +
1

∆t2 M
(

qn + ∆t
.
qn− 1

2

)
− Cn

.
qn− 1

2
(20)

In this case, it is possible to calculate the vector qn+1 directly without the need to
solve a system of equations because the mass matrix is diagonal. However, some variables
remain to be determined: the position of the contact elements (y3)n+1 and (y4)n+1, and
contact forces (λ1)n+1 and (λ2)n+1. The mass of the contact elements is null and Equation
(20) cannot be applied; however, the positions of the catenary nodes in the pantograph
environment are known at tn+1. Thus, when the contact elements are activated, we use
Equation (10) particularized in tn+1 for (y3)n+1 and a similar equation for (y4)n+1. When the
contact element is deactivated, its position coincides with that of the head mass; in this
case, we will use Equation (14) or (15).
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For the contact forces in tn+1, these forces are calculated according to the deformation
in the corresponding contact spring, according to the expressions:

(λ1)n+1 = kcont
[
(y3)n+1 + v1 − (y2)n+1

]
, (λ2)n+1 = kcont

[
(y4)n+1 + v2 − (y2)n+1

]
(21)

As can be seen in the previous equations, an additional correction term is added,
given by the variables v1 and v2, to the theoretical deformation of the spring given by
the difference in the positions of the contact element and the head mass. This term
takes into account the effect of the slope in the sectioning span as a consequence of the
previous configuration of the beam. The values of functions v1 and v2 are discussed in the
following section.

Because the contact force is a compression force, each integration step in Equation (21)
must be solved by checking that the forces are negative. In this case, the value of the force
is correct and the corresponding stiffness of the contact spring k3 or k4 is the theoretical
value kcont of the stiffness matrix in Equation (7), and this value is maintained for the next
integration step. However, if a value of the force is positive, it means that the spring
works in traction, and therefore a take-off, has taken place. In this case, the contact force
becomes zero and the corresponding rigidity is annulled for the next step. This is equivalent
to eliminating the contact catenary–pantograph. Based on the above, the algorithm for
detecting take-off at instant tn+1 is:

i f (λ1)n+1 ≤ 0 → (k3)n+1 = kcont; i f (λ1)n+1 > 0 → (k3)n+1 = 0, (λ1)n+1 = 0
i f (λ2)n+1 ≤ 0 → (k4)n+1 = kcont; i f (λ2)n+1 > 0 → (k4)n+1 = 0, (λ2)n+1 = 0

(22)

According to Equation (22), it takes into account the possibility of contact and take-off
by considering the impact between the catenary and the pantograph. Thus, for catenary 1,
if the contact force is negative or equal to 0 ((λ1)n+1 ≤ 0), then there is contact, and the
stiffness matrix is configured according to this condition for the next step. If the contact
force is positive, no contact is considered, the contact force is 0, and the stiffness matrix is
set for the next step with that condition.

For the second catenary, it is the same procedure ((λ2)n+1 ≤ 0).
It is evident that, when the pantograph does not circulate through the common

transition area, some contact elements are deactivated, and the corresponding force will
be annulled. In addition, when circulating through the common transition area, the two
contact elements are activated, and take-offs and couplings can be detected in all cases. To
initialize the integration algorithm, it is necessary to provide a value for the coordinates
and their derivatives, and for the contact forces in the zero instant. It is assumed that, at
the initial instant, the velocities and accelerations in the coordinates are zero:

.
q0 =

.
q− 1

2
=

..
q0 = 0 (23)

Substituting these values into Equation (18) results in a linear system that can be
resolved for q0 and λ0, as follows:(

Ko ∅t
0

∅0 0

)(
q0
λ0

)
=

(
R0
0

)
(24)

Equations (19)–(22), which are based on the method of explicit integration of central
differences, make it possible to obtain the system variables directly by simply treating the
non-linearities caused by take-offs and the effect on the overlapping, thus adapting the
different variable elements of the dynamic equation at each integration step.

2.8. Functions for Correcting the Contact Position Due to the Effect of Overlapping Span

Although the assembly of a rigid catenary canton is undertaken using a series of spans
in which the beams are assumed to be straight, in the case of overlapping spans, it may be
advisable to previously deform the beam by giving it a sloped shape, and thus obtain the
smoothest possible transition between cantons. This makes it difficult to simulate because
the finite element model used is based on the hypothesis of straight beams. To overcome
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this disadvantage, it is assumed that the rigidity of the beam is not altered by the previous
deformation. Thus, the integration of the differential Equation (18) is carried out as if the
catenary is configured as a perfectly straight beam, both in the normal spans and in the
section span. Then, to take into account the previous deformation of the beam and its
influence on the contact force, the vertical position of the contact element calculated from
Equation (10) is supplemented by the correction functions v1 and v2. These functions take
into account the variation of the position of these elements to then calculate the contact
forces according to Equations (21) and (22). These functions depend on the geometry of the
deformation and their effect is only taken into account when the pantograph is circulating
through the section slopes. In the simulation proposed in the work, a linear slope is also
assumed due to its simplicity; however, this methodology can also be adapted to any beam
configuration with slight modifications.

In the case of a linear slope, the variable x defines the horizontal displacement of
the pantograph from the beginning of the route, x1 is the position where the ascending
slope begins in the canton of outgoing catenary 1, and x2 is the starting position of the
descending slope in the canton of incoming catenary 2, with x1 > x2, as shown in Figure 7.
Let L1 be the length of catenary slope 1, L2 be the length of catenary slope 2, and h1 and h2
be the respective heights at the end of each slope. This is compiled for v1 as:

u1 = x− x1
x< x1 ∪ x >x1 + L1, v1 = 0

x ≥ x1 ∩ x ≤ x1 + L1, v1 = h1
L1

u1

(25)

and for v2 as:
u2 = x− x2

x< x2 ∪ x >x2 + L2, v2 = 0
x ≥ x2 ∩ x ≤ x2 + L2, v2 = h2 − h2

L2
u2

(26)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 27 
 

the length of catenary slope 1, L2 be the length of catenary slope 2, and h1 and h2 be the 
respective heights at the end of each slope. This is compiled for v1 as: =  −< ∪ > + ,  = 0≥ ∩ ≤ + , =  ℎ  (25)

and for v2 as: =  −< ∪ > + ,  = 0≥ ∩ ≤ + , =  ℎ − ℎ  (26)

 
Figure 7. Position correction functions of the contact element for linear slope. 

2.9. Algorithm for the Integration of Dynamic Equation 
According to the description in the previous sections, the algorithm for the integra-

tion of the dynamic equation in the modified form of Equation (18) is as follows: 
1. Input data for catenary and pantograph. Regarding the catenary: the number of spans 

of the cantons, lengths of spans, moments of inertia of the elements of the Furrer beam 
section (body of the beam and the contact wire), characteristics of the materials, the 
geometry of the sections, characteristics of the flanges, etc. The characteristics of the 
equivalent section of the beam are then determined according to Equations (5) and 
(6). For pantographs, the following are entered: number and type of pantographs, 
masses, spring stiffnesses, dampers, etc. 

2. The setting of the different terms of the dynamic equation at the initial instant: the 
stiffness matrix, damping matrix, mass matrix, and external load vector, according to 
Equations (2)–(4) and (7). The matrix of restriction conditions at the initial position of 
the pantograph(s) is also established according to Equations (8)–(15). 

3. The initial value of the integration variables is set to t0 = 0: coordinates of the nodes q0 
and their derivatives, and the initial contact force λ0 according to Equations (23) and 
(24). 

4. The integration cycle begins at the time of the differential Equation (18) in tn+1. The 
cycle varies for different time values with n = 0,1,2…, adding in each cycle the value 
of Δt to tn: 
1. Calculation of the coordinates corresponding to the positions of the catenary 

nodes and the pantograph masses qn+1, according to Equation (20). 

Figure 7. Position correction functions of the contact element for linear slope.

2.9. Algorithm for the Integration of Dynamic Equation

According to the description in the previous sections, the algorithm for the integration
of the dynamic equation in the modified form of Equation (18) is as follows:

1. Input data for catenary and pantograph. Regarding the catenary: the number of spans
of the cantons, lengths of spans, moments of inertia of the elements of the Furrer beam
section (body of the beam and the contact wire), characteristics of the materials, the
geometry of the sections, characteristics of the flanges, etc. The characteristics of the
equivalent section of the beam are then determined according to Equations (5) and
(6). For pantographs, the following are entered: number and type of pantographs,
masses, spring stiffnesses, dampers, etc.
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2. The setting of the different terms of the dynamic equation at the initial instant: the
stiffness matrix, damping matrix, mass matrix, and external load vector, according to
Equations (2)–(4) and (7). The matrix of restriction conditions at the initial position of
the pantograph(s) is also established according to Equations (8)–(15).

3. The initial value of the integration variables is set to t0 = 0: coordinates of the nodes q0 and
their derivatives, and the initial contact force λ0 according to Equations (23) and (24).

4. The integration cycle begins at the time of the differential Equation (18) in tn+1. The
cycle varies for different time values with n = 0,1,2 . . . , adding in each cycle the value
of ∆t to tn:

1. Calculation of the coordinates corresponding to the positions of the catenary
nodes and the pantograph masses qn+1, according to Equation (20).

2. Calculation of the position of the contact elements of the pantograph(s): (y3)n+1
and (y4)n+1 according to Equation (10). If the contact element is deactivated,
its position coincides with that of the pantograph head mass; in this case,
Equation (14) or (15) shall be used.

3. Calculation of the pantograph–catenary contact forces (λ1)n+1 and (λ2)n+1, ac-
cording to Equations (21) and (22).

4. Setting the restriction conditions matrix φn+1, using Equations (8)–(15), according
to the advance of the pantograph(s) along the line.

5. For the calculation of the forces, the positions of the contact elements, and the
restriction conditions, the three cases of activation of the contact element are
accounted for, according to the position of the pantograph along the line, as
explained in Section 2.6.

6. The remainder of the terms of the dynamic Equation (18) is also set in tn+1:
Cn+1, Kn+1, and Rn+1, and, in particular, the pantograph stiffness matrix must be
modified if there is a take-off or a coupling according to Equation (22).

7. Calculation of the velocity vector in the coordinates for the next integration cycle
in tn+1/2 by the mid-pass correction of the velocity vector, using Equation (19).

3. Results

As a result of the previous study, a software tool called RICATI was developed. In
this section, the results obtained from this software and the simulation are discussed.

3.1. Computational Aspects

To facilitate the use of the algorithms, the RICATI application was created, which
incorporates the algorithms with a user-friendly interface for the introduction of values
from a database. The tool also presents graphic results that allow conclusions to be obtained
without having to directly interpret a table with hundreds of thousands of numerical data
points [26].

In order to achieve an efficient software tool, the enhancements carried out in this
work are related to the way of storing the matrices involved in the resolution of the dynamic
equation, as well as the use of suitable methods for solving the associated static problem.

In particular, the sparsity and symmetry of the stiffness matrix are exploited, im-
proving the efficiency of the implementation, dramatically reducing the memory storage
requirements, and making use of iterative methods based on Krylov projection methods.
The execution time spent for solving the static problem is also dramatically reduced. For
this purpose, the SPARSKIT library by Yousef Saad is used [27].

Therefore, a high-performance implementation has to take into account the features of
current architectures, for example, cache memory. These features are particularly important
when rebuilding the traditional algorithms to a block-oriented implementation. Block-
oriented algorithms reduce drastically the data flow between main memory and secondary
memory enhancing the performance of the final implementation. These good features are
obtained by using standard libraries in the implementations. In particular, for this paper,
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several computational kernel from BLAS library [28,29], especially BLAS 3, are identified
and used.

RICATI executes the algorithms based on the data of two cantons with the number of
spans indicated for each canton. As a result, an interactive graphic interface is provided that
allows the behavior of the catenary to be observed before the passage of the pantograph.

RICATI is structured into four basic components, as shown in Figure 8:
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1. Interface: The interface allows all of the data associated with the assembly to be
entered. The set of parameters is stored in a database so that they can be retrieved,
modified, or copied to obtain different calculations or perform simulations. The
interface is structured in blocks according to the kind of data that they contain:

a. General parameters: Generic data values are introduced regarding integration,
speed, and data common to the whole catenary.

b. Values for the catenary damping frequency: The critical damping percentage is
established for two reference frequencies.

c. Section data: Geometry of the overlapping span.
d. Cross-section properties: Mechanical properties of the profile, wire, and flanges.
e. Pantographs: Data of the pantograph to be used in the interaction. Up to four

pantographs can be used. The pantographs are coded in such a way that they
can be used in different calculations without the need to re-introduce all of their
characteristics.

f. Canton spans: Number of spans in each canton and for each span, length and
height of the support above the nominal value, and distance from the flange to
the left support.

2. Interaction Algorithms: The dynamic library containing the algorithms for calculating
the pantograph–catenary interaction. As a result, among other values, a table is
generated indicating at each instant, according to the defined integration time step,
and for each pantograph, the vertical position of two catenary points preset in the
calculation, the height of the contact point, and the effort in each canton and plate.

3. Graph management: As a result, an interactive graphical interface is displayed in
which different graphs can be obtained by independently selecting the abscissa
(distance, time) and ordinate (efforts, elevation) axes, and allowing different graphs
to overlap, in addition to the magnification of the area of the graphs marked by the
user, as shown in Figure 9.

4. Simulation: This allows for repeated execution of the calculation by modifying, at an
established interval and increment, parameters such as the length of the overlapping
span, the height of the slope, and the distance from the beginning of the slope to the
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end of the slope. The application repeatedly executes the algorithm by varying these
data, thus allowing for a table with the maximum, minimum, deviation, number of
take-offs, total distance of take-offs, and total time of take-offs in each independent
canton or considering the sum of the efforts in the common zone of the two cantons.Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 29 
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3.2. Simulation Results

The objective is to check the influence of the geometric characteristics of the slopes in
the common area of the catenary before the passage of the pantograph. For the execution
of the simulations, a set of two cantons with the following characteristics is defined as the
basis for the calculations:

• Two cantons of 20 spans of 10 m length in the normal spans.
• Height above the track: 5 m.
• Maximum common area length: 12 m.
• Aluminum profiles and flanges corresponding to a Furrer beam per the values in

Section 4.
• A pantograph of a simple plate and two stages defined according to EN50318 whose

data are in Table 1 of Section 2.4.
• As in standard EN50318 for the flexible catenary, no damping is assumed for the catenary.
• The interface for the remainder of the values defining the catenary.

Using the RICATI application, we carried out different simulations in which the
behavior of the catenary at the passage of the pantograph is evaluated according to values
such as the mean, deviation of efforts, and take-offs in the common area.

A good result is considered to include a minimum deviation, no take-offs, and an
average of the forces close to the pushing force of the pantograph (approx. 120 N).

To check the most suitable configuration, four simulations are carried out:

• An overlapping span of 1 m, slope length 1 m, and variation in the height of the slope
at its end.

• An overlapping span of 1 m, variation in slope length in the range of 0.5 to 1 m with
0.05 m increments, and 0.1 m slope elevation.

• Variation of the length of the overlapping span in the range of 0.5 to 5 m and height 0
of the slope. Normal spans are 10 m long.

• Variation of the length of the overlapping span in the interval from 0.5 to 5 m and
slope height 0. Normal spans are 5 m long.
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3.2.1. Simulation 1

We consider an overlapping span of 1 m in both cantons beginning the slope of the
slope from the beginning of the span. In each calculation, the height of the end of the slope
varies from 0 m (fully horizontal) to 0.2 m with an increase of 0.005 m.

The analysis of the results is carried out in the common area and, as a result, we obtain
the following graphs that represent the average values of the pantograph effort on the
contact wire in Newtons, the standard deviation, and the average distance of take-offs. In
this case, there are no take-offs in the common area of the catenary, so this graph is omitted.

The abscissa axis of the graphs represents the height of the slope at its end in meters,
and the ordinate axis represents the effort (mean, maximum, and deviation) in Newtons,
as obtained in the integration calculated with the given elevation.

By analyzing the graphs (Figure 10), it is observed that the deviation of the efforts in
the common zone is greater because we increase the slope. Analogously, the average effort
and the maximum values increase with a behavior similar to the variation of the deviation.

The effort of the pantograph passing through the common area has a better behavior
in the case of zero elevation from the horizontal slope and, therefore, with a 0 slope before
its installation. This may seem counterintuitive when considering that, due to the weight
of the beam, it should have a certain negative slope and therefore be an obstacle for the
passage of the pantograph. However, in the static configuration of the catenary assembly,
the beam has a certain positive elevation due to the weight of the beam in the adjoining
span, which would justify the results of this simulation.

We then observe that a rise added to the beam on the slope could eventually be
counterproductive. However, this raised the question about the influence of the length of
the sectioning span on these results. Thus, we proposed the second simulation.
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ation of pantograph effort, (c) maximum value of pantograph effort, and (d) minimum value of
pantograph effort.

3.2.2. Simulation 2

We consider a sectioning span of 1 m in both cantons, while maintaining the elevation
of the sloping end at 0.1 m. In each calculation, the length of the slope length is varied from
0.5 to 1 m with an increase of 0.05 m.

The analysis of the results is carried out in the common area and, as a result, we obtain
the graphs shown in Figure 11, which represent the average, maximum, and minimum
values of the pantograph effort on the contact wire in Newtons, the standard deviation,
and the average distance of take-offs. In this case, there are no take-offs in the common
area of the catenary, so this graph is omitted.

The abscissa axis of the graphs represents the length of the slope in meters and the
ordinate axis represents the effort (mean, maximum, minimum, and deviation) in Newtons
obtained in the integration calculated with the given elevation.

Analysis of the graphs (Figure 11) shows that the deviation of the stresses in the
common area is adequate in cases in which the length of the slope is less than or equal to
0.45 m. The deviation of the stresses in the common area is adequate in cases in which
the length of the slope is less than or equal to 0.45 m. From this length, we see how the
maximum and the deviation increase as the length of the slope increases until it coincides
with the whole section span. Similarly, the minimum stresses decrease as the maximum
increases from 0.45 m in slope length, confirming the increase in deviation.
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effort, (b) standard deviation of pantograph effort, (c) maximum value of pantograph effort, and
(d) minimum value of pantograph effort.
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The effort at the passage of the pantograph through the common area has a better
behavior in the case of small lengths of the slope (considering an elevation of 0.1 m from
the end). This result is congruent with simulation 1 because the case of 0 m of the slope is
equivalent to a horizontal overlapping span in which only the elevation obtained in the
initial static configuration is applied. We then observe that the length of the overlapping
span can significantly influence the results obtained for a small elevation of the beam and
that it could be sufficient with the elevation obtained in the initial static configuration. In
this case, the length of the overlapping span profile influences the elevation of the beam
and, therefore, the results obtained.

To test this hypothesis, the following two simulations start from the 0 m elevation of
the slope and the variation of the overlapping span length. In simulation 3, we consider a
configuration equal to that used previously (i.e., normal spans of 10 m), and in simulation 4
we change the length of the normal spans to 5 m to check the influence of the length of the
normal spans on the result.

3.2.3. Simulation 3

We consider an overlapping span of 0.5 to 5 m in both cantons with an increase of
0.1 m in each calculation. In all cases, a slope elevation of 0 m is considered, i.e., we use a
horizontal beam without slope for overlapping span to obtain the optimum length of the
beam to establish a suitable elevation. We continue with the same configuration of normal
spans of 10 m.

As in the previous cases, the analysis of the data obtained by the calculations is carried
out in the common area, and, as a result, we obtain the graphs shown in Figure 12, which
represent the average and maximum values of the pantograph stress on the contact wires
in Newtons, the standard deviation, and the total distance of take-offs. In this case, and
as expected, take-offs may occur in the common area of the catenary; thus, we show the
graph indicating the total length of take-offs produced in this area.

The abscissa axis of the graphs represents the length of the overlapping span in meters
and the ordinate axis represents the effort (mean, maximum, minimum, and deviation) in
Newtons obtained in the integration calculated with the given elevation.

Analysis of the graphs (Figure 12) shows that the deviation of the stresses in the
common zone is adequate in cases in which the span length is below 3.5–3.7 m, with slightly
worse behavior at values below 1.5 m. Above 3.7 m, the behavior worsens significantly,
and take-offs appear over longer distances. This behavior is explained by the absence of
the section elevation effect compensated by the “excessive” length of the overlapping span,
which causes it to lose the elevation and fall below the nominal height on the track. Thus,
the pantograph “collides” with this beam with stresses of more than 2000 N.

In the configuration analyzed, the optimum distance is around 3.5 m. From this length
onwards, it is necessary to elevate the slope to achieve optimum values in the common area
of the catenary. However, if we consider the results separated by the canton represented in
Figure 13, we observe that, from 3.1 m, take-offs occur in the wire of canton 1 and, from
3.4 m, in the wire of canton 2. To ensure that the optimum distance is below these values,
it is necessary to maintain contact of the plate with the two wires simultaneously in the
common area.

It is expected that the optimum distance of the overlapping span length is influenced
by the length of the adjacent normal spans. We can check this situation by repeating this
simulation with normal spans of 5 m instead of 10 m, as shown in the following simulation.

3.2.4. Simulation 4

We consider a sectioning span of 0.5 to 5 m in both cantons with an increase of 0.1 m in
each calculation. In all cases, a slope elevation of 0 m is considered, i.e., we use a horizontal
slope in the sectioning to obtain the optimum length of the beam and, thus, to ensure a
suitable configuration. In this case, the normal spans of both cantons are considered to
have a length of 5 m to check the differences with the previous simulation.
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Figure 12. Graphs of simulation 3. Variation of the length of the overlapping span in the range of 0.5
to 5 m and height 0 of the slope. Normal spans are 10 m long. (a) Average value of pantograph effort,
(b) standard deviation of pantograph effort, (c) maximum value of pantograph effort, and (d) total
distances of take-offs.
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Figure 13. Graphs of simulation 3 per cantons. Variation of the length of the overlapping span in the
range of 0.5 to 5 m and height 0 of the slope. Normal spans are 10 m long. (a) Standard deviation of
pantograph effort (canton 1), (b) total distances of take-offs for canton 1, (c) standard deviation of
pantograph effort (canton 2), and (d) total distances of take-offs for canton 2.

As in the previous cases, the analysis of the data obtained by the calculations is carried
out in the common area and, as a result, we obtain the graphs shown in Figure 14, which
represent the average, maximum, and minimum values of the pantograph effort on the
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contact wire in Newtons, the standard deviation, and the average distance of take-offs. In
this case, and as expected, take-offs may occur in the common area of the catenary; thus,
we show the graph indicating the total length of take-offs produced in this area.
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total distances of take-offs.
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The abscissa axis of the graphs represents the length of the overlapping span in meters
and the ordinate axis represents the effort (mean, maximum, minimum, and deviation) in
Newtons obtained in the integration calculated with the given elevation.

An analysis of the graphs (Figure 14) shows that the deviation of the stresses is optimal
for the span length of approximately 1.4 m or less, with slightly worse behavior at values
below 1 m. From approximately 2 m, the behavior begins to worsen significantly and
take-offs appear over greater distances.

The behavior is similar to that of simulation 3, but because the normal spans are
shorter, the effect of lifting the beam in the section is dissipated before the critical point
at 1.4 m, from which the lifting of the beam is compensated by starting to fall below the
nominal height, which causes problems with the passage of the pantograph.

4. Discussion

The inclusion of the slope in an overlapping span may be necessary from a critical
length onwards to achieve optimum values of force in the common area. However, in
general, for the assumed speed, it is not necessary to introduce a slope height to obtain
good results. This is because, in the initial static configuration, the section already presents
a certain inclination as a consequence of the action of gravity. However, the length of
the section should not exceed a certain value from which the results of the contact force
significantly fluctuate.

As the authors state at the beginning of this paper, the main contribution of this
paper consists in a model for the pantograph–rigid catenary interaction considering an
overlapping span. This model is a particular model for this kind of catenary and not an
elastic catenary where the stiffness is increased.

In order to build this model, the authors start from well-known methods that appear
in Finite Element Method literature, such as [22,23], but particularized for the elements of
a rigid catenary and its underlying problems. In fact, according to the literature, the model
uses an explicit method as an integration method.

The RICATI tool allows the study of dynamic behavior in which new profile designs
are considered and compared with existing designs. Therefore, RICATI allows multiple
simulations to determine the optimal catenary structure for any configuration. For example,
with the same characteristics as the previous simulations, it is possible to vary the speed of
the unit to observe the behavior at different speeds. We observed that, at speeds of 80 and
120 km/h, the behavior of the examples is similar. However, at 200 km/h, Figure 15 shows
variations in the behavior and indicates two optimal points in the length of the sectioning
around 1.2 and 3.9 m.

This example shows the usefulness of an application, such as RICATI, to check the
behavior of the initially established configuration for a catenary. The tool also allows
solutions to be obtained for the problems encountered when simulating the passage of the
pantograph (or pantographs), not only for the section, but also for the entire catenary.

The proposed methodology provides a tool to simulate the pantograph–catenary
behavior in a rigid catenary considering the transition between two cantons of the catenary
with overlapping spans. To advance the presented method, the following lines of work
are proposed:

• Study of the behavior for different configurations in the geometry of the sectioning span.
• Development of the model in three dimensions.
• Study of the behavior and simulation in the transition between elastic and rigid catenary.
• Optimization of the algorithm, taking into account the data structures underlying

the problem, in addition to the parallelization of the calculations, to obtain results in
significantly shorter times.

• Development of RICATI following the paradigm of Software-as-a-Service. This model
of the application in the cloud would allow access by more companies, from any point
at which there is connectivity, and at a lower cost. In addition, this solution would
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allow different tests to be carried out simultaneously by requesting resources from the
provider of the cloud service, and significantly more quickly, to find better solutions.

In addition, as an important future work, the authors will address the problem of the
irregularities in the beam following similar ideas of those described in [30–32].
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