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Abstract: Job cycle time is the cycle time of a job or the time required to complete a job. Prediction
of job cycle time is a critical task for a semiconductor fabrication factory. A predictive model
must forecast job cycle time to pursue sustainable development, meet customer requirements, and
promote downstream operations. To effectively predict job cycle time in semiconductor fabrication
factories, we propose an effective hybrid approach combining the fuzzy c-means (FCM)-based genetic
algorithm (GA) and a backpropagation network (BPN) to predict job cycle time. All job records
are divided into two datasets: the first dataset is for clustering and training, and the other is for
testing. An FCM-based GA classification method is developed to pre-classify the first dataset of job
records into several clusters. The classification results are then fed into a BPN predictor. The BPN
predictor can predict the cycle time and compare it with the second dataset. Finally, we present a
case study using the actual dataset obtained from a semiconductor fabrication factory to demonstrate
the effectiveness and efficiency of the proposed approach.

Keywords: back-propagation network; fuzzy c-means clustering method; genetic algorithm; job
cycle time prediction; semiconductor fabrication

1. Introduction

Job cycle time is the cycle time of a job or the time required to complete a job, the
prediction of which is a critical task associated with different types of systems, such
as production systems [1,2], computer systems [3], and network systems [4]. Various
managerial goals can be achieved once the job cycle time has been predicted accurately
at a factory, including ordering-decision support, internal due-date assignment, output
projection, enhancing customer relationships, guiding subsequent operations [5], pursuing
sustainable development, meeting customer requirements, and promoting downstream
operations. These advantages can support the competitiveness of a system to allow it to
survive and be developed sustainably.

In semiconductor manufacturing, each wafer fabrication factory is a complicated
production system with idiosyncratic features such as changing demand, various product
types and priorities, equipment unreliability, unbalanced capacity, job reentry into ma-
chines, alternative machines, sequence-dependent setup time, and shifting bottlenecks [6],
which strongly affect job cycle time and make it very difficult to predict. However, these
important features could be detected by mining and analyzing current job cycle time data.
Herein, we present a hybrid approach that comprises the fuzzy c-means (FCM)-based
genetic algorithm (GA) and a backpropagation network (BPN) to predict job cycle times
for semiconductor manufacturing factories.

Semiconductor wafer fabrication is currently a very complex manufacturing process,
presenting various production planning and control issues. Predicting the cycle time of
each job in a wafer fabrication factory is a critical task for every wafer manufacturer. Glassey
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and Resende [7] presented a closed-loop job-release control policy to minimize the average
cycle time of jobs in a wafer fabrication factory. Various studies [2,8–10] then emphasized
the significance of predicting job cycle times for semiconductor fabrication factories. Here,
we identify and review various studies that surveyed job cycle time prediction issues in
semiconductor manufacturing.

Initially, Chung and Huang [11] classified the existing approaches used to predict
job cycle times in semiconductor manufacturing into four categories, namely (i) statistical,
(ii) analytical, (iii) simulation, and (iv) hybrid methods. Now, because of the development
of machine learning technology, six categories [2] are generally used, namely (i) statistical,
(ii) production simulation (PS), (iii) artificial neural networks (ANNs), (iv) case-based
reasoning (CBR), (v) fuzzy modeling, and (vi) hybrid approaches. Herein, we review
previous studies in the context of (i) statistical analysis, (ii) analytical methods, (iii) ANNs,
(iv) CBR, (v) PS, (vi) fuzzy modeling methods, and (vii) hybrid approaches.

Statistical analysis is a prevalent method in practical applications. A regression
model [12] was used to forecast the fab throughput time, including the wait time and
processing time. Backus et al. [13] used statistical methods based on modern data-mining
algorithms to develop nonlinear predictors for estimating the cycle time of a target lot in
a factory. Yang et al. [14] proposed a nonlinear regression metamodel based on queuing
theory to generate cycle-time–throughput curves, where simulation experiments were built
up sequentially using a multistage procedure. Subsequently, Yang et al. [15] used a factory
simulation to fit the metamodels to determine the parameters of the generalized gamma
distribution. Pearn et al. [16] presented a due-date assignment model by modeling the
waiting time for each product type using a gamma distribution for the due-date assignment
problem in a semiconductor fabrication factory. Tai et al. [17] developed an accurate cycle-
time estimation method to satisfy a targeted on-time delivery rate. A statistical approach
was used to calculate the cycle time for the sum of multiple Weibull-distributed waiting
times in the multilayer semiconductor final testing process.

Analytical methods are attracting considerable attention as a way to estimate job
cycle times for semiconductor fabrication factories. Chung and Huang [11] provided an
analytical approach to developing cycle-time estimation algorithms for engineering lots by
analyzing the material flow characteristics in a wafer fabrication factory. Shanthikumar
et al. [18] developed a novel solution to reduce the cycle time for each lot in a semiconductor
fabrication factory by relaxing a fundamental assumption in classical queuing theory.
Morrison and Martin [19] developed a G/G/m-queue model to estimate the total time
which a product lot spent in the G/G/m-queue system.

The neural network is one of the most well-known techniques in artificial intelli-
gence [20]. Many studies have also shown that ANN-based methods outperform traditional
methods where lengthy and rigorous experiments are avoided while predicting. Chang
and Hsieh [21] presented a neural network model to forecast the due date of each order
at a wafer fabrication factory, where the experimental results indicated that the proposed
approach was effective and efficient when compared with some traditional methods. Sha
and Hsu [22] developed an ANN-based due-date assignment rule combined with simu-
lation technology and statistical analysis for predicting lead times at a wafer fabrication
factory. Chien et al. [23] developed a manufacturing intelligence approach by integrating
Gauss–Newton regression and BPN as a basic model for forecasting the cycle time of a
production line. Gazder and Ratrout [24] presented a logit-ANN for mode selection model
and applied it in a case study for border transportation. Singh et al. [20] proposed a novel
approach for multicriteria decision-making problems using the analytical hierarchy process
for evaluating the total transportation cost and an ANN model to investigate the prediction
of the total transportation cost. CBR methods have been widely used in previous studies.
Chang et al. [1] explored an application of CBR and developed a CBR system using a
similarity measure among orders for due-date assignment problems at a wafer fabrication
factory. Chiu et al. [25] developed a CBR approach that used a k-nearest-neighbor method
with dynamic feature weights and nonlinear similarity functions to predict order due-date
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for the due-date assignment problem at a wafer fabrication factory. Chang et al. [26]
developed a CBR model in which a GA was used to predict the job cycle time, and a
self-organizing map was used to cluster the job cycle time and related shop-floor status
at a semiconductor fabrication factory. Liu et al. [27] proposed an approach to predicting
job cycle times—by applying evolving fuzzy CBR and self-organizing map methods for a
semiconductor fabrication factory.

In addition to the aforementioned approaches, various PS methods have also been
proposed for estimating job cycle times for semiconductor fabrication factories. Vig and
Dooley [28] presented two new dynamic due-date assignment rules used to predict the
job cycle time based on recently completed jobs. Those two new rules were also compared
with other established job cycle time–estimation models via computer simulation based
on the criterion of due-date performance. Veeger et al. [29] proposed an aggregate model
that an extensive simulation study demonstrated could accurately predict the cycle-time
distribution of integrated processing workstations in a semiconductor fabrication factory.
Hsieh et al. [30] proposed a progressive simulation metamodeling methodology that
allowed efficient development of the response surface between the cycle time of regular
lots and the percentage of hot lots of high priority in a semiconductor fabrication factory.
Yang, Hu [31] built a simulation model for due-date assignment by using the orthogonal
kernel least-squares algorithm and imitating the production process of a highly dynamic
job shop.

Many fuzzy modeling methods have also been developed previously. Chen [2] devel-
oped a fuzzy BPN to incorporate production-control expert judgments with expert opinions
to enhance the performance of an existing crisp BPN for predicting the output times of
wafer lots. Chang et al. [32] presented a fuzzy modeling method that was evolved further
with a GA for the due-date assignment problem in semiconductor manufacturing. Chen
and Romanowski [6] proposed a fuzzy data-mining approach based on an innovative fuzzy
BPN to determine the lower and upper bounds of job cycle times for wafer fabrication
factories. Chen [33] developed a fuzzy neural network-based fluctuation-smoothing rule
to better estimate the remaining cycle time of a job at a wafer fabrication factory.

Recently, many hybrid approaches [34,35] based on machine learning and classifica-
tion have been proposed to improve job cycle time prediction accuracy and accuracy by
analyzing the data from semiconductor fabrication factories. Chen [36] applied a fuzzy
BPN approach by pre-classifying wafer lots with the k-means classifier before predicting
the output time of a job. Chen et al. [37] proposed two hybrid approaches with job record
post-classification, namely (i) the equally divided method and (ii) the proportional-to-error
method, where a job was post-classified by a BPN after the forecasting error was generated.
Tirkel [38] developed cycle-time prediction models by applying machine learning and
data-mining methods, where the best neural network model obtained a higher prediction
accuracy than that of the decision-tree method. Chen and Lin [39] proposed a fuzzy BPN
approach to improve the accuracy of wafer-lot output-time prediction using a relatively
small training set. Wang and Zhang [10] designed big-data analytics to predict wafer-lot
cycle times. Chen [40] proposed a BPN-based hybrid approach to estimate job cycle times
and determine the cycle-time range for a semiconductor manufacturing factory. Chen and
Wang [41] estimated the cycle time of a job using a BPN after a nonlinear approach had
been used to normalize job cycle times.

Previous studies have used various hybrid approaches for job cycle time predic-
tion [42,43]. Generally, comparisons and trade-offs are made to select a suitable approach
among the aforementioned categories. Analytical methods are inappropriate for job cycle
time prediction because it is challenging to construct a complex semiconductor manufac-
turing system analytically. Excessive simulation time and the need for a large amount
of data are the main disadvantages of PS [44]. Besides, wafer-lot priorities and machine-
dispatching rules change in real-time in semiconductor manufacturing systems, limiting
the applicability of statistical methods in predicting the cycle times of wafer lots [10]. ANNs,
CBR, and fuzzy modeling methods can provide reasonable prediction accuracy with a rela-
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tively small amount of data [44]. Many recent results have shown that classification-based
hybrid approaches can improve the accuracy of job cycle time prediction without requiring
a large amount of data from semiconductor fabrication factories [44,45]. To improve the
performance of job cycle time prediction, we develop a new hybrid approach that combines
data mining (FCM-based GA) and machine learning (BPN) methods.

The classification method selection is critical because the quality of the resulting
classification can indeed affect the accuracy of job cycle time prediction for semiconductor
fabrication factories. However, it is not appropriate to classify the job records exclusively
into several clusters. In other words, one job record can belong to multiple clusters
with different membership values. In that case, different membership values to different
clusters indicate the different amount of effects toward the corresponding clusters. Besides,
because it is difficult to determine which cluster a job record belongs to when it falls on the
border of two adjacent clusters, FCM has been used in prediction models to classify the
data into several clusters in advance, an approach that has been used widely in various
fields [46–48]. The FCM algorithm uses the sum of the membership value for all clusters,
making it sensitive to noise and isolated data. In addition, FCM is essentially a kind of
local hill-climbing algorithm, which makes it sensitive to the initial cluster center and easy
to converge to a local extremum [49,50]. To overcome these defects, an FCM-based GA has
been introduced.

Before applying the FCM-based GA method, all job records are divided into (i) a
dataset for clustering and training and (ii) a dataset for testing. We then use an FCM-based
GA classifier to classify the first dataset of job records into several clusters because (i) FCM
allows for flexibility in classifying job records and reduces the sensitivity to noise and
isolated data, and (ii) a GA can improve the FCM performance by preventing cluster centers
from converging to local extrema. The cluster center results obtained from the FCM-based
GA classifier are fed into the BPN predictor for training. We discovered that the overfitting
of the BPN predictor took place when trained by the raw data containing noises. The BPN
predictor predicts job cycle times and compares them with the second dataset.

The remainder of this paper is organized as follows. In Section 2, we describe the
proposed FCM-based GA and BPN methods for predicting job cycle times for semiconduc-
tor manufacturing. Then, Section 3 uses an actual dataset obtained from a semiconductor
fabrication factory to test the proposed hybrid approach. Finally, in Section 4, we conclude
by showing this study’s contributions and future directions.

2. Methodology

In this section, we present our hybrid approach and explain how it predicts the job
cycle time. In semiconductor fabrication factories, six attributes are usually considered
for determining the final job cycle time, namely: (i) the job size (pieces); (ii) the factory
work-in-process (jobs); (iii) the queue length before the bottleneck (jobs); (iv) the queue
length on the rout (jobs); (v) the average waiting time of recently completed jobs (hours);
and (vi) factory utilization rate [40,51]. These attributes make different contributions to the
final cycle time (hours) of a job. Before we explain the approach in detail, we introduce the
notation used herein.

2.1. Notation

The notation used in this model is as follows:

Sets
R Dataset of job records for clustering and training, indexed by i ∈ R
N Dataset of job records for testing, indexed by n ∈ N
B Set of job attributes, indexed by b ∈ B
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Parameters
vib Value of attribute b of job record i
cti Cycle time of job record i
wb Weighted value of attribute b
G Number of clusters, indexed by c, l ∈ G
K Number of attributes.
m Fuzziness exponent value
Decisions variables
zcb c-th cluster center of attribute b
zc c-th K-dimensional cluster center
uic Membership value of job record i to c-th cluster
etc Expected job cycle time of cluster c
Yn Cycle time prediction of new job record n

2.2. Fuzzy c-Means Clustering
The FCM clustering is a soft partitioning algorithm, where jobs with similar attribute values are

classified into the same cluster. FCM was developed by Dunn [52] and later improved by Bezdek
and Dunn [53]. It is used to assign patterns or data to different clusters, where each data point is
allowed to belong to several clusters with different membership values. These membership values
represent the extent to which each point belongs to each cluster, and they are also used to update the
cluster centers. With this FCM clustering method, the number of clusters is pre-determined, and each
data point is then assigned to one or more clusters. The FCM algorithm can be seen as a fuzzified
version of the k-means clustering algorithm and is based on minimizing an objective function called
the c-means function [53,54]. This takes three input parameters, namely: (i) the number of clusters G;
(ii) the fuzziness exponent value m > 1; and (iii) the termination tolerance φ > 0. Given a set of job
recordsR, including six attributes B, FCM attempts to minimize the objective function J using the
following steps.

Since the proposed hybrid FCM-based GA needs an efficient chromosome design, it is crucial to
understand the FCM spatially. To help readers understand, an example of FCM is given in Figure 1
with 6 data points in circles, 2 attributes in axes, and 3 cluster centers in rectangles on two-dimensional
spaces. The distance dic is calculated once cluster centers are obtained.
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(1) Minimization of c-means functional The FCM minimizes an objective function called c-means
functional, given as follows. The objective function J measures the sum of fuzzy similarity for job
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recordsR over all clusters. Note that, at each iteration, the FCM updates the centers of all clusters.
The objective function J is given by

J = ∑
c∈G

∑
i∈R

uic
m·dic, (1)

where dic is the Euclidean distance between job record i and the center of cluster c.
(2) Classification (membership updates) We update the membership value uic of each job record i

toward cluster c. Note that at the start of the algorithm, these membership values uic are initialized
randomly such that uic > 0 and ∑c∈G uic = 1. The fuzziness coefficient 1 < m < ∞ represents the
required clustering tolerance. The membership value uic is updated by

uic =
1

∑l∈G

(
dic
dlc

) 2
m−1

. (2)

(3) Determination of cluster center We calculate the K-dimensional center for each cluster using
Equation (3) and then update the Euclidean distance from each job record i to the center of cluster c,
as well as the membership value uic, using Equation (4):

zcb = ∑
i∈R

uic
m·vib/ ∑

i∈R
um

ic , (3)

dic =

√
∑

b∈B
[Wb·(vib − zcb)]

2 (4)

It is noted that the deviation of values in each attribute is different, and more significant
attributes do not overwhelm smaller ones. It was proposed that the original data should be normal-
ized into the same range for all attributes. In this process of reducing prediction errors, wb can be
determined by applying

wb =
100

max(vRb)−min(vRb)
. (5)

(4) Termination condition The incremental improvement for objective function value J determines
if the iteration continues. When the FCM termination tolerance φ is given, the FCM terminates if∣∣∣Js+1 − Js

∣∣∣ < φ, (6)

where s is the iteration number.

2.3. Design of FCM-Based GA
As explained earlier, a GA has been incorporated into FCM to improve the FCM performance

by preventing the cluster centers from converging to local extrema too easily. Past research indicates
that the combination of GA and FCM methods has apparent strength. Ding and Fu [50] studied
a combination of the kernel-based FCM and GA, leading to improved clustering performance.
Wikaisuksakul [55] demonstrated that the FCM-NSGA (non-dominated sorting GA) achieves the
best partitioning over the other techniques. Ye and Jin [56] suggested a clustering algorithm based
on quantum GA, resulting in a better clustering than the general FCM clustering algorithm. Herein,
we develop an FCM-based GA approach that combines a GA with FCM. We use center-based
string encoding, nonlinear ranking selection, and an adaptive crossover and mutation strategy [55],
discussed below.

(1) Chromosome structure

It is always important to have an effective and efficient chromosome structure to the problem in
GA. The chromosomes of our proposed FCM-based GA represent the cluster centers by encoding
them as a center-based string. Since the job records in this study have K attributes, the K-dimensional
centers of G clusters are called genes and are concatenated into a string, as shown in Figure 2. An
individual or chromosome comprises G K-dimensional centers. Therefore, the FCM is implemented
whenever K-dimensional centers of G clusters need to be found, given attribute values vib and their
membership values uic to cluster c.
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Figure 2. String encoding for cluster centers.

(2) Fitness function

The fitness function is the measure to judge and evaluate individuals (chromosomes) until
either a maximum number of generations is reached or the fitness value has converged (i.e., a fitness
variance is small enough). In GAs, individuals with higher fitness values are considered better and
are more likely to survive. In our case, we used the reciprocal of the objective function as the fitness
function to evaluate each individual’s fitness:

F =
106

∑c∈G ∑ i∈R uic
m·dic

. (7)

(3) Genetic operators

The genetic operators that drive the search process are as follows.

(1) Selection operator

Here, the constant-ratio selection method is used to determine individuals to which genetic
operations are applied. This selection operator allows us to use good individuals as parents for the
population in the next generation. A group is created by selecting a pre-determined percentage
(or constant ratio) of individuals from the population, and the best individual among that group
is chosen. This process is repeated as many times as the size of the population. This method can
preserve the best individual in the current population. With this strategy, fitter individuals have
higher survival probabilities, although this does not guarantee that the fittest individual is selected.

(2) Crossover operator

First, we generate a random number α in the interval [0, 1] and compare it with the crossover
probability Pc. The crossover operator is applied to two parents that are selected randomly to generate
two new children while α < Pc. We use a single-point crossover operator, and the crossover point is
selected based on a random integer c ∈ [1, G]. The crossover process is shown in Figure 3.

Figure 3. Generating two new children from two parents via crossover.

(3) Mutation operator

For each individual, we generate a random value β in the interval [0, 1] and compare it to the
mutation probability Pm. If β < Pm, we mutate that individual using a single-point mutation one by
replacing randomly selected gene with a new random K-dimensional center Z∗c

(
z∗c1, z∗c2, . . . , z∗cK

)
, as

shown in Figure 4.
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Figure 4. Mutating one individual.

(4) Steps of FCM-based GA

The following steps must be implemented to apply the proposed FCM-based GA.
Step 1: Set the parameter values, namely the number of clusters G, number of generations

GN, population size PS, crossover probability Pc, mutation probability Pm, fuzziness value m, and
termination tolerance ε.

Step 2: Initialize the population. Chromosomes are generated using the FCM clustering methods
as many times as PS. To produce a chromosome, we calculate the membership value uic for each job
record i to each cluster c by randomly generated numbers γic, 0 ≤ γic ≤ 1, as follows

uic = γic/ ∑
c∈G

γic. (8)

Step 3: Apply genetic operations. The value of the fitness function F (Equation (7)) can be
calculated for each individual. We then use genetic operations, namely the selection, crossover, and
mutation operators, to improve population diversity.

Step 4: Apply optimal preservation. For each generation, the fitness values are re-calculated
after the genetic operations have been applied to evaluate each individual. Individuals with higher
fitness values are more likely to be chosen for survival.

Step 5: Check termination condition. In the present study, the iteration terminates either after a
given number of generations GN or when a given fitness variance value ε is achieved. If either of
these conditions is satisfied, then evolution stops. Otherwise, we return to step 3. For a population of
PS, indexed by p, the variance ε is calculated as

ε =
PS

∑
p=1

(
Fp −

∑PS
p=1 Fp

PS

)2

. (9)

After the evolution process is complete, we can obtain the K-dimensional center for each cluster
and the membership values. We then associate each job record to all clusters only if its membership
value uic exceeds a given threshold value δ. An auxiliary binary variable εic is used to calculate the
expected job cycle time for all clusters. Finally, the expected job cycle time in each cluster c can be
calculated as

etc =
∑i∈R uic·cti·εic

∑i∈R uic·εic
, (10)

where, εic =

{
1 if uic > δ

0 otherwise
. (11)

Figure 5 shows a flowchart of the complete FCM-based GA approach.

2.4. Backpropagation Network (BPN) Predictor
After the classification is complete, the K-dimensional center for each cluster and the corre-

sponding expected job cycle time is obtained. This information represents the overall behavior and
relationship of the dataset. It is important to determine the number of clusters required to capture
the most information from the dataset. With too few clusters, it is hard to identify the main features
of the dataset. Meanwhile, with too many clusters, the locations of the cluster centers are easily
affected by some isolated and noisy job records. Therefore, we test multiple clusters to identify the
best combination of experimental parameters and numbers of clusters in the next section.
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Figure 5. Flowchart of FCM-based GA.

For the cluster centers, the relationship between the independent variables (or attributes) and
the corresponding job cycle time has been shown to be nonlinear [23]. As illustrated in Section 2,
BPNs are well-known tools for fitting nonlinear relationships. In this sense, a BPN is a good choice for
fitting the relationship and predicting the job cycle time [57,58]. Law [59] emphasized that the results
predicted by BPNs are accurate with relatively few errors because a BPN adjusts its weights in the
output layer to model the training elements. A BPN compares its output with the actual values and
propagates the error back through the network. This process is repeated until the error falls within
the range of acceptance, whereupon the neural network has been trained successfully. However,
determining suitable training and architectural parameters remains difficult. These parameters are
usually determined either by trial and error or by pairwise comparisons. The main structure of our
BPN is shown in Figure 6.
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Figure 6. Architecture of the BPN.

Since there is no standard method to construct the BPNs for certain problems [20], we have
tested several structures of BPNs on a trial-and-error basis. BPN has a stronger nonlinear mapping
ability and flexible network structure. Additionally, the hidden layer may be one or more depending
upon the complexity of the problem. More hidden layers might result in overfitting. In this sense, this
study uses BPN with one hidden layer rather than ANN for fitting nonlinear relationships between
the attribute values and job cycle time. Besides, one hidden layer is used for faster convergence
without losing much quality.

The BPN usually consists of at least three layers. Each layer contains many neurons, and the
neurons in adjacent layers are interconnected by a set of weights. Here, the detailed configuration
and training information of BPN are described as follows:

(1) Input layer There are G cluster centers, each with K attributes. Therefore, K neurons are set
in the input layer. The G cluster centers with K attribute values and the expected job cycle time are
normalized to fall within the interval [0, 1], indexed by τcb, according to

τcb =
zcb −min(vRb)

max(vRb)−min(vRb)
. (12)

(2) Single hidden layer The hidden layer may be one or more depends upon the complexity of
the problem. In this study, one hidden layer is used for faster convergence and avoiding overfitting
without losing much quality.

(3) Output layer The predicted job cycle time is obtained in normalized form.
(4) Training method Gradient descent has been used as a training method in this study since it is

the most commonly used.
(5) Activation/transformation function We use the following nonlinear sigmoid function [60] as

the activation function:
f (x) =

1
1 + e−x , (13)

where x is a random variable.
(6) Learning rate (π): 0.01–1.0.
(7) Convergence criterion Many measures can be used to determine when to cease BPN training.

Here, the following formula is used in the BPN:

Terror =
∑G

c=1
(
etc − êtc

)2

2
, (14)

where êtc is the job cycle time of cluster c, which is calculated at the output layer using the set of
currently trained weights. The BPN training stops when Terror falls below 10−3.

3. Computational Results
3.1. Data Description

To demonstrate how the proposed approach is applied, we use a series of 120 job records used
in the previous research [51,58]. They were collected from a wafer fabrication factory and are shown
in Figure 7. The unit of job cycle time is given by hour (h). The job cycle time has an average of 1237 h
and a standard deviation of 205 h. The job cycle time pattern is highly nonstationary and is not stable.
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Additionally, the job cycle time is correlated strongly with six attribute variables, as mentioned in
the Methodology section. To demonstrate and evaluate the predictive performance of the proposed
approach and assess its accuracy fairly, we split these 120 job records into two datasets, namely (i)
training dataset and (ii) testing dataset. Since the dataset used for testing usually accounts for a small
proportion of the whole dataset, in this study, the first 110 job records are used for (i) the first 110 job
records for clustering and training and (ii) the remaining 10 job records for testing.

Figure 7. Entire dataset of job records.

3.2. Experimental Settings

The FCM-based GA is used to classify the first 110 job records into G clusters. The
obtained cluster centers are fed into the BPN. After learning and training, 10 new testing
jobs are given to the trained BPN predictor to predict their cycle times, where the predic-
tion performance is assessed in terms of the mean absolute error (MAE), mean absolute
percentage error (MAPE), and root-mean-squared error (RMSE), which are calculated as

MAE =
∑Nn=1

∣∣Yn − Ŷn
∣∣

N , (15)

MAPE =
∑Nn=1

∣∣Yn − Ŷn
∣∣

N ·Yi
, (16)

RMSE =

√
∑Nn=1

(
Yn − Ŷn

)2

N , (17)

where
∣∣Yn − Ŷn

∣∣ is the absolute difference between the predicted and observed values.
Many parameters affect the accuracy of the job cycle time prediction. Herein, we test

the performance and compare the results by using different cluster numbers G, different
neuron numbers ξ in the hidden layer, and different threshold values δ. In addition, all
experiments are conducted using populations with the same number of individuals. The
remaining parameters used for the FCM-based GA and BPN are summarized in Table 1.

We implement the proposed hybrid approach in C++ using Visual Studio 2013. The
experiments are run on a computer with an Intel Core i7-4790 CPU @3.6 GHz and 16 GB of
memory under Windows 10 Professional edition. Because the BPN performance is sensitive
to the initial conditions of random weights [39], the experiment is repeated at least five
times with different initial conditions. The best and average predicted values are recorded
for subsequent analysis.
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Table 1. Parameters used in the proposed approach.

Parameter Value

Fuzziness exponent (m) 2
FCM termination tolerance (φ) 10−4

Number of clusters (G) 14, 16, 18, 20, 22, and 24
Population size (PS) 40

Number of generations (GN) 1000
Mutation probability (Pm) 0.2
Crossover probability (Pc) 0.1

Membership threshold value (δ) 0.01, 0.05, 0.08, and 0.1
Fitness variance value (ε) 10−4

Learning rate (π) 0.99
Number of neurons in the input layer (ϕ) 6

Number of neurons in the hidden layer (ξ) 7, 9, 11, 13, and 15

3.3. Experimental Results

The predicted job cycle times and the observed job cycle times for different numbers
of clusters and different membership threshold values are presented in Figure 8. It shows
that the predicted job cycle time follows similar patterns to those of the observed data. The
proposed approach is quite effective in predicting the job cycle time, and computational
results show that the observed and predicted job cycle times are matched well when the
number of clusters goes from 16 to 20.

Note that the membership threshold value may indeed affect the accuracy of the job
cycle time prediction. As the number of clusters increases from 20 to 24, the job cycle
time prediction performance fluctuates more under different membership threshold values.
Next, we discuss the job cycle time prediction accuracy in terms of the MAE (hours), MAPE
(%), and RMSE (hours).

To investigate how the number of clusters affects the prediction accuracy, we exper-
imented using six different numbers of clusters, namely 14, 16, 18, 20, 22, and 24. The
MAE, MAPE, and RMSE are used to evaluate the effects of the number of clusters overall
testing data for the identical threshold value and the identical number of neurons in the
BPN hidden layer, in Figures 9–11, respectively. These figures show similar trends in the
MAE, MAPE, and RMSE values against different numbers of clusters, indicating that there
might be the need to study optimal numbers of clusters appropriate to datasets but beyond
the scope of this study. The curves of MAE, MAPE, and RMSE show that the job cycle time
prediction accuracy is strongly correlated with the number of clusters. The job cycle time
prediction performance varies with the number of clusters and is poor with too many or
too few clusters, meaning that increasing or decreasing the number of clusters does not
provide better job cycle time predictions.

In Figure 9, we generally obtain better job cycle time prediction performance (MAE)
with the threshold values δ = 0.05 or 0.08. These threshold values provide good data classi-
fication that improves the job cycle time prediction accuracy in the BPN predictor. Similar
trends are obtained for the MAPE and RMSE values in Figures 10 and 11, respectively.

To investigate the effect of different numbers of neurons in the BPN hidden layer,
we test the job cycle time prediction performance with the identical numbers of clusters
(18, 20, and 22) by taking the average MAE, MAPE, and RMSE values for five runs and
four threshold values, as shown in Figure 12. The job cycle time prediction performance
is clearly not strongly correlated with the number of neurons in the hidden layer of the
BPN predictor: increasing the number of neurons ξ improves the prediction accuracy
only marginally.
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Figure 8. Predicted and observed job cycle times (unit: hour) for different numbers of clusters; 14 (a), 16 (b), 18 (c), 20 (d),
22 (e), and 24 (f).
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Figure 9. Mean absolute error (MAE, unit: hour) against the number of clusters for different numbers
of neurons ξ for different thereshold values δ; δ = 0.01 (a), δ = 0.05 (b) δ = 0.08, (c), and δ = 0.1 (d).

Figure 10. Mean absolute percentage error (MAPE, unit: %)) against the number of clusters for
different numbers of neurons ξ for different thereshold values δ; δ = 0.01 (a), δ = 0.05 (b) δ = 0.08,
(c), and δ = 0.1 (d).
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Figure 11. Root-mean-squared error (RMSE, unit: hour) against the number of clusters for different
numbers of neurons ξ for different thereshold values δ; δ = 0.01 (a), δ = 0.05 (b) δ = 0.08, (c), and
δ = 0.1 (d).

Figure 12. Cont.
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Figure 12. (a) MAAE (unit: hour), (b) MAPE (unit:%), and (c) RMSE (unit: hour) for different
numbers of neurons.

Table 2 summarizes the prediction performance, where the best and average MAE,
MAPE, and RMSE values are recorded for five experiment runs with three different num-
bers of clusters (18, 20, and 22), five different numbers of neurons in the hidden layer (7, 9,
11, 13, and 15) and four different threshold value δ (0.01, 0.05, 0.08 and 0.1).

Table 2. Performance of proposed approach in terms of MAE (hours), MAPE, and RMSE (hours).

G. ξ
Best Value Average Value

δ 0.01 0.05 0.08 0.1 0.01 0.05 0.08 0.1

18

7
MAE (h) 86.04 82.33 89.51 89.99 92.14 105.53 98.87 100.27

MAPE (%) 7.40 6.90 7.40 7.50 7.90 8.80 8.20 8.30
RMSE (h) 101.67 115.76 123.37 118.79 111.55 135.14 129.99 125.45

9
MAE (h) 88.30 86.41 89.53 99.51 93.86 93.99 95.90 106.99

MAPE (%) 7.60 7.20 7.50 8.30 8.20 7.80 8.00 8.90
RMSE (h) 108.87 122.07 117.35 128.34 112.11 124.32 127.07 132.91

11
MAE (h) 90.31 82.96 91.43 95.06 92.97 92.96 97.21 100.36

MAPE (%) 7.70 7.00 7.60 7.90 8.00 7.80 8.10 8.40
RMSE (h) 109.41 112.97 125.36 123.62 109.81 119.69 130.09 125.51

13
MAE (h) 85.39 80.57 92.92 92.87 89.06 92.18 97.22 100.81

MAPE (%) 7.40 6.80 7.80 7.90 7.70 7.70 8.10 8.40
RMSE (h) 101.04 108.55 117.95 116.12 105.12 116.75 126.01 127.03

15
MAE (h) 78.22 89.76 95.48 95.98 92.43 93.11 99.19 103.92

MAPE (%) 6.80 7.50 7.90 8.00 8.00 7.80 8.30 8.70
RMSE (h) 97.27 118.15 117.98 115.53 110.32 120.37 125.70 127.18

20

7
MAE (h) 70.03 83.62 80.44 82.74 86.45 90.45 88.62 96.02

MAPE (%) 6.20 7.00 6.80 6.80 7.60 7.60 7.40 7.90
RMSE (h) 85.11 101.43 104.14 106.79 98.38 109.19 109.74 118.40

9
MAE (h) 80.54 78.40 92.96 88.35 88.39 97.85 98.12 98.65

MAPE (%) 7.10 6.50 7.70 7.20 7.80 8.20 8.10 8.10
RMSE (h) 93.08 99.15 114.90 108.94 100.88 118.48 117.35 119.08

11
MAE (h) 86.36 96.98 83.55 76.77 90.25 100.74 97.36 85.25

MAPE (%) 7.50 8.00 7.10 6.20 7.90 8.30 8.10 7.00
RMSE (h) 84.78 117.79 100.23 104.06 100.01 120.98 119.32 108.48

13
MAE (h) 86.17 91.82 85.09 74.43 88.82 94.47 97.58 90.25

MAPE (%) 7.50 7.70 7.20 6.20 7.70 7.90 8.20 7.50
RMSE (h) 97.39 104.01 103.59 97.87 100.77 112.05 119.35 113.06

15
MAE (h) 84.97 73.20 87.94 78.02 91.31 94.05 96.38 93.12

MAPE (%) 7.50 6.20 7.10 6.40 8.00 7.90 8.00 7.70
RMSE (h) 97.39 91.56 110.24 99.27 105.69 114.69 118.92 115.74
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Table 2. Cont.

G. ξ
Best Value Average Value

δ 0.01 0.05 0.08 0.1 0.01 0.05 0.08 0.1

22

7
MAE (h) 123.99 116.03 144.75 96.68 144.20 190.13 187.16 156.08

MAPE (%) 10.90 10.00 12.20 8.50 12.60 16.70 16.30 13.20
RMSE (h) 140.28 147.88 182.79 117.55 181.68 238.56 232.60 186.85

9
MAE (h) 122.03 128.79 152.29 118.62 166.13 157.95 179.16 160.69

MAPE (%) 10.40 11.00 13.00 9.90 14.40 13.70 ‘ 13.70
RMSE (h) 171.08 155.78 187.71 138.90 198.50 194.35 222.87 194.79

11
MAE (h) 128.49 111.02 107.62 87.14 145.13 141.60 149.09 142.26

MAPE (%) 11.00 9.30 8.90 7.60 12.40 12.00 13.10 12.20
RMSE (h) 159.06 142.54 150.50 133.37 177.79 167.46 191.49 180.90

13
MAE (h) 131.87 107.62 143.40 90.92 148.16 156.34 158.13 153.17

MAPE (%) 11.40 9.20 12.70 8.00 12.70 13.40 13.50 13.30
RMSE (h) 170.71 136.10 159.68 128.74 185.41 187.92 190.67 185.97

15
MAE (h) 123.17 97.93 124.83 106.08 144.37 133.21 153.99 152.81

MAPE (%) 10.70 8.30 10.50 8.80 12.40 11.60 13.20 12.90
RMSE (h) 149.38 139.45 161.30 155.14 175.48 163.15 190.40 194.17

Since the performance measures (MAE, MAPE, and RMSE) are about the prediction
errors, the best prediction results were obtained are shaded grey in Table 2 when G = 20,
δ = 0.01, and ξ = 7. Furthermore, to evaluate the effectiveness and efficiency of the
proposed hybrid approach, we compare with five existing approaches that were imple-
mented for the same dataset as ours in previous works (Chen 2007b, Chen 2016b); they
are (i) linear regression (LR), (ii) BPN, (iii) k-means BPN, (iv) k-means fuzzy BPN [36], and
(v) post-classification BPN (Chen [58]).

In Table 3, the best prediction results obtained with the proposed approach with
G = 20, δ = 0.01, and ξ = 7 are compared with those of the five existing approaches.
The best results in the previous research were obtained by post-classification BPN (Chen
2016b). The comparison for MAE was made through the following equation. For MAPE
and RMSE, similar calculations have been performed to calculate the improvements over
the best-known methods.

Improvement (%) =
MAE(best known method)−MAE(proposed method)

MAE(best known method)
, (18)

Table 3. Final comparison results.

Method MAE MAPE (%) RMSE

LR 104.5 8.2 120.5
BPN 166.1 12.8 203.7

k-means BPN 99.0 7.7 119.0
k-means fuzzy BPN [36] 91.0 6.9 141.0

Chen [58] 83.6 6.5 105.8
Proposed approach in this study 70.0 6.2 85.1

Improvement (%) 16.3 4.6 19.6

As shown in Table 3, the prediction accuracies are improved by 16.3%, 4.6%, and
19.6% as measured in terms of MAE, MAPE, and RMSE, respectively. Comparing the
proposed approach with the previous ones in Table 3 suggests that the former is effective
and applicable. It is also clear that the classification-based hybrid approaches (k-means
BPN, k-means fuzzy BPN, post-classification BPN, and the proposed approach) perform
better than the other approaches (LR and BPN). The proposed hybrid approach is better
than other BPNs because it is challenging to train the BPN using raw job records because
of the overfitting problem. The proposed approach is better than the k-means fuzzy BPN
approach because a better classification is obtained using the FCM-based GA method.
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4. Conclusions

This study investigated the relationships between job attributes and job cycle time
using a dataset obtained from a semiconductor fabrication factory. To enhance the effective-
ness of the job cycle time prediction for semiconductor fabrication factories, a new hybrid
approach is proposed, and it comprises FCM-based GA and BPN. Many previous studies
used pre-classification or post-classification methods. However, such methods have several
drawbacks, such as unequal sizes of different clusters. The FCM-based GA represents
a new soft unsupervised classification method wherein the GA is used to improve the
classification performance of the FCM. Hence, a good set of cluster centers are obtained
while balancing the fuzzy memberships of data points to different centers by applying the
FCM-based GA, which captures the main features of the dataset. The results obtained from
the FCM-based GA are used as the training data and fed into the BPN predictor. The BPN
predictor is then trained to predict the cycle time of new jobs with different attributes.

We also presented a case study to demonstrate the effectiveness of the proposed
approach. To obtain good job cycle time prediction performance, various parameters in
the experiments were tested to achieve the best performance. The obtained results were
compared to those of the previous research to show the dominating performance over
the existing methodologies. These efforts lead us to the following conclusions: (1) The
FCM-based GA can better pre-classify the first dataset of job records, enabling the BPN to
produce accurate job cycle time predictions; (2) Stable and fuzzy job-record classification
results allow the BPN to predict the job cycle time more accurately, as shown in Table 3;
(3) The proposed hybrid approach indicates that classification-based methods are superior
to those without job-record classification.

The limitation of this study is explained here. The computational times were not
obtained during the experiments since most studies using the single-layer ANN with the
back propagation do not measure it meaningfully. More precisely, the computational times
can be divided into (1) FCM clustering and GA, and (2) ANN training. The prediction
time is almost instant. The computational times for FCM clustering and GA were varied
by various parameters, including the number of centers, threshold values, and many
GA parameters (shown in Table 1), which requires significant efforts in the design of
experiments to optimize the performance. The training time depends on the size of the data
and the training algorithm. Since the primary focus of this study was to propose a novel
algorithm, the experimental design to understand the performance is beyond this study.

Another limitation is also related to the optimization of the performance. A simple
train/test split was used instead of k-fold cross-validation, which may help the best
performance of the ANN training. The primary reason is why the goal of this study was
to propose a novel methodology, not to optimize the proposed algorithms. In addition,
since FCM clustering is used, we believe that its effects may be aggregated as a grouping in
k-fold cross-validation. Furthermore, since we used the clustered c-means by the stochastic
algorithm (i.e., GA) instead of the raw data, the benefits of the resampling by k-fold
cross-validation may not be justified. However, the study on the benefits of the k-fold
cross-validation in our proposed algorithm can be studied in the future.

In future work, we plan to explore the following interesting problems. The optimal
number of clusters can be identified by further research of preprocessing the dataset. Given
their importance, the proposed approach could be modified to predict the lower and
upper job cycle time bounds. In addition, fuzzy concepts could be incorporated into the
BPN to enhance prediction accuracy. Another interesting direction for future work would
be identifying and eliminating invalid job records because such noise data may affect
prediction accuracy. All these questions are considered in future research.
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