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Abstract: (1) In the present investigation, we tested the hypothesis that unilateral countermovement
jump performance is associated with knee joint stabilization ability during unilateral landing on un-
stable surface. (2) Twenty-five male sport students were tested for dynamometric knee extension and
flexion, and hip abduction isometric strength. Myolectric activity of vastus lateralis and medialis, glu-
teus medius, and biceps femoris muscles were measured during unilateral countermovement vertical
jump performed on a force plate, and during unilateral landing on unstable surface. (3) Vertical jump
impulse negatively correlated with biceps femoris activation at landing. Participants with greater
hip abduction force performed greater vertical jump impulse, and activated the biceps femoris less
when landing on unstable surface. Furthermore, participants with smaller knee flexion/extension
torque ratio increased biceps femoris/vastus medialis activation ratio at landing. (4) We conclude
that hip abduction strength is an important contributor to unilateral vertical jump performance.
Because biceps femoris is considered the synergist of the anterior cruciate ligament, we also propose
that hip abductors are primary frontal plane protectors of the knee joint by reducing knee valgus
and stress, allowing for smaller biceps femoris co-activation (secondary protection) at landing on
unstable surface.

Keywords: hip abduction; knee extension; knee flexion; co-activation; knee valgus; trained males

1. Introduction

Unilateral lower extremity jumps and landings are very common in ground-contact
sports [1,2]. Because of increased load and reduced stability, mechanical stress on the
knee joints increases with such movement modalities, augmenting the risk of injuries. For
example, single-leg jumps applied in plyometric exercise training experiment evoked as
high as 6.2 N/kg vertical ground reaction force [3], and knee joint is stressed by 8.5 N/kg
reaction force when volleyball players perform their take-offs [4]. In addition, Tibiofemoral
joint contact force can increase to more than ten times the bodyweight when landing from
as low as 30 cm [5].

Knee joint stabilization is often studied by using different landing tasks [6–9], and
the role of knee extensor and flexor muscles to protect passive tissue damage during
landings is well understood [10]. The knee flexor co-activation as well as flexor to extensor
strength ratio, known as knee joint stability indicators, have been considered important
contributors to knee joint protection during unilateral landings on unstable surface [11].
An important limitation, however, is that researchers focused mainly on sagittal plane
dynamics, while the dynamic control of knee valgus, which is a frontal plane kinematical
phenomenon in the knee, has also been shown to relate to knee ligament injuries [12]. The
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gluteus medius muscle interests physiotherapists because it functions as a hip abductor,
suggesting a potential role in knee valgus control [13–15]. The closest to the focus of the
present work is a study by Moisan et al. [9], in which individuals with chronic ankle
instability demonstrated smaller gluteus medius activation during landing on unstable
surface, compared to healthy controls. Therefore, despite the fact that the gluteus medius
is a pelvic muscle, its strength and/or activation seems to be important in the indirect
stabilization of the knee joint during landings as it prevents excessive knee valgus.

In addition to the aforementioned stabilization roles, knee extensor and flexor strength
have been shown to contribute to countermovement jump (CMJ) height [16], an important
measure of athletic performance, which has been extensively studied [17–19]. In addition,
both knee extensor and flexor activation were found greater when landings were performed
unilaterally versus bilaterally [6]. Based on the above pieces of evidence, therefore, it
seems reasonable to assume that knee joint stabilization ability and CMJ performance are
related. Furthermore, extensive knee valgus may deteriorate CMJ performance through
biomechanically disadvantageous force exertion; therefore, it is important to investigate
hip abduction strength contribution to CMJ performance. The latter assumption derives
from previous evidence showing that gluteus medius malfunction, for example, alters
ankle joint kinematics, which is a compensation strategy to maintain posture during a
single-leg forward jump [20].

In the present study we tested the hypothesis that CMJ performance is associated
with the ability of knee joint stabilization at landing. We addressed this question through
measuring and correlating CMJ impulse and knee extension, knee flexion, and hip abduc-
tion torque, as well as the activation of the involved muscles (joint stabilization markers)
during unilateral CMJ and landing on unstable surface. If CMJ impulse is a significant
predictor of knee joint stabilization ability, then physiotherapists and strength specialists
could evaluate knee injury risks with simple CMJ tests.

2. Materials and Methods
2.1. Participants

Twenty-five healthy male physical education students (age = 20.4 ± 1.9 years, body
mass = 78.6 ± 7.7 kg, height = 182.7 ± 5.6 cm) participated in the study. Apart from
their regular curricular sport courses (4.54 ± 2.65 h/week), participants were involved in
ground-contact sports for an additional 4.5 ± 2.7 h/week, while none of them were elite
athletes. The only inclusion criterion was that they had at least one year experience in
plyometric exercise training. Exclusion criteria were current injuries in the ankle, knee,
hip, or spine, previous surgeries in these joints, vestibular abnormalities, or acute pain
originating from orthopaedic abnormalities that could have prevented the participant from
maximal lower extremity force exertion. Subjects gave written informed consent according
to the Declaration of Helsinki after receiving both a verbal and a written explanation of the
experimental protocol and its potential risks. The University Ethics Committee approved
the protocol (approval number: 7961-PTE2019).

2.2. Experimental Protocol

Participants attended one familiarization, and one laboratory test session with two
days in between. Before both familiarization and testing, participants warmed-up by
riding a cycle ergometer for 5 min at a self-selected speed and by stretching, with special
emphasis on the lower extremity muscles. This was followed by maximal isometric
voluntary contractions (MVC) in knee extension, knee flexion, and hip abduction. After
this, unilateral countermovement jumps, and landings on unstable surface were performed.
Only the dominant leg was tested for every participant.

2.3. MVC Testing

Unilateral isometric knee extension and flexion MVCs were performed by using
a Multicont II isokinetic device (Mediagnost, Budapest and Mechatronic Ltd., Szeged,
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Hungary, sampling frequency: 1000 Hz). Participants were seated on the dynamometer’s
padded seat, and performed full effort trials of knee extension and flexion at 70◦ and 20◦ of
knee joint position, respectively (0◦ = full extension). The peak torque was determined and
used for statistics. Knee flexion/extension torque ratios (Mf/Me) were also determined.
For testing hip abduction MVC, participants laid on the side with the tested leg upwards.
A hand-held dynamometer (C.I.T. Technics, Haren, The Netherlands) was placed and
fixed 5 cm above the external malleolus, and participants were instructed to perform the
isometric hip abduction at 0◦ hip joint angle with maximum effort. Hip abduction strength
was expressed in Newton. In every MVC test, the torque/force achieved during the best
attempt was normalized to participants’ body weight and was considered for data analysis.
There were three trials in each MVC task, and two-minute rests were allowed among trials.
Before any testing, two submaximal warm-up trials were also executed.

2.4. Unilateral CMJ Testing

Participants stood on a force plate (Tenzi, Pilisvorosvar, Hungary) with one leg, and
with the other leg slightly flexed. Three unilateral CMJs were executed with one minute
rest between trials. During jumps, it was required to keep the hands on the hips to avoid
arm-swing contribution. Subjects were instructed to jump as high as possible, but no
instructions were given on jump strategy. During CMJs, vertical ground reaction force
was measured with respect to time (sampling frequency: 420 Hz), and from the force-time
curve the propulsive impulse was calculated as follows:

→
J =

t2∫
t1

→
F dt

where
→
J = propulsive impulse,

→
F = force acting on the body over a time interval from t1 to

t2. Values were then normalized to kg body mass of the participant. The best CMJ trial
was considered for statistics.

2.5. Unilateral Landing on Unstable Surface

For this test, we followed the procedure described previously by Shultz et al. [7].
Participants stood on a box, and performed drops on the back (flat side) of a TOGU®

Jumper (Figure 1). The flat side was used in order to selectively challenge knee joint
stability, and to reduce the role of ankle stabilization during the landings. Instructions were
given to participants to perform the drops similarly to a drop jump, and to land on the
back of the equipment and maintain balance for three seconds. If balance was lost, the trial
was repeated. After three warm-up trials, four successful test trials were performed.
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Figure 1. Landing task performed to the flat side of a TOGU® Jumper.

2.6. Surface Electromyography

EMG data were collected telemetrically during all MVC, CMJ, and landing tasks.
The skin was carefully prepared by shaving and cleansing with alcohol. Dual Ag/AgCl
surface electrodes (Noraxon, Scottsdale, AZ, USA) were positioned on vastus lateralis (VL)
and medialis (VM), biceps femoris (BF), and gluteus medius (GM) muscles according to
SENIAM recommendations (www.seniam.org; accessed on 1 May 2021), and were kept
on their place throughout the performance tests. EMG signals were collected (Noraxon,
Scottsdale, AZ, USA, sampling frequency: 2000 Hz), and the raw data were processed with
the root mean square technique, using 50-ms moving window. After this, the peak EMG
values were determined for every performance test trial. The peak EMG values for CMJ
and landing task trials were considered in a pre-specified recording period (Figure 2). The
onset of this period was manually marked by considering the time point, when legs were
unweighted and muscles were seen relaxed on the EMG register. To determine the end
point, the peak VL EMG activity was used as reference point, which was clearly identifiable
in every recording. The end point of the measurement period was 500 ms after the peak
of VL EMG activity in order to ensure that the entire movement (either CMJ or landing)
is involved in the measurement. All CMJ and landing EMG data were normalized to
those obtained during MVCs. The BF/VM activation ratio during the landing task was
also determined.

www.seniam.org
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Figure 2. Processed EMG signals (RMS) and measurement periods for vastus lateralis (VL), vastus
medialis (VM), gluteus medius (GM), and biceps femoris (BF) muscles during countermovement
jump (A) and landing (B).

2.7. Statistical Analyses

Group means and standard deviations were computed for all measured and calculated
variables. According to the Shapiro-Wilk test, all variables were normally distributed.
Relative EMG activities of the muscles across tasks were compared with two-factorial
ANOVA, using muscle (VM, VL, BF, GM) and task (CMJ, landing) as independent variables.
Pearson product moment correlations were used to determine associations among all
mechanical and EMG variables. The statistical significance was set at p = 0.05.

3. Results
3.1. Performance Measurements

Mean (± SD) values of the group performance measures are as follows: CMJ impulse
= 2.83 (±0.26) N·s·kg−1, knee extension torque = 3.70 (±0.62) Nm·kg−1, knee flexion torque
= 1.97 (±0.39) Nm·kg−1, hip abduction force = N·kg−1, knee flexion/extension torque ratio
= 0.53 (±0.09).

3.2. Muscle Activity

In EMG activity, there was significant main effect for task (F = 17.1, p = 0.0001) and
muscle (F = 15.7, p = 0.0001), without task by muscle interaction. The post-hoc tests revealed
that EMG activity was higher during CMJ versus landing (p = 0.0001), and that BF activity
was lower than the activity of any other muscles (p = 0.001 or less) (Figure 3).
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Figure 3. Relative peak EMG activities obtained from gluteus medius (GM), vastus lateralis (VL),
vastest medialis (VM), and biceps femoris (BF) muscles during CMJ and landing tasks. * Represents
significant difference at p < 0.05.

Pearson product moment correlation results among the MVC, CMJ, and EMG variables
are presented in Table 1.

Table 1. Pearson product moment correlations among all mechanical and EMG variables. * Significant at p = 0.05.
** Significant at p = 0.005.

EMG at CMJ EMG at Landing
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Mext 0.51 **

Mflex 0.48 * 0.59 **

Fabd 0.63 ** 0.23 0.33

Mf/Me 0.08 0.27 0.61 ** 0.18

GM 0.12 0.24 0.11 0.17 −0.40

VL 0.24 −0.03 0.03 −0.02 0.03 −0.31

VM −0.24 −0.35 0.06 −0.15 0.43 * 0.29 0.12

EM
G

at
C

M
J

BF −0.01 0.20 0.23 0.04 0.11 0.25 −0.08 −0.06

GM 0.11 0.07 −0.10 0.08 −0.16 0.44 * −0.06 −0.13 0.19

VL 0.19 −0.20 −0.17 −0.10 −0.03 −0.05 0.56 ** 0.19 −0.19 0.13

VM −0.19 −0.53 ** −0.14 −0.24 0.33 −0.20 0.36 0.48 * −0.23 0.07 0.51 *

BF −0.62 ** −0.23 −0.39 −0.75 ** −0.27 −0.15 −0.12 0.03 0.19 −0.10 0.01 0.22

EM
G

at
la

nd
in

g

BF/VM −0.12 0.42 * 0.07 0.06 −0.49 * 0.16 −0.53 ** −0.48 * 0.20 −0.08 −0.50 * −0.77 ** 0.29

CMJ = countermovement jump, I = countermovement jump propulsive impulse, Mext = knee extension peak torque, Mflex = knee flexion
peak torque, Mf/Me = knee flexion/extension peak torque ratio, Fabd = hip abduction force, GM = gluteus medius, VL = vastus lateralis,
VM = vastus medialis, BF = biceps femoris, BF/VM = biceps femoris/vastus medialis activation ratio.

4. Discussion

The present data show limited association among CMJ performance and knee joint
stabilization; however, we propose an important muscle activation strategy during landing
on unstable surface. The main finding is that participants with greater hip abduction force
performed greater CMJ impulse, and activated the BF less when landed on unstable surface.
Furthermore, participants with smaller Mf/Me ratio increased BF/VM activation ratio
at landing.

The lack of task by muscle interaction suggests that muscle activation strategies are
similar in CMJ and landing, probably because both tasks require the same joint kinematics.
This is confirmed by the moderate correlation in VL, VM, and GM activation between the
two tasks. Regardless of task, BF was less activated than the vasti or the GM muscles,
suggesting that its role is limited to knee joint stabilization [21]. In contrast, the vasti
muscles, being primary movers (either eccentrically during landing or stretch-shortening-
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like during CMJ) were highly activated. The role of GM has been investigated both during
depth vertical jump [22] and landing [9], using EMG, musculoskeletal models and EMG-
informed simulation techniques. GM functions as hip abductor, and the high GM activation
indicates the importance of proper femur or/and pelvis positioning during both CMJ and
landing on instable surface.

We found that CMJ impulse correlated with both knee extensor and hamstring torque.
The contribution of knee extensor strength to vertical jump performance is well docu-
mented [23]. The role of hamstring in jump movements is rather limited to knee joint
stabilization [21], but hamstring strengthening intervention can improve jump perfor-
mance [24]. It is a novel finding in the present investigation that hip abduction force
correlated with CMJ impulse. This confirms previous data showing positive relationship
between hip abduction moment and vertical ground reaction force measured during drop
vertical jump [22]. Hip abductor mal-function has been shown to contribute to dynamic
knee valgus and pelvic tilt [25] and, therefore, the improper femur (valgus collapse) and
pelvis positioning could be biomechanically disadvantageous in the direction of force
production during CMJ. This is confirmed by studies showing that GM fatigue alters ankle
joint kinematics [20], impairs postural control [26], and increases medial-lateral center
of pressure displacement [27], contributing to uncertain balancing and reduced vertical
ground-reaction force during unilateral CMJ.

Countermovement jump impulse in the present study correlated with only one joint
stabilization marker measured at landing: the BF activation (negative correlation), partly
supporting our hypothesis. In addition, participants with less Mf/Me ratio increased the
BF/VM activation ratio at landing, and participants with less quadriceps torque activated
the VM more at landing. Biceps femoris co-activation has been suggested to play an
important role in most tasks that require strong knee joint stabilization [28]. Moreover,
individuals with greater hamstring stiffness demonstrated smaller peak valgus during
a controlled joint perturbation task, suggesting less ACL loading [29]. Based on our
aforementioned findings and the fact that quadriceps and hamstring torque correlated with
CMJ impulse (as shown in our results) in our participants, we suggest that individuals with
smaller quadriceps and hamstring torque levels produce smaller jump performance, and
that they compensate with higher VM activation and BF co-activation at landing on unstable
surface to maintain knee joint stability. It seems realistic to assume that individuals with
better jump performance feel more confident at landing and require less activation of the
stabilizing muscles. This is in agreement with a previous study showing that individuals
with greater hamstring strength produce softer landings quantified by measuring ground
reaction forces [30]. In addition, jump performance has been shown to be associated with
better static and dynamic balance [31], allowing more stable landing on unstable surface
and requiring less activation in the involved muscles.

The present study provides an interesting finding regarding the role of hip abduction
function in landing on unstable surface. We found strong negative correlation between
hip abduction force and BF activation measured at landing. Hip abduction function
has been shown to contribute to the magnitude of knee valgus [15], and increased knee
valgus places higher stress on the ACL [29]. Based on our results and previous findings
it seems that beside that BF activation has a direct role, the hip abductor strength has an
indirect role in knee joint stabilization and the prevention of ACL injuries in unexpected
landing situations. Namely, when an individual with less hip abduction strength lands
on an unstable surface, the following mechanism is possible: (1) the lack of hip abduction
strength allows greater knee valgus, (2) greater knee valgus places high stress on knee
joint ligaments, (3) excessive stress on knee joint ligaments activates the BF. Therefore, hip
abduction strength may indirectly prevent stress on knee joint by proper femur positioning,
and this can be considered as a pro-active mechanism in ACL injury prevention. However,
with less hip abduction strength, knee valgus may be produced, and BF is activated to
directly reduce ACL stress. Though the latter can be considered as a reactive process, the
exact neuromechanical mechanisms need to be clarified.
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5. Limitations

Although in the present study in a large cohort we demonstrated strong negative
correlation between hip abduction force and biceps femoris activation during landing,
kinematic analyses are needed to provide direct evidence for quantifying the magnitude of
knee valgus. Another important limitation is that we recruited only healthy moderately
trained males and that the present data cannot be generalized to populations such as
females, athletes or injured individuals.

6. Conclusions and Perspectives

In conclusion, the present study provides evidence that hip abduction strength con-
tributes to unilateral vertical jump performance. Furthermore, we propose that hip abduc-
tors are primary frontal plane protectors of the knee by reducing valgus and joint stress.
Biceps femoris is considered the synergist of the ACL (secondary protector), and sufficient
hip abductor activation may diminish the role of biceps femoris co-activation as shown
in our data when individuals land on unstable surface. Numerous studies demonstrated
the effects of hamstring exercise interventions on reduced knee injury risks [32], however,
strengthening the hip abductor muscles is also highly recommended for practitioners
to provide a primary ACL protection in sports where unilateral jumps and landings are
performed under unexpected situations. Understanding the protective behavior of the
hamstring musculature in the prevention of ACL rupture is important. Therefore, future
research investigating the time-specific activation of hamstring with respect to gluteus
medius activation and frontal plane knee kinematics could provide useful insights on the
proposed mechanism. The influence of health and training status as well as gender on the
protective effect of the hamstring should also be studied.
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