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Abstract: The helical resonator is a scheme for the production of high voltage at radio frequency,
useful for gas breakdown and plasma sustainment, which, through a proper design, enables avoiding
the use of a matching network. In this work, we consider the treatment of the helical resonator,
including a grounded shield, as a transmission line with a shorted end and an open one, the latter
possibly connected to a capacitive load. The input voltage is applied to a tap point located near the
shorted end. After deriving an expression for the velocity factor of the perturbations propagating
along the line, and in the special case of the shield at infinity also of the characteristic impedance, we
calculate the input impedance and the voltage amplification factor of the resonator as a function of
the wave number. Focusing on the resonance condition, which maximizes the voltage amplification,
we then discuss the effect of the tap point position, dissipation and the optional capacitive load, in
terms of resonator performance and matching to the power supply.

Keywords: plasma; helical resonator; radio frequency; RF plasma source

1. Introduction

The generation in the laboratory of an ionized gas, also called plasma, requires, in most
instances, application to the originally neutral gas of an electric field that is large enough
to start an avalanche process of ionization events driven by free electrons (also called
breakdown). While the required conditions greatly vary, depending on many variables
related to the chosen experimental layout and working conditions, in broad terms, the
typical applied voltages are in the range of a few hundreds volts to several kV. Furthermore,
the voltage can be stationary or varying in time with different rates: the rate determines
both the technology to be used to generate and transmit the required voltage and the
physics of the breakdown process and of the produced plasma. Among the different
possibilities, the radio frequency (RF) voltage is a possible choice. This term broadly
represents voltages varying with a frequency ranging from around 1 MHz to several
hundred MHz. RF plasmas are characterized by a lower voltage required for breakdown
with respect to lower frequency devices, and by the possibility of avoiding contact between
electrodes and plasma, especially when the inductive coupling regime is achieved.

In general terms, the production of a RF plasma requires a generator (possibly com-
posed of an oscillator and an amplifier), and a matching network, which in this case, has
the double role of matching the device input impedance to the output impedance of the
generator, and to magnify the voltage to the required value for breakdown and subsequent
plasma sustainment. The impedance matching feature is necessary to minimize the power
reflected from the load to the generator. This is not an issue at lower frequencies, where
the wavelength of the voltage disturbance is much larger than the apparatus size, so that
instantaneous propagation can be assumed, and lumped element circuit treatments are
appropriate. It becomes, however, important in the MHz range and beyond, where the
wavelength becomes comparable to the system size. In this case, a finite time is required
for voltage variation propagation, and transmission line theory comes into play. It is worth
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noting that this brings many similarities between the field of plasma technology and that
of radio transmission, although in the latter, voltage amplification is not a requirement,
but rather an issue that should eventually be taken into account to avoid undesirable
breakdown of air.

Many possibilities exist for matching network construction, and sophisticated solu-
tions are now commercially available. There is, however, a solution that has already been
used for plasma generation, but has not encountered great diffusion despite its poten-
tial simplicity: the helical resonator. The helical resonator, as will be described in more
detail in the following, is an open-ended air core coil that can be used both for voltage
amplification, exploiting a resonance condition, and for impedance matching, by proper
design of its layout. The absence of a ferrite core implies that very low dissipation levels
are attainable if proper care is put in the design of the device, allowing the use of relatively
low-power generators.

It is worth making here the historical annotation that there is a strong connection
between the helical resonator and the “extra coil” used by Nikola Tesla in his work at
Colorado Springs to produce high voltage at high frequency [1]. Indeed, Tesla evolved
from using a loosely coupled resonant transformer to a tightly coupled one, with the
secondary circuit connected to an “extra coil”, which was a capacitively loaded helical
resonator. Keeping in mind that Tesla used frequencies of tens of kHz, so several issues
related to dissipation are substantially different in our case (and the apparatus size as well),
it is, however, important to remark that our present discussion is also useful for a better
understanding of his work and of the modern day Tesla coil working principle.

Despite being a concept developed at the end of the XIX century, the literature on
the helical resonator working principle is somehow scattered and also includes empirical
formulas not derived from first principles [2]. This is also due to the fact that the same
topic has been studied from several angles. Indeed, the concept is interesting for the
following fields:

e  Plasma generation [3-6];

¢ Jon trap antennas [7];

®  Self-capacitance of coils [8,9];

e  RFfilters [10,11];

e Tesla coil construction [12];

e  Precision measurements and metamaterial research [13-17].

In each of these fields, different authors treated the problem with different taste and
emphasis on some issues, and collecting all these contributions in a unified view has proven
to be not trivial. We thus would like to give a summary of the most important results on
this subject, in the hope that this can prove useful to future scientists and practitioners who
wish to properly understand this concept. In particular, we derive formulas that allow to
predict the performance of a resonator from its basic properties, and illustrate a possible
use for designing resonators, satisfying the given requirements. The whole discussion
surrounds the resonator without plasma: the effects of a plasma formed inside the device
will be the object of a forthcoming publication.

The paper is organized as follows: in Section 2, we introduce the geometry of the
device we wish to describe, and the different flavors that it can take; in Section 3, we
describe the propagation of electromagnetic perturbations in the resonator, deriving the
main characteristics of the device, which are characteristic impedance and the velocity
factor, as a function of its geometry. Armed with these results, we then move to Section 4
to model the resonator as a transmission line, looking for the resonance condition, which is
the frequency that maximizes the voltage amplification at the open end, and for the input
impedance, which should be adapted so as to match the output impedance of the generator.
In Section 5, the special case of a resonator with the shield immediately near the helical
conductor is treated, as this is both the most promising for plasma production and also
the one that allows a fully analytical treatment. In Section 6, the effect of a capacitive load
connected to the resonator (including parasitic capacitance) is discussed. The results found
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up to this point are then checked against the experimental data in Section 7. Finally, in
Section 8, the conclusions are drawn.

2. Geometry

The basic geometry of a helical resonator, as defined in the context of this paper, is
shown in Figure 1. The resonator consists of a helically wound conductor of length L,
with one end (which we shall call bottom end in the following) grounded, while the other
(top end) is left open, or connected to a load. We indicate with b the helix radius, with H its
height, and with N the number of turns. The helix pitch is given by the following;:

P=N )

The driving voltage, labeled V;,, is fed in an intermediate point, named “tap point”,
usually near the bottom end. The tap point axial position, normalized to H, is labeled as
6. The resonator is covered by a grounded conducting shield, of radius c. This shield, not
present in all treatments (if absent, it may be considered at infinity) represents the second
conductor of the transmission line for which the helix is the first one, according to the
modeling presented in Section 4. The voltage at the top end of the resonator is labeled V.

<—b>
- ¢ -
A 1 ouT
(1-0)H
H
pt IN
oH
V

GND

Figure 1. Schematics of the helical resonator. The terminals labeled IN and OUT are the ones where
the voltages V;,, and V,;; are evaluated. The external rectangle represents the screen.

It is useful to emphasize that the shieldless resonator is fully defined by the three
parameters (b, H, N), while in the more general case where the shield is present, the fourth
parameter ¢ is required. In principle, also the thickness of the helical conductor should
be taken into account: however, this has only an effect on the dissipation due to the skin
effect, and this effect is not so important at RF since the skin thickness is much smaller than
any practical conductor thickness, so that the current is anyway flowing on the conductor
surface. Therefore, we shall not consider this further parameter in our model, although one
should be aware that p cannot be smaller than twice such thickness, and this puts a lower
bound on the angle ¥ defined below.

It is worthwhile to introduce the pitch angle ¢, defined as the following:

tany = % (2)



Appl. Sci. 2021, 11, 7444

4 0f 25

This will typically be quite small, expressing the fact that the helix is tightly wound,
for the reason of compactness of the device; however, nothing prevents making it large,
if required. The total length of the helical conductor can be expressed in terms of the other

parameters as
L = N/ p? + 472b2. 3)

In most practical situations, p << 27mb, so that L ~ 27tbN.

It is also useful to introduce the aspect ratio, defined as H/(2b). This quantity gives
an immediate idea of how elongated the coil is. In the following, we actually use, for con-
venience of notation, the inverse aspect ratio:

.- (;)1 @

It is useful for the following to notice that coty = rtNe.

3. Propagation of Electromagnetic Perturbations into the Resonator

In order to properly model the helical resonator, we first need to understand how
electromagnetic disturbances propagate in it, deriving a dispersion relation that is useful for
obtaining the basic properties, such as phase velocity and, in a limit case, the characteristic
impedance of the resonator seen as a transmission line. To accomplish this task, it is
customary to model the resonator as a “sheath helix”. This name is used to indicate an
idealized anisotropically conducting cylindrical surface of infinite length, with infinite
conductivity along the helix and zero conductivity normal to it. This model is possibly
originally due to Ollendorf [18], and was treated by Sichak [19] and by Sensiper [20].

The starting point are Maxwell equations in vacuum as follows:

9B

VxE=-3 ®)
1 9E

VXB—%E. 6)

Combining them, we obtain the wave equation as follows:

19> (E »[E
HOREE
where cy is the speed of light, which has as solutions in free space the electromagnetic
plane waves.
We now consider the cylindrical geometry of the resonator and seek solutions of the
form expli(wt — pz — mB)]. Here, B is the axial wavevector, and m the azimuthal mode
number. Furthermore, we restrict ourselves to m = 0 modes, because higher order modes

are relevant only at very high frequencies. We thus deal with azimuthally symmetric
perturbations of the form expli(wt — Bz)|. The wave equation becomes the Helmholtz

equation as follows:
1d/ d , W [EY _
[m(%)‘ﬁ Hg]{s}—o' )

Introducing k = w/c¢q (this is the wavevector of electromagnetic plane waves in
vacuum), and defining the radial eigenvalue,

T2 — ‘BZ o k2/ (9)

@ 1d L\[(E

we have the following;:
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The general solution of this equation is of the form Aly(7r) 4+ BKy(7r), where Iy
and Ky are the modified Bessel functions of the first and second kind, respectively. It
is important to remark, in order to avoid confusion, that k is here used as a normalized
version of the frequency, whereas f is the actual wavenumber of the perturbations, and T
defines the radial oscillation of the electromagnetic field perturbation. Normally, § > k, so
that T =~ B.

Let us now label with 1 the region inside the coil (0 < r < b) and with 2, the region
between the coil and the shield (b < r < ¢). Taking into account that Ky(x) diverges in
x = 0, we have the following physically admissible solutions for the axial field components:

E;1 = Aqly(tr) (11)
B,y = Bilp(tr) (12)
En = Aply(tr) + ASKo(Tr) (13)
By = Balp(tr) + ByKo(tr). (14)

The other components of the fields are deduced from Maxwell equations as follows:

_ iBdE;
b= oaa (1)
iw dB,
_ @ dB,
Br = T2 dr 17)
_ iw dE;
Bo = c3t2 dr (18)

We now apply the boundary conditions relevant for the sheath helix. On the helix
surface (r = b) the longitudinal electric field has to be zero, due to the hypothesis of infinite
conductivity. This gives the following:

Ep1(b)cosp + E1(b)siny =0 (19)

Ega(b) cosp + Ep(b) sinyp = 0. (20)

The transverse component must be continuous, and since this is the only component
present, this gives the following:

Eg1(b) = Ega(b); Ez1(b) = Exa(b), (21)

which makes redundant one of the two previous ones. The longitudinal component of
the magnetic field must be continuous since there is no current flowing on the surface
perpendicular to this direction, so that the following holds:

Bg1(b) cos ¢ + B,1(b) sinyp = Bgp(b) cos P + B,o(b) sin ¢. (22)
Finally, on the conducting shield (r = c) the electric field will be zero, that is,
Eg(c) =0; Exn(c)=0. (23)
w/hich complete the set of six conditions required to fix the six constants Ay, By, Az, A, By,
- After some algebra, the following eigenvalue equation for T is obtained:

2 li(te) I(d) (Io(Te)Ko(Tb) — Ip(Th)Ko(TC))
Io(tc) 1 (Tb) (I1(Tb)Kq(tc) — Li(Tc)Kq(Th))

— (tb) = (kb)? cot® ¥ (24)
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This is the result that was obtained by Uhm and Choe [21], and also by Anicin [22],
which is incorrectly reported (likely due to a mere transcription error) in Equation (25)
of Niazi et al. [23]. It has the form (tb)2g(th,c/b) = (kb)? cot? , which means that once
the normalized frequency kb and the geometric factors ¢/b and ¢ are specified, Tb can
be obtained, and subsequently, the normalized wave number Bb using expression (9).
The function g(tb,c/b) is plotted in Figure 2 for different values of ¢/b. It can be seen
that for large values of c/b, this is a strongly decreasing function of tb, whereas it tends
to the constant value of 1 when the screen goes very near the coil. All the curves group
together onto the unit value for large 7b (indicatively, larger than 1). In Figure 2 are also
reported the eigenvalues b obtained from Equation (24), as a function of the parameter
kb cot ip. The curves display an increasing behavior of the eigenvalue with the frequency,
and converge to the relation 7b = kb cot ¢ as the shield approaches the coil.

g(tb, c/b) Eigenvalues
— c/b=o 10" 5
c/b=10
81 — ¢/b=5
— c/b=2 1009 4
6 - — c/b=1.1
Q
[
4l 10—1 .
2 A A 10-2
0+ T T T T r r r
102 10! 100 10! 102 10-1 100 10!
b kbcoty

Figure 2. Left: function g(tb, ¢/b) entering the eigenvalue equation, plotted as versus tb for different
values of c/b. Right: solutions of the eigenvalue equation, plotted versus kb cot i for different values
of ¢/b.

Once the eigenvalue equation is solved, one has the frequency as a function of the
wave number, that is, the dispersion relation. It is then possible to evaluate the velocity
factor, defined as the phase velocity v, normalized to cy:

v 1
Vi = r_ - (25)

Co 1+(%}>2

We should now recall that we are dealing with axial propagation, and therefore
the velocity factor refers to the axial velocity. However, this holds in the sheath helix
approximation, while in reality, the voltage pulse propagation takes place longitudinally,
along the helically shaped conductor. If we consider the longitudinal propagaton along the
helical conductor, the wave vector is given, through a simple projection, by - = Bsin .
Thus, the longitudinal velocity factor, given that the phase velocity is the ratio of the
angular frequency to the wave number, is given by VfL = V¢/siny.

Such a longitudinal velocity factor is shown in Figure 3 for two different values of
the pitch angle, corresponding to a tightly wound helix (i = 1°) and to a more loosely
wound one (1 = 5°). It can be seen that the longitudinal propagation takes place at a speed
somehow larger than the speed of light in the vacuum, and that its frequency dependence is
almost the same regardless of the pitch angle, with only a shift in the normalized frequency
axis. We can identify three regions: at low frequency, the velocity factor is constant, with a
value of 1 for the shield on the helix and increases to values larger than 3 when the shield is
brought far away; a transition region; and a high frequency region where the propagation
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speed is equal to ¢y, regardless of the shield position. We want to emphasize that the
velocity factor is frequency dependent, so the propagation is dispersive.

=1° —5-
3.5 L2 3.5 v
— /b= — /b=
c/b =10 c/b =10
3.01 — c¢hb=5 3.01 — c¢hb=5
— c/b=2 — c/b=2
25 — cb=11 25 — cb=11
s ~‘>‘6—
2.0 2.0
1.5 1.5
1.0 +==================== - 1.0 +==================== -
1073 1072 107! 1073 1072 101 10°
kb kb

Figure 3. Longitudinal velocity factor VfL plotted as a function of the normalized frequency kb,
for different values of the shield proximity c/b; the left panel refers to a pitch angle ¢y = 1°, the right
panel to ¢ = 5°.

To put things in perspective, we can consider, for example, that for the industrial
frequency f = 27.12 MHz, the plane wave wavelength is 11 m, so k = 0.567 m~!. For a
coil with a diameter of 10 cm, this gives kb = 2.8 x 10~2. This can be in the region where
all longitudinal velocity factors collapse on a single curve or not, depending on the pitch
angle value.

Before concluding this section, it is worth addressing in more detail two limit cases.
The first one is the case without the shield, which, in our formulation, corresponds to
¢/b — oco. It is straightforward to show that in this case, the eigenvalue equation reduces
to the following:

(e WD)
I (Tb)Kl (Tb)

This result was quoted by several authors, in the context of analyzing the self-
capacitance of a helical coil [24]. The rest of the analysis proceeds as before, but it is
worth mentioning that the axial velocity factor can be approximated reasonably well,
at least in the transition region, by the following expression [24]:

= (kb)? cot? y. (26)

! 1
\/1 n 20<%>2.5( P >o,5 ~ /1 +0.645(cot 1)25(kb)05"

Ao

(27)

Vf ~

where d = 2b is the coil diameter. This is illustrated in Figure 4, which shows a superposi-
tion of the exact longitudinal velocity factor obtained from the resolution of the eigenvalue
equation superposed to that obtained from the empirical formula above. It can be seen
that, as long as the frequency is low enough so that the longitudinal velocity factor is larger
than 1, the approximated value is reasonably close to the exact one.
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— y=0.1°
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kb

Figure 4. Left: exact longitudinal velocity factor V' for the case without shield plotted as a function
of the normalized frequency kb (solid lines) and approximation obtained from Equation (27) (dashed
lines), for three different values of the pitch angle ¢. Right: characteristic impedance for the case
without shield plotted as a function of the normalized frequency kb, for three different values of the
pitch angle .

For this particular case, an analytic formula for the characteristic impedance of the
resonator seen as a transmission line was derived [24]. This is given by the following

(expressed in Ohm):

Ze = 1 (xb) Ky (1b). (28)
4

It is worth noting that the product of Bessel functions that appears in this formula is
a decreasing function of its argument. The characteristic impedance for the case without
shield is also plotted in Figure 4, as a function of the normalized frequency kb, for different
pitch angles. It can be seen that the characteristic impedance decreases with frequency.
For high frequencies, the curves all collapse on the following value:

ur 30
e (29)
whereas at low frequencies, they fall below this curve. Typical characteristic impedance
values for wavelengths much larger than the coil radius fall indicatively in the range of the
kQ) for pitch angles between 1° and 10°.

The second limit case is that in which the shield is directly over the coil, thatis, ¢/b = 1.
In this case, the eigenvalue equation simply reduces to the following;:

Tb = kb cot ¢, (30)
so that no numerical resolution is required. The dispersion relation becomes nondispersive.
k= Bsiny (31)

with a velocity factor V; = sin, and therefore a longitudinal velocity factor VfL = 1: the
voltage pulses propagate along the conductor at the speed of light in vacuum.

We conclude this section by remarking that, in general, both the velocity factor and
the characteristic impedance are functions of the frequency of the pitch angle ¢ (which is
the only coil geometrical parameter entering the treatment) and of the shield proximity

c/b.
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4. The Helical Resonator as a Transmission Line

Armed with the expressions for the velocity factor and, for the shieldless case , of the
characteristic impedance, we are now in the position to model our helical resonator as a
transmission line, with the helical coil as one conductor and the shield as the other, and with
voltage V;, applied to the tap point. The basic concepts of transmission line modeling are
recalled, for the reader’s convenience, in Appendix A. The aim of this model is to obtain
expressions for the two quantities, which are to be optimized for plasma generation, that
is, the input impedance, which ideally should match the output impedance of the power
supply (typically 50 (1), and the voltage amplification factor that we want to maximize.

We start from basic Equations (A1) and (A2), describing the spatial behavior of voltage
and current for a perturbation at frequency w:

V(z) = Ve "+ Vye” (32)
Vi Vi
— 0 ,—yz 0 7z
I(z) 7 e 7 e (33)

where z is a coordinate running along the cylinder axis and y = a + i, with a being the
attenuation constant and § the wave number of the propagating perturbation. We consider
separately the bottom and the top part of the resonator as two different transmission lines,
each with its own boundary conditions. The bottom part, being short circuited (V = 0),
gives the conditions at the grounded end (z = 0) and the tap point (z = H¢):

Vib+Vy =0 (34)
Ve M+ Ve = v, (35)

where we have introduced h = Hé. These yield the following solution:

_ , sinh(yz)
Vp(z) = Vi smh(’yh) (36)
Vi cosh(7z)

For the top part, which is open (I = 0) we have the following;:

Vibe " 4 Ve = v, (38)
vy vy
-vH _ "0 ,vH _
2 —e 2 e 0 (39)
yielding the following;:
cosh(y(H —z))
V, = V 4
t(Z) mCOSh(’)/(H—h)) ( 0)
Vi sinh(y(H — z))
I = A~ 41
1(2) Zc cosh(y(H — 1)) (1)
The voltage at the line endpoint is V,,;; = V;(H), so the following holds:
Vour _ 1 . (42)

Vin  cosh(yH(1—9))

We shall call “voltage amplification factor” the modulus of this ratio. The total input
current at the tap point is the following:

I = I (k) — T (h) = %[tanh(v(H — 1)) + coth(vh)] (43)

c
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so that the input impedance of the resonator is given by the following:

Vi Z
Z; = 22 = < . 44
" I,  tanh(yH(1 —9)) + coth(yHJ) (“44)

This is generally complex, with a resistive and a reactive part.

The expressions found for the input impedance and for the amplification factor are
functions of the frequency, first because the wave number B is related to the frequency
through the velocity factor (k = BVy), and also because the velocity factor and the charac-
teristic impedance are both frequency dependent. The dependence on the frequency of the
attenuation coefficient , which also exists, is neglected in the following.

In order to understand the behavior of the expressions found above, we first make the
assumption that Z is independent of frequency, and we plot the relevant quantities as a
function of the “electrical length” BH (which, we remind, is equal to B-L), expressed in
units of 27t. This quantity is related to the frequency through the velocity factor. The results
are shown in Figure 5 for three different values of the attenuation factor a H.

Modulus of input impedance Amplification factor
100 A
80 1
= =
N 2 60
N 3
-~ = 40
20 1
T T T T 0 L T T T T
0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35
BH (units of 2m) BH (units of 2m)
Vin — Iin phase Vout — Vin phase
90 - 0 —
w454 @w —45-
)] )]
] ]
= =
& &
T 0- T -90 -
2 2
(] (]
8 —45 8 —135 1
-90 T T T T -180 T T T —
0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35
BH (units of 2m) BH (units of 2m)

Figure 5. Behavior of the helical resonator modeled as a transmission line plotted as a function of the
normalized wave number SH expressed in units of 271, for three different values of the attenuation
factor aH. The curves are computed for § = 0.1. Top left: modulus of the input impedance |Z;,]|
normalized to the characteristic impedance Z.. Top right: voltage amplification factor |V,u:/ Vi,
Bottom left: phase shift in degrees between input voltage and input current. Bottom right: phase
shift in degrees between the input voltage and the output voltage.

The modulus of the input impedance displays a maximum and a minimum. The max-
imum is found for an electrical length as follows:

T
poH = 5 (45)
This corresponds to the condition of the entire coil length equal to A /4 (either consid-

ering the axial direction, with wavelength 277/ 8 and length H, or the longitudinal direction,
with wavelength 27t/ B! and length L). It is worth noting that this point corresponds to a
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rather large impedance, of the order of the characteristic impedance, and thus in the range
of the k).

The voltage amplification factor displays a maximum, corresponding to the minimum
of the impedance modulus. By analyzing expression (42), it can be seen that the maxima of
the amplification factor occur at the following resonant wave numbers:

,B,H(l—é):g—i—nn n=0,12,.... (46)

which correspond to increasing resonant frequencies. These are A /4 resonances computed
by taking into account only the length of the top part of the resonator. The peak displayed in
the graph, and the only one which will be considered in the following, is ,H(1 — ) = 71/2.
The extension of the results to higher order resonances is straightforward. Other authors
have studied resonances of a higher order in the context of plasma production [25]. It
is clear how the distance between the two critical points, that is, the point of maximum
impedance and the resonance, increases as 9 is increased. The amplification factor at the
resonance is the following:

Vout 1
. 47
<Vi ), isinhaH(1 - 6) 47
Since in practical cases, « H < 1, this can be approximated by the following;:
Vout 1
N ——. 4
(%)~ wmi=s 4

This expression elucidates the importance of achieving low dissipation in order to
obtain a large voltage amplification.

Looking at the phases, it can be seen that the input voltage and current are in quadra-
ture at low frequencies, then go in phase at the impedance maximum; then the phase is
inverted, has another zero at the amplification factor maximum and returns to 7r/2 at high
frequencies. Thus, the two critical points, that is, the maximum and minimum of the input
impedance modulus, both approximately correspond to a real impedance. It is worth also
noting that the extension of the phase reversal region between the two depends on the
attenuation factor, so that this can be used as an indirect way of measuring it. Indeed,
if the dissipation is too high, the phase will never become negative, and no purely resistive
input impedance is possible. Finally, the input and output voltages are in phase at low
frequencies, become in quadrature at the amplification factor maximum, as expected from
Equation (48), and then go in phase opposition. As is shown in the next section, the dis-
tance between the two critical points depends on the parameter 4. In the following, we
are concerned mainly with the point of maximum output voltage, which is related to a
resonance of the system, and which represents the optimal condition for plasma generation.
The voltage amplification becomes, of course, smaller as the attenuation factor increases,
so minimizing dissipation is an important part of the design of an effective resonator.

A similar analysis can be performed by keeping the dissipation constant, and varying
the tap point relative position 4. This is shown in Figure 6. It can be observed that the
maximum modulus of impedance increases as ¢ is increased, while the amplification factor
peak moves to the right, as expected, and grows in magnitude. The same shift occurs to the
phase shift between the input and output voltage. The region of negative V;,, — I;;, phase
becomes deeper and wider. This last result shows that, for the given resonator parameters,
there is a minimum ¢ that allows a purely resistive input impedance.
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Figure 6. Behavior of the helical resonator modeled as a transmission line plotted as a function of the
normalized wave number BH expressed in units of 27, for three different values of the relative tap
position é. The curves are computed for «H = 0.02. Top left: modulus of the input impedance |Z;,,|
normalized to the characteristic impedance Z.. Top right: voltage amplification factor |V,u:/ V.
Bottom left: phase shift in degrees between input voltage and input current. Bottom right: phase
shift in degrees between the input voltage and the output voltage.

Since in the context of plasma production, the interest is focused on the resonance,
which gives the maximum voltage amplification, we now plot the resistance at the peak,
the resistance at the resonance, their ratio and the voltage amplification factor at the
resonance, as a function of the dissipation factor «H for three § values. This is shown in
Figure 7. It can be seen that the peak resistance is of the same order of magnitude of the
characteristic impedance, that is, of the order of the k(}, and decreases as the dissipation
grows, while it increases when the tap point is moved to the right. On the contrary,
the resistance at the resonance, which is the relevant parameter for the operation of the
resonator as a voltage amplifier, increases both with dissipation and with tap position. This
shows that changing the tap position is a way to achieve an impedance matching of the
device with the power supply. Finally, the ratio of the output voltage to the input one is
shown, as could be expected from energy considerations and from the previous figures,
to decrease with dissipation, with a modest dependence on the tap position in the explored
range. In the figure, we have also plotted the ratio of the peak resistance to the resistance
at resonance, in order to illustrate the fact that this easily measurable parameter could be
used as a way to estimate the attenuation factor «H. This, in turn, allows us to estimate
the output without actually measuring it, a useful possibility given the fact that a direct
measurement with a high voltage would be perturbative due to the addition of a capacitive
load (as described below).
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Figure 7. Behavior of the helical resonator at the peak resistance and at the resonance, plotted as a
function of the normalized attenuation factor a H, for three different values of the relative tap position
6. Top left: input resistance at peak, normalized to the characteristic impedance Z.. Top right: input
resistance at resonance, normalized to the characteristic impedance Z.. Bottom left: ratio of the
previous two quantities. Bottom right: voltage amplification factor |Vout/ Vi |.

We should now remark, though, that the input impedance at resonance is given by

the following:
Zc

cothaH(1 — ) + coth [aH(S +iZds

77

mn

(49)

This expression clarifies that the input impedance at resonance is not fully resistive.
Indeed, the point of zero V;, — I;;, phase is located at a slightly lower frequency. As a
consequence, the calculation of the input impedance and of the amplification factor for the
point of purely resistive input impedance has to be done numerically by identifying the
wave number for which the imaginary part of the impedance is zero, and then evaluating
its real part at this same wave number. It is instructive to plot the resistance at the point
of purely resistive impedance near resonance and the voltage amplification at the same
point as a function of the tap position ¢ for different attenuation factor values. This is
depicted in Figure 8. On the same figures, the resistance (real part of the impedance)
and the amplification factor computed precisely at resonance are shown as dashed lines.
It is possible to observe that the resistance curves at resonance display a steep rise for
low values of J, a maximum, and then a slower fall. This behavior suggests that if one
wants to work at resonance and a specific value of this resistance is sought (typically
50 ) for good matching), then one may wish to stay on the right of the peak, where the
slow variation is forgiving in regards to imprecision in the construction. This also gives
slightly higher voltage amplification than at very low J values. Additionally, one should
observe that if the dissipation is too low, then there exists the possibility that matching
is not achievable because the input resistance is lower than that required for all possible
6 values. However, if instead of working precisely at resonance, the nearby point of
purely resistive input impedance is chosen, it can be seen that a monotonously decreasing
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resistance is found. In fact, for J values that are sufficiently high, the curves superpose to
those obtained at resonance, indicating a very small difference between the two points.
A larger discrepancy appears at low J, where the resistance at resonance decreases, while
the other value increases steeply. In this same region, the amplification factor at the point
of purely resistive impedance decreases with respect to the one at resonance. Generally
speaking, it seems advisable to avoid the low § values where a strong discrepancy of the
two conditions appears, and where small errors in determining § may translate to large
changes in input resistance. For these values of the attenuation factor, this suggests a ¢
value of 0.1 or larger.
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Figure 8. Behavior of the helical resonator at the point of purely resistive input impedance near
resonance (continuous line) and at resonance (dashed line), plotted as a function of the tap position J,
for three different values of the normalized attenuation factor « H. Left: input resistance at resonance,
normalized to the characteristic impedance Z.. Right: voltage amplification factor |Vt / Vi, |.

5. The Fully Shielded Helical Resonator

While the procedure described above constitutes the general approach, from now on,
we want to focus on the condition c¢/b = 1, that is, with the shield directly superimposed
to the helical coil. We shall call this case “fully shielded resonator”. This is the most
interesting situation for plasma production, because in practical situations, especially
for devices that are intended to be taken out of the laboratory, one wishes to minimize
electromagnetic radiation, both for safety and electromagnetic compatibility reasons. Since
a helical antenna, when operating at wavelengths much larger than its size, radiates mainly
from the sides [26], the grounded shield should prevent this irradiation (hence its name).
Furthermore, since radiation is one major source of dissipation, it is expected that the
shielded resonator will have a lower «. Thus, we think that a good construction practice is
to always wrap the coil in a conducting grounded shield, with close proximity.

This situation makes also for easier calculations since, as seen above, no numerical
solution is needed: V; = siny and k = Bsiny. This allows to recast in terms of the
frequency the previously found expressions, which were given in terms of the wave
number B. Indeed, it is straightforward to show that in this case, the following holds:

BH = CZOZI:Z kb. (50)

The normalized frequency at which the peak in input resistance occurs is as follows:

_cosyp 1
kob = iN CIN (1)




Appl. Sci. 2021, 11, 7444

15 of 25

We see that for a given coil diameter, this frequency is inversely proportional to the
number of turns. It is also possible to normalize the frequency f to the frequency of
maximum resistance fy, and write the following;:

i
H=_—-—. 52
pH =7+ 52)
It is thus straightforward to replot the graphs in Figures 5 and 6 as a function of f/ fj.
This is not the case for values of ¢/b larger than 1, where the velocity factor is frequency
dependent, and the transformation from wave number to frequency is nonlinear. The
resonance frequency f; is related to fy by the following:

fo=fr(1-0). (53)

6. Effect of a Capacitive Load

In many practical applications, the helical resonator will not be free-standing, but its
upper end will be connected to some electrode or other structure, adding to it a load that,
in a first approximation, can be considered fully capacitive. Even when this is not the case,
one may wish to measure the voltage of the upper end with a high voltage oscilloscope
probe, which will add a capacitive load of capacitance C (typically a few pF). We thus wish
to address the problem of connecting a load with impedance

1
L=7:"C (54)
to the transmission line model described above. Using a standard result of transmission
line theory, the input impedance of a line of length L and characteristic impedance Z,

connected to a load Z; is the following:

1+ FLe*Z"YH
Zin - ZC 1 _ rLe_zfyH (55)
where I'; is the reflection coefficient at the load, given by the following:
Zy —Zc
I, = . 56
k ZL +Z ( )

For the case of a capacitive load, the reflection coefficient takes the following form:

1-— ia}TL
I'n=——>—— 57
L=7 +iwTy, (57)
where the characteristic time 17, is defined as follows:
T, = ZCC. (58)

The helical resonator can be considered the parallel of the bottom section and of the
top section, the latter being connected to the capacitive load. Since the bottom section is
short-circuited by the ground connection, it has Z; = 0 and, therefore, I', = —1, so its
input impedance is Z;;, = Z tanh yHJ. Combining this in parallel with the top section
connected to the capacitive load, one obtains the overall input impedance as follows:

1— rLe—Z’yH(l—(S) -1

Zin = Z¢ | cothyHS + 1+ e-27H(-9)

(59)

In the limit C — 0, I';, tends to 1, and the formula for Z;,, correctly reduces to expres-
sion (44).
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Using the fact that
Vy et
_ _0
it is straightforward to derive the voltage amplification factor:
Vout 1+TL
= . 61

Vi~ rH=0) 5 T e H0) (61)

According to Corum et al., this is “probably the most important equation in all of
high voltage RF engineering” [27]. Once again, when I'; tends to 1, this formula reduces to
expression (42).

Figure 9 shows, for a fully shielded resonator, the frequency dependence of the input
impedance normalized to the characteristic impedance of the amplification factor, and of
the phases between V;,, and I;;, and between Vj,, and V,;, for various values of w1y
As before, the frequency is normalized to the frequency corresponding to the wave number
Bo, which satisfies BoH = 71/2, that is, the frequency of the maximum input impedance in
the no-load case.
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Figure 9. Behavior of the fully shielded helical resonator with capacitive load plotted as a function of
frequency f, normalized to the frequency fy of maximum impedance modulus, for different values of
woTL. The curves are computed for ¢ H = 0.02 and 6 = 0.1. Top left: modulus of the input impedance
|Z;,| normalized to the characteristic impedance Z.. Top right: voltage amplification factor | Vyy¢ / Viyy |-
Bottom left: phase shift in degrees between input voltage and input current. Bottom right: phase
shift in degrees between the input voltage and the output voltage.

It is possible to observe that as the load capacitance is increased (and, therefore, w7y,
becomes larger) the resonance frequency decreases, and the peak impedance and peak
voltage amplification are both reduced. The phase diagrams are also shifted toward lower
frequencies. In general, the downshift in frequency appears to be the most relevant effect,
unless the capacity becomes too large.
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We can now evaluate as before the input impedance and the amplification factor at
the near-resonance frequency where the input impedance is real. The results are shown in
Figure 10, for four different values of wyt,. We see that the curves have a shape similar
to that shown in Figure 8, with a region with a strong gradient at low ¢, difficult to
practically use, and then a region of slowly varying Z;, and amplification factor. As the
load capacitance is increased, the part with a steep gradient of the Z;, curves is shifted to
the right, while the rest collapses onto a single curve, suggesting that the capacitive load
does not affect the matching condition if one stays in this region. The amplification factor
curves are shifted downward, indicating a reduction in voltage amplification caused by
the increasing load. Since this gives a reduction in performance, care should be taken to
avoid too large capacitance at the high voltage end of the resonator. If the resonator is to be
connected to a system of electrodes, this should be taken into consideration.
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Figure 10. Left: plot of the input resistance normalized to the characteristic impedance of the fully
shielded resonator with capacitive load, achieved in the purely resistive condition near the resonance,
as a function of the relative tap point position §, for different values of wptr. (Right): voltage
amplification factor for the same conditions. The attenuation factor is «H = 0.02.

7. Experimental Results

The theoretical results described up to now were checked against the properties of
actual helical resonators, both with and without a conducting shield, in unloaded and
loaded conditions. In these experiments, the input impedance was measured using a
PocketVNA Vector Network Analyzer, in 1-port reflection only mode, which was properly
calibrated. Furthermore, the voltage amplification factor at resonance was measured by
sending RF power to the resonator and measuring the input voltage with a 10:1 oscilloscope
probe and the output voltage with a 1000:1 Tektronix P6015a high voltage (HV) probe.
For this latter experiment, the frequency was adjusted so as to achieve the maximum
Vout / Vi, ratio.

The first resonator (resonator 1) was built, using a 1 mm diameter insulated wire
wound on a polyurethane tube of a 10 mm inner diameter and 12 mm outer diameter.
Initially, 110 turns of wire were wound, and the tap point was located after 10 turns
(6 = 0.091). By measuring the resonator axial length, the average pitch was evaluated to be
1.04 mm, in good agreement with the wire thickness. Subsequently, while the tap point
was kept fixed, the number of turns on the top part of the resonator was decreased from
100 to 90, then to 80, and so on up to 60 (6 = 0.143).

The resonator input impedance modulus and phase were measured using the VNA
as a function of frequency. The results are shown in the top row of Figure 11. The curves
were fitted with expression (44). However, this expression is given as a function of the
wavenumber f, which is related to the frequency by k = BV;. Thus, in order to be
able to perform a fit on the data given as a function of frequency, BH was replaced in
expression (44) by 7tf /2fy, introducing the new parameter fy, which represents the fre-
quency at which the electrical length of the entire resonator SH is equal to 77/2, i.e., the
frequency where the maximum of the input impedance is located. The fit thus led to opti-
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mal values of the parameters Z, «H and fo, and then V; was computed as 4H fy/ c. In fact,
Vr is frequency dependent, and this dependence should be included in the fit. However,
this would lead to a complex procedure, due to the need to solve the eigenvalue equation
at each step. It was thus decided to assume V¢ to be almost constant in the vicinity of the
resonance. It can be seen that the resulting curves fit reasonably well with the experimental
ones, both for the amplitude and the phase of the input impedance.
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Figure 11. (Top): plot of the modulus (left) and phase (right), normalized to 7, of the input
impedance of resonator 1. The different curves correspond to different number of turns above
the tap point. The dashed curves are the fits obtained as described in the text. Bottom: same as above,
but with the addition of a conducting shield around the resonator.

Subsequently, a grounded shield made from an aluminum tube with an internal
diameter of 16 mm and external diameter of 18.3 mm (average diameter of 17.15 mm
and thickness of 2.3 mm) was applied to the resonator, and the fitting procedure was
repeated as shown in the bottom row of Figure 11. The fitting curves also follow reasonably
well the experimental ones. It can be noted that the curves for the shielded resonator
are much sharper with stronger gradients, and the phases reach more negative values
at the resonance, all indications of a reduced dissipation. This can be understood by
assuming that the main source of dissipation is radiation from the sides of the device,
which is prevented by the conducting screen. In this respect, it is important to notice,
for experimenters wishing to repeat this work, that the wire used to ensure the grounding
of the shield should be positioned so as to minimize the formation of loops, which can act
as antennas.

The resulting values of the fit parameters, both without and with shield, are shown
in Figure 12. It can be seen that the characteristic impedance without shield grows with ¢
from 1.15 kQ) to 1.3 kQ), whereas with the shield, it has a constant value of around 580 Q).
The attenuation factor a H turns out to have a peaked shape, with values ranging between
0.05 and 0.11. This shape is somehow surprising: indeed, as J is increased by reducing the
number of turns on the top end, and therefore the resonator length H, one would expect a
decreasing behavior of a H with §, assuming & to be a constant independent of the resonator
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size. It is, however, possible that other issues enter the dissipation process, including
possible different cable positions, and therefore different radiation patterns between one
measurement and the following. This is also in agreement with the observation that in the
shielded case, the obtained value of ®H is constant, around 0.0085. If one assumes that the
shield suppresses radiation, then this residual value could be attributed to other causes,
and the case-to-case variation would disappear. The frequency f, was found to be linearly
increasing with J, both for the unshielded and shielded case. This was expected, in view of
a constant velocity factor. Indeed, the velocity factor turns out to be essentially constant,
with a value of 0.052 for the unshielded case and 0.024 for the shielded one.
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Figure 12. Parameters resulting from the fits of the input impedance data for resonator 1, plotted
as a function of the relative distance J of the tap point from the bottom end. Top left: characteristic
impedance. Top right: attenuation parameter. Bottom left: frequency at which the total electrical
length of the resonator is 71/2. Bottom right: velocity factor, obtained from the previous quantity.
In all graphs, results without and with conducting shield are reported.

An important issue to be addressed is how much the characteristic impedance (for the
unshielded case) and the velocity factors match the predictions of the propagation model
described in Section 3. According to expression (28), one would expect in the unshielded
case a characteristic impedance of 2.25-2.45 k() at the frequency where the resonance
occurs in the measurements. This is more or less double than what was found from the fits.
Concerning the velocity factor, from expression (25) one would expect values of 0.07 for
the unshielded case, and 0.036 for the shielded one. These are both 1.5 times larger than
those found from the fits. The source of these discrepancies is not clear.

Subsequently, two other resonators were built (resonators 2 and 3) with a fixed number
of turns (10 and 100 for the bottom and top parts, respectively), wound on quartz tubes.
The tube of resonator 2 had a diameter of 12 mm, whereas the tube of resonator 3 had a
diameter of 7 mm. The length H was respectively 110 mm and 103 mm. The shield was
obtained from the same aluminum tube, which was used to shield resonator 1. Their input
impedance was once again measured, using the Pocket VNA instrument. Since in this
experiment, the aim was to measure the high voltage generated at the resonator open end,
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using a Tektronix P6015A high voltage probe, the input impedance measurements were
performed both with and without the probe attached to the resonator. Indeed, the probe is
expected to add a capacitive load, along the lines described in Section 6. The nominal HV
probe input capacitance is, according to the technical specifications, around 3 pF.

The results of the measurements are shown in Figure 13 for resonator 2 and in
Figure 14 for resonator 3. In both cases, the addition of the probe causes a downshift
in frequency of the resonance pattern, both for the case without the shield (top row) and
for the shielded case (bottom row). Again, the curves for the shielded case appear sharper,
indication of a lower dissipation. The fitting procedure adopted is the following: at first,
the curves without HV probe were fitted as described above. Subsequently, the curves
obtained with the HV probe attached to the resonator open end were fitted, using expres-
sion (59), but keeping the values of Z; and fj fixed to those resulting to the previous fit,
and adjusting only « H and the new parameter 7;. While, in principle one would think that
also «H should be kept constant—and this was tried at the beginning—it was realized that
it was not the case, possibly due to novel radiation sources stemming from the new layout.
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Figure 13. Top: plot of the modulus (left) and phase (right), normalized to 7, of the input impedance
of resonator 2, both in standard configuration and with the HV probe attached to the open end.
The dashed curves are the fits obtained as described in the text. Bottom: same as above, but with the
addition of a conducting shield around the resonator.

The results shown in Figure 13 for resonator 2 demonstrate that the model for the
loaded resonator is actually very good. Indeed, the quality of the fit appears to be even
better than for the resonator in standard conditions, suggesting that also in this case, some
parasitic capacitance should be taken into account. Only the phases for the unshielded case
show some discrepancy, mainly due to the experimental curves in the regions away from
the resonance being somehow higher than the expected 77/2 value. This is likely due to
some instrumental error, which is not unlikely, given that the Pocket VNA is a low-cost
instrument. Similar considerations apply also to the curves depicted in Figure 14, which
refer to resonator 3.
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Figure 14. Top: plot of the modulus (left) and phase (right), normalized to 7, of the input impedance
of resonator 3, both in standard configuration and with the HV probe attached to the open end.
The dashed curves are the fits obtained as described in the text. Bottom: same as above, but with the
addition of a conducting shield around the resonator.

The results of the fits for the two resonators are summarized in Table 1. It can be
seen that a characteristic impedance of about 1 k() was found for both resonators, which
was then reduced to one quarter and to a half, respectively, when the shield was placed.
The strong reduction in dissipation in the shielded case was confirmed. It is, however, to be
noticed that also the placement of the HV probe on the high voltage end led to a reduction
in dissipation, something which is not yet fully understood but which may depend on
the radiation pattern. It is remarkable to observe that in the case of resonator 3, both
measurements with the HV probe, with and without shield, led to a load capacitance of
around 4 pF, not dissimilar to the nominal value of 3 pF. In the case of resonator 2, two
slightly higher, and different, values of 5 and 7 pF were found. It is, however, to be noticed
that the quality of contacts and other issues, such as the proximity of the work bench
surface, may add parasitic capacitance. It is nevertheless remarkable that the correct order
of magnitude could be obtained.

Concerning the comparison with the predictions of the propagation model of Section 3,
for resonator 2 in the unshielded configuration, the model overestimates the characteristic
impedance by a factor 2.8 and the velocity factor by a factor 2.6, while in the shielded case,
the overestimate is by a factor 1.9. For resonator 3 in the unshielded configuration, there
is an overestimation of the characteristic impedance by a factor of 1.6 and of the velocity
factor by a factor of 2.2, whereas in the shielded case, the velocity factor is overestimated by
a factor 1.9. Overall, these results confirm that the propagation model needs to be somehow
updated to better match the experimental results.
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Table 1. Parameters resulting from the fit of the input impedance curves for resonators 2 and 3.
The load characteristic time 77, and the associated load capacitance C are also reported.

Shield HV Probe Z.(Q) oH Vs 7L (ns) C (pp)
Resonator 2 No No 1003 0.119 0.025 - -
Resonator 2 No Yes 1003 0.047 0.025 5.58 5.56
Resonator 2 Yes No 2724 0.011 0.016 - -
Resonator 2 Yes Yes 2724 0.015 0.016 2.04 7.48
Resonator 3 No No 1064 0.173 0.055 - -
Resonator 3 No Yes 1064 0.026 0.055 454 4.26
Resonator 3 Yes No 501.7 0.004 0.036 - -
Resonator 3 Yes Yes 501.7 0.013 0.036 2.29 4.57

The voltage amplification factor was measured for both resonators 2 and 3 by tun-
ing the frequency on the resonance, that is, on the condition of maximum amplification.
The output voltage was measured, using the Tektronix P6015A high voltage probe, whereas
the input voltage was measured with a standard x10 oscilloscope probe, which was tested
and shown not to alter significantly the circuit behavior. The resulting voltage amplification
factors, for both resonators 2 and 3, unshielded and shielded, are given in Table 2, where
they are compared with the predicted values given by 1/aH, with aH resulting from the
fits. It can be seen that a reasonable agreement is achieved, confirming that the modeling
described above is adequate to predict the performance of a given resonator. It should
be emphasized that, as expected from the fit results, the best performance is given by the
shielded resonators. In particular, resonator 3 achieved a voltage amplification of 100, while
resonator 2 achieved a value of 80. In this latter case, this resulted in an actual measured
Vout of 4.3 kV—more than appropriate to ionize most gases in a wide pressure range. It
is to be remarked that the actual output voltage will depend on the input one, which in
itself will be determined by the power of the amplifier used as the power source, and by
the input impedance.

Table 2. Comparison of the experimental amplification factor at resonance with the expected value
1/aH predicted from the fit outcome, for resonators 2 and 3, with and without shield.

Shield 1/aH Vout!Vin
Resonator 2 No 214 41
Resonator 2 Yes 61.8 80
Resonator 3 No 38.0 30
Resonator 3 Yes 77.6 100

8. Conclusions

The production of RF plasmas requires both a good matching of the load to the
power supply and a method to magnify the voltage so as to achieve the gas breakdown.
The shielded helical resonator excited at a tap point near the grounded end is a concept
that allows, in principle, to achieve both goals, allowing a very simple construction for the
plasma source and a direct connection to the generator, without the need for a fault-prone
matching network. However, in order to achieve both goals, a proper design is needed.
In this paper, we derived formulas that allow a prediction of the resonator performance,
thus enabling the plasma scientist to properly design his source according to the parameters
required for his plasma, and we have tested them experimentally.

Clearly, what is missing in this treatment is the effect of the plasma itself, once it is
ignited. This puts an additional load on the resonator, and it is to be evaluated how much
it can bring the operational conditions away from the optimal ones, especially in relation
to the reflected power. This will be the topic of a subsequent study.

Similarly, the results concerning the treatment of the resonator as a transmission line
depend on the characteristic impedance, which, for the moment, can be explicitly calculated
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only for the shieldless case and needs to be measured experimentally in all other situations,
particularly for the fully shielded resonator. Furthermore, even in the shieldless case, it
was found that the formula gave a result different from the experimental one by a factor of
two, something which needs to be better investigated.

It is also to be remarked that to date, we have implicitly considered a capacitively
coupled plasma source, where the amplified voltage gives rise to an electrostatic field,
inducing breakdown. However, the very nature of the helical resonator makes it suitable
also for the transition to an inductive regime [28]. This possibility and the effects on the
load need also to be investigated.

In conclusion, it is our belief that a renewed interest in the helical resonator concept
could lead to new, simpler and more compact designs for RF plasma sources, increasing
the efficiency and the reliability. Furthermore, the concept of a circuit element where
the lumped circuit approximation fails and the pattern and speed of voltage propagation
become important, is in itself a stimulating and non-trivial idea that should be more widely
taught in plasma technology courses.
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Abbreviations

The following abbreviations are used in this manuscript:

RF  Radio Frequency
HV  High Voltage

Appendix A. Transmission Line Theory

We recall here the basic concepts of transmission line theory. A transmission line
is characterized by four distributed line parameters: the resistance per unit length R,
the inductance per unit length L, the capacitance per unit length C and the conductance
per unit length G of the dielectric separating the two conductors of the line.

The general solution at an angular frequency w for the voltage and current along
a line, composed of the superposition of a forward-propagating wave and a backward-
propagating one is the following:

V(x) = Ve ™4V e (A1)
vy Vy
= YU omrx U X
I(x) 2 e 2 e (A2)

where x is a coordinate running along the line, v = « + i with « being the attenuation
constant and 8 the wave number of the propagating perturbations, and Z, is the character-
istic impedance of the line. These quantities are defined by the distributed line parameters,
in the limit R < wL and G < wC, by the following;:

1/ R w
a2<ZC+GZC) ’8707, (A3)

where the characteristic impedance and the phase velocity are given by the following:

L 1
Zc = \/; %= e (A4)
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It is worth noting that, if G is negligible,

R

=57 (A5)

o

The actual values of the distributed parameters are difficult to predict from the spec-
ifications of the line for non-trivial geometries, so it seems better to consider v}, (or the
velocity factor V¢ = v, /cp), Zc and a as unknown parameters and derive them either by
studying the propagation properties of the line or by the fitting of the experimental data.
The attenuation coefficient &, however, remains still undetermined, and cannot be trivially
computed from Equation (A5) because the resistance per unit length can be substantially
different from the DC value and must be evaluated experimentally.

The reflection coefficient of the line is a position-dependent quantity defined as
follows:

V, e* Vo
= _07 0 2yx _ 27x
I'(x) Vo+e—7x V0+e r'(0)e (A6)
The wave impedance is another position-dependent quantity defined as follows:

Z(x) = V) _ L, Ve Ve 14 Vg Ve (A7)
I(x)  Vier—vyerr  T1-V, Vet

Recalling the definition of the reflection coefficient, we have the following:

o 14T(0)e®*  _1+T(x)
23 = 2 oyem = X1 T(a) (48)

The reflection coefficient can be written in terms of impedance as follows:

Z(x)—Z;

I'(x) = m

(A9)

Voltage and current can be written in terms of the reflection coefficient as follows:

V(ix) = Ve ™(1+TI(x)) (A10)
V+
I(x) = e ™(1-T(x)). (A11)
Z
References
1. Cvetic, ].M. Tesla’s high voltage and high frequency generators with oscillatory circuits. Serbian J. Electr. Eng. 2016, 13, 301-333.
[CrossRef]
2. Macalpine, W.W.; Schildknecht, R.O. Coaxial resonators with helical inner conductor. Proc. IRE 1959, 47, 2099-2105. [CrossRef]
3. Niazi, K.; Lieberman, M.A.; Lichtenberg, A.].; Flamm, D.L. Operation of a helical resonator plasma source. Plasma Sources Sci.
Technol. 1994, 3, 452-465. [CrossRef]
4. Welton, R.F,; Thomas, E.W.; Feeney, R.K.; Moran, T.F. Simple method to calculate the operating frequency of a helical resonator-RF
discharge tube configuration. Meas. Sci. Technol. 1991, 2, 242-246. [CrossRef]
5. Hopwood, J. Review of inductively coupled plasma for plasma processing. Plasma Sources Sci. Technol. 1992, 1, 109-116. [CrossRef]
6. Bongkoo, K ; Park, J.C.; Kim, Y.H. Plasma Uniformity of Inductively Coupled Plasma Reactor with Helical Heating Coil. IEEE
Trans. Plasma Sci. 2001, 29, 383-387. [CrossRef]
7. Siverns, J.D.; Simkins, L.R.; Weidt, S.; Hensinger, W.K. On the application of radio frequency voltages to ion traps via helical
resonators. Appl. Phys. B 2012, 107, 921-934. [CrossRef]
8.  Medhurst, R.G.H.F. resistance and self-capacitance of single layer solenoids. Wirel. Eng. 1947, 24, 35-43.
9.  De Miranda, C.M.; Pichorim, S.F. Self-resonant frequencies of air-core single-layer solenoid coils calculated by a simple method.
Electr. Eng. 2015, 97, 57-64. [CrossRef]
10. Everard, ] K.A; Cheng, K. K.M.; Dallas, P.A. High-Q helical resonator for oscillators and filters in mobile communication systems.

Electron. Lett. 1989, 25, 1648-1650. [CrossRef]


http://doi.org/10.2298/SJEE1603301C
http://dx.doi.org/10.1109/JRPROC.1959.287128
http://dx.doi.org/10.1088/0963-0252/3/4/005
http://dx.doi.org/10.1088/0957-0233/2/3/009
http://dx.doi.org/10.1088/0963-0252/1/2/006
http://dx.doi.org/10.1109/27.922750
http://dx.doi.org/10.1007/s00340-011-4837-0
http://dx.doi.org/10.1007/s00202-014-0312-3
http://dx.doi.org/10.1049/el:19891105

Appl. Sci. 2021, 11, 7444 25 0f 25

11.

12.

13.

14.

15.
16.

17.
18.
19.
20.
21.

22.
23.

24.

25.

26.

27.

28.

Antoniuk, J.; Zukociriski, M.; Abramowicz, A.; Gwarek, W. Investigation of Resonant Frequencies of Helical Resonators. In
Proceedings of the 11th Microcoll, Budapest, Hungary, 10-11 September 2003; p. 5.

Blazevi¢, Z.; Poljak, D. Some notes on transmission line representations of Tesla’s transmitters. In Proceedings of the 16th
International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 25-27 September 2008;
pp- 60-69.

Bletzinger, P. Dual mode operation of a helical resonator discharge. Rev. Sci. Instrum. 1994, 65, 2975. [CrossRef]

Deng, K.; Sun, Y.L.; Yuan, WH.; Xu, Z.T,; Zhang, J.; Lu, Z.H.; Luo, ]. A Modified Model of Helical Resonator with Predictable
Loaded Resonant Frequency and Q-Factor. Rev. Sci. Instrum. 2014, 85, 104706. [CrossRef] [PubMed]

Deri, R.J. Dielectric measurements with helical resonators. Rev. Sci. Instrum. 1986, 57, 82. [CrossRef]

Yang, ].H.; Zhang, Y.; Li, X.M.; Li, L. An improved helical resonator design for rubidium atomic frequency standards. IEEE Trans.
Instrum. Meas. 2010, 59, 1678. [CrossRef]

Zhu, J.W.; Hao, T.; Stevens, C.J.; Edwards, D.J. Optimal design of miniaturized thin-film helical resonators. Appl. Phys. Lett. 2008,
93, 234105. [CrossRef]

Ollendorf, F. Die Grundlagen der Hochfrequenztechnik; Springer: Berlin, Germany, 1926; pp. 79-87.

Sichak, W. Coaxial Line with Helical Inner Conductor. Proc. IRE 1954, 42, 1315-1319. [CrossRef]

Sensiper, S. Electromagnetic Wave Propagation on Helical Structures (A Review and Survey of Recent Progress). Proc. IRE 1955,
43,149-161. [CrossRef]

Uhm, H.S.; Choe, ]J.-Y. Properties of the electromagnetic wave propagation in a helix-loaded waveguide. . Appl. Phys. 1982,
53, 8483. [CrossRef]

Anicin, B.A. Plasma loaded helical waveguide. ]. Phys. D Appl. Phys. 2000, 33, 1276-1281. [CrossRef]

Niazi, K.; Lichtenberg, A.].; Lieberman, M.A. The dispersion and matching characteristics of the helical resonator plasma source.
IEEE Trans. Plasma Sci. 1995, 23, 833. [CrossRef]

Corum, K.L.; Corum, J.F. RF coils, helical resonators and voltage magnification by coherent spatial modes. In Proceedings of
the 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001.
Proceedings of Papers (Cat. No.01EX517), Nis, Yugoslavia, 19-21 September 2001; Volume 1, p. 339.

Park, ].-C.; Kang, B. Impedance model of helical resonator discharge. IEEE Trans. Plasma Sci. 1997, 25, 1398-1405. [CrossRef]
Kraus, J.D. The helical antenna. Proc. IRE 1949, 37, 263-272. [CrossRef]

Corum, J.; Daum, J.; Moore, H.L. Tesla Coil Research; Contractor Report ARCCD.CR-92006; U.S. Army Armament Research,
Development and Engineering Center: Picatinny, NJ, USA, 1992.

Park, J.-C.; Lee, ] K.; Kang, B. Properties of inductively coupled plasma source with helical coil. IEEE Trans. Plasma Sci. 2000, 28,
403-413. [CrossRef]


http://dx.doi.org/10.1063/1.1144587
http://dx.doi.org/10.1063/1.4897478
http://www.ncbi.nlm.nih.gov/pubmed/25362433
http://dx.doi.org/10.1063/1.1139124
http://dx.doi.org/10.1109/TIM.2009.2023149
http://dx.doi.org/10.1063/1.3046119
http://dx.doi.org/10.1109/JRPROC.1954.274829
http://dx.doi.org/10.1109/JRPROC.1955.278072
http://dx.doi.org/10.1063/1.330497
http://dx.doi.org/10.1088/0022-3727/33/11/305
http://dx.doi.org/10.1109/27.473202
http://dx.doi.org/10.1109/27.650909
http://dx.doi.org/10.1109/JRPROC.1949.231279
http://dx.doi.org/10.1109/27.848099

	Introduction
	Geometry
	Propagation of Electromagnetic Perturbations into the Resonator
	The Helical Resonator as a Transmission Line
	The Fully Shielded Helical Resonator
	Effect of a Capacitive Load
	Experimental Results
	Conclusions
	Transmission Line Theory
	References

