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Abstract: The aim of the present study was to characterize the physical-chemical and microbiological
features of aerated compost teas (CTs) extracted with dechlorinated tap water and with two different
additives, molasses and whey, in increasing doses. Plant pathogen suppression properties of CTs
were also taken into account. Total nitrogen in CTs increased with rising doses of the additives used.
In spite of this, nitrogen and mineral element contributions were limited but complementary for
plant mineral nutrition. Although total heavy metal contents in CTs were low, an increase of their
bioavailable forms (ionic and chelated forms, presence in microorganisms) should be taken into
account. In addition, the distribution on soil of acid and/or chelating products by CTs could increase
the bioavailability of heavy metals, especially in the case of several annual distribution cycles and of
medium–long term treatments. Additives modulated the structure and composition of microbial
communities and CTs, exhibiting a broad spectrum of suppressive properties against plant pathogens,
especially when they were used in a raw form.

Keywords: whey; molasses; simplified extraction methods; heavy metals; germination index

1. Introduction

The need for a reduction in the environmental impacts of synthetic pesticides and
the new trends dictated by the market for organically managed cropping systems, has
renewed interest in agricultural practices of the past, based on natural products, such as
compost teas (CTs), which have been found to be effective in the control of many plant
diseases [1]. CT is defined as an organic liquid formulate, obtained by water extraction of a
quality compost, continuative for a defined period, under aerated (aerated CT, ACT) or not
aerated (non-aerated CT, NCT) conditions, with or without nutritional additives [2]. CT
has been proposed to be applied to soil and/or to plants through irrigation systems, soil
drenching, or foliar spray with different aims, including control of leaf and/or soil crop
diseases; microbial augmentation for restoring or increasing beneficial telluric microflora
able to promote soil health; stimulation of the general plant physiological performances;
and nutrients supply [3–9].

This agro-technique has been used under organic and biodynamic farming since
1920 [10]. It is stated that CTs exert positive actions due to the presence of soluble organic
molecules, such as humic substances (humic and fulvic acids). These molecules may have
a direct effect on plant metabolic processes (i.e., radical bio-stimulation, photosynthesis,
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respiration, activation of enzymes, mineral nutrition) due to their hormone-like molecular
structures [11–13]. In addition, the great amount and diversity of beneficial Prokarya and
Eukarya microorganisms contained in bioactive CTs generally play a crucial role in crop
protection, as well as in biostimulation and/or biofertilization [3,4,14–16]. Nutritional
additives, such as rock dust, humic and fulvic acids, molasses, yeast extracts, fish and dairy
byproducts, green algae and plant extracts, glucose, surcrose, starch, chitin, cellulose, wheat
straw, etc., can be added into the extracting volume with the aim of significantly affecting
the major microbial CT component by enriching population levels and conditioning their
compositions and structures. In addition, the promotion of microorganism survival, as well
as the improvement of plant pathogen suppression properties, occur when the additives are
distributed on soil and/or plant surfaces [17,18]. Doubts have arisen on the use of CTs with
nutritional additives for the treatment of crops to be destined for fresh markets. Several
Authors [17,19–21] have highlighted the risks of this practice in favoring the regrowth of
human pathogenic bacteria, such as Salmonella and Escherichia coli, causing problems for
public health. On the other hand, this circumstance can be totally avoided by controlling
the starting compost quality and the overall hygienic conditions occurring during the tea
preparation process.

Available literature surveys revealed the necessity to further examine the effects of
source materials (e.g., compost from livestock matrices), extracting media, and environ-
mental conditions during the extraction process, on the quality of CT and, then, on its
functionality [19,21].

This study is designed to assess the hypothesis that the use of additives will modulate
CT quality, influencing their agronomical and crop defence properties. Thus, the present
research aims to characterize the chemical-physical and microbiological quality of a set
of aerated CTs, obtained through water-mediated extraction of a green/municipal waste
compost, with two different additives, whey and molasses, at increasing concentrations.
In detail, the content of mineral elements and total heavy metals, pH and EC during the
extraction process, the main microbial population, the functional biodiversity and pathogen
suppression capacity, were assessed. This information can be useful to fill the gaps in the
literature and provide scientific value to a practice that usually shows an empirical and
extemporaneous character.

2. Materials and Methods
2.1. Extraction Procedure: Technical and Operative Details

CTs were produced at the laboratory of Basilicata University (Italy). The extraction
process lasted 48 h and was realized in an extracting system by assembling the following
components (Scheme 1): 50-L plastic containers (a); jute bags; a 24 L compressor (b); a 5 L
compressor (c); a solenoid valve supplied with 24 V (d); 15 m of Ø 16 mm irrigation tube
with T-shaped end (e); 20 m of Ø 6 mm micro-irrigation tube; a digital timer (220 V). The
Ø 16- and 6-mm aeration tubes were pierced to obtain high air pressure to assure mixing
and oxygenation of the extracting liquid during the process. The 24-L compressor was
connected with the solenoid valve and provided air flow to the largest diameter tubes
(turbulence effect) (Scheme 1f). The planned turning on of the solenoid valve by the
digital timer allowed air injection for 5 min every three hours. The 5-L compressor was
connected to an air distributor (Scheme 1g) made up of a 16-mm pipe, on which 6-mm
pipes were connected using adapters. During the extraction process the 5-L compressor
provided air to the smallest diameter tubes which, placed in the container according to a
spiral arrangement, generated a “sparkling” effect (Scheme 1h). Each jute bag with filter
function was filled with 7 L of compost, sealed at the top and immersed in a container filled
with additives and dechlorinated tap water. Dechlorination (removal of chlorine used to
disinfect tap water) was carried out by bubbling water for at least 20 min. This caused the
chlorine to be released as a gas.
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Scheme 1. Technical and operative details of the CT extraction process. (a) 50 L-plastic containers; (b) 24 L compressor;
(c) 5 L compressor; (d) solenoid valve supplied with 24 V; (e) T-shaped end; (f) turbulence effect; (g) air-distributor made up
of 6-mm pipes connected to a main 16-mm pipe by adapters; (h) spiral arrangement of the smaller tubes (Ø 6 mm) in the
container and sparkling effect.
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2.2. CTs in Comparison

CTs were obtained using a commercial municipal waste compost (COMPOSTA,
Gesenu S.p.A. Perugia, Italy) authorized for the use in organic agriculture and finely
screened (at 1 cm) in order to make it homogeneous. Compost came from composting of
the humid fraction of urban wastes, and ligninic and cellulosic materials from maintenance
of green urban areas. As requested by Italian law concerning fertilizers [22], the used
compost was free from pathogenic bacteria (specifically Salmonella and Escherichia coli).
Compost was extracted in a 1:5 ratio solution (v:v) with the addition of whey or molasses,
as follows:

CT-Wa = 7 L of compost + 35 L of dechlorinated tap water
CT-Wh1 = 7 L of compost + 3 L of whey + 32 L of dechlorinated tap water
CT-Wh2 = 7 L of compost + 5 L of whey + 30 L of dechlorinated tap water
CT-M1 = 7 L of compost + 105 g of molasses + 35 L of dechlorinated tap water
CT-M2 = 7 L of compost + 175 g of molasses + 35 L of dechlorinated tap water
CT-M3 = 7 L of compost + 350 g of molasses + 35 L of dechlorinated tap water

Whey (Wh) is a waste product of the dairy industry from the process of ricotta
production and was provided from a local cheese factory. Molasses (M) is a discarded by-
product obtained from the sugar beet transformation process: a fluid commercial product,
allowed in organic farming, was used in this research. The major chemical characteristics
of the starting materials used to produce the different CTs are reported in Table 1.

Table 1. Chemical and physical characteristics of the source materials used to produce the different
CTs. Legend: C = compost; Wa = water; Wh = whey; M = molasses.

Parameter C Wa Wh M

pH 8.0 7.8 6.0 8.5
EC mS cm−1 2.96 0.75 - -

Total-N % d.w. or L−1 Z 1.4 - 0.61 3.0
N-NH4

+ Ppm 959 0 19 .
N-NH4

+/Total-N 0.07 0.00 0.03 .
TOC g kg−1 313 0 33 10

HA + FA % d.m. 11 - - -
Ca mg kg−1 or mg L−1 Y 65,800 21 137 835
Mg ” 4000 4 39 304
K ” 11,800 2 592 1150

Na ” 2700 3 942 3400
Fe ” 11,400 0.09 0.26 0.09
Cu ” 45.98 0.02 0.04 0.61
Zn ” 247.43 0.46 0.27 5.00
Mn ” 427.30 0.01 0.01 7.39
Cr ” 16.050 0.015 0.012 0.069
Cd ” 0.300 0.000 0.000 0.005
Ni ” 13.3 0.013 0.011 1.731
Pb ” 28.150 0.024 0.027 0.250

Z % d.w. for C, and L−1 for Wa, Wh, and M; Y mg kg−1 for C, and mg L−1 for Wa, Wh, and M.

2.3. Chemical Analyses
2.3.1. Electrical Conductivity and pH

Electrical conductivity (EC) and pH were measured using a Crison 525 conductivime-
ter (Crison, Barcelona) and a Hanna Instruments HI 223 pH meter, respectively. Mea-
surements were performed by immersing the probes in the CTs at the beginning of the
extraction period (t0) and, then every 30 min for the first five time points, and each hour
for the remaining part of the experiment, which lasted 48 h (except at night). In particu-
lar, measurements were carried out immediately after air insufflation, which produced a
turbulence effect, in order to guarantee correct homogenization of the extract.
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EC and pH were also measured in the final CTs diluted at different ratios (1:2; 1:4; 1:6;
1:8 vol.) with dechlorinated tap water, in order to evaluate CTs non-harmful use for crop
fertigation under open field conditions.

2.3.2. Total Organic Carbon, Humic and Fulvic Acids

Total organic carbon (TOC), as well as humic and fulvic acids (HA and FA, respec-
tively), were determined in the CTs sampled after 24 and 48 h of extraction, according to
the official Italian method for compost analyses [23]. Particularly, for TOC measurements,
potassium dichromate (K2Cr2O2) and concentrated H2SO4 were added to 10 mL of extract.
After 10 min, distilled water was added to the solution to halt the digestion process. An
indicator solution (barium diphenylamine sulfonate) was added to the digestate and then
the excess Cr2O7

2− was titrated with ferrous ammonium sulfate (Möhr salt).
HA and FA were separated from 100 mL of the extract added with 1 mL of 50%

sulphuric acid; the solution was stirred and left to stand for 30 min. Then, the sample was
centrifuged at 3000 rpm for 20 min. After the centrifugation, the solid pellet, including insol-
uble HA under acid conditions, was suspended with 100 mL of distilled water and stored
at 4 ◦C for subsequent analyses. The supernatant was poured into a polyvinylpyrrolidone
column that was previously prepared. The column was washed five times with aliquots of
20 mL of 0.005 M H2SO4. The yellowish eluate coming out to the column was removed (the
non-humified fraction). After these washings, the FA adsorbed on the resin at the upper
end of the column were removed by slowly eluting aliquots of NaOH 0.5 M and collected
in a 100-mL flask.

Humified organic carbon was determined in the two collected fractions (HA and FA).
In particular, 10 mL was added with 5 mL of K2Cr2O7 2N and 20 mL of concentrated
H2SO4. The mixture was kept at 160 ◦C for 10 min. Then, distilled water was added to stop
the reaction. The excess potassium dichromate was measured out by Möhr salt titration in
the presence of a diphenylamine indicator.

2.3.3. Total and Ammonia Nitrogen

Total (Total-N) and ammonia nitrogen (N-NH4) were analyzed in the CTs sampled at
the end of the extraction procedure (48 h) by means of Kjeldahl method.

For Total-N determination, concentrated sulfuric acid and catalysts were added to
10 mL of extract. The solution was subjected to a gradual heating, up to a temperature
of 360 ◦C, and maintained at this temperature for 3 h (until the sample became clear and
colorless). Then, solution was alkalized with sodium hydroxide (40%) and distilled in a
vapor stream. The distillate was collected in a solution of boric acid (1%) and titrated with
HCl 0.05 N with few drops of bromocresol green–methyl red mixture.

Ammonia nitrogen was determined directly with 10 mL of non-mineralized extract.

2.3.4. Heavy Metals, Alkali Metals and Alkaline Earth Metals

Heavy metals, alkali metals, and alkaline earth metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn, Na,
K, Mg, Ca) were analyzed on the starting materials (tap water, whey, and molasses) (Table 1)
and the resulting CTs were sampled at the end of the extraction procedure. Ten milliliters
of such material was previously subjected to an acid digestion at rising temperature steps,
using a microwave oven (Milestone). Metal concentrations were determined in the extracts
using an ICP-OES spectrometer (iCAP 6000 Series, Thermo Scientific, Waltham, MA, USA).

The enrichment factor was calculated as the ratio between the individual metal content
in each final CT and the content in the correspondent extracting solution (tap water or tap
water with the addition of additives, molasses and whey, in different quantities):

Enrichment factor =
Metal content in the final CT

Metal content in the extracting solution
(1)
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The sodium adsorption ratio (SAR), as a salinity indicator, was calculated for the final
CTs, according to the following formula:

S.A.R. =
Na+√

1
2 (Ca2+ + Mg2+)

(2)

where Na, Ca and Mg are expressed in meq L−1.

2.4. Microbiological Analyses
2.4.1. Counting of Microbial Populations in CTs

The abundance of culturable filamentous fungi, yeast, total bacteria, spore-forming
bacteria, and pseudomonads in CTs was determined by the serial ten-fold dilution method [24].
Fungi were counted on PDA (Oxoid, Wesel, Germany) pH 6.0, amended with 150 mg L−1 of
nalidixic acid and 150 mg L−1 of streptomycin. Yeast was counted on rosebengal medium
(Oxoid) amended with 0.1 g L−1 of chloramphenicol (Oxoid). Total bacteria were counted
on selective medium (glucose 1 g L−1, proteose peptone 3 g L−1, yeast extract 1 g L−1,
K2PO4 1 g L−1, agar 15 g L−1) with actidione (cycloheximide) 100 mg L−1. Pseudomonads
were counted on selective agar medium without iron, with added actidione [25]. Finally,
spore-forming bacteria were counted by plating ten-fold dilution of CTs suspensions on
nutrient agar [26], previously heated at 90 ◦C for 10 min. Population densities are reported
as c.f.u. mL−1 (colony-forming unit) of CT.

2.4.2. Biolog Analyses and Bacterial Community Levels of Physiological Profiles

Bacterial community levels of physiological profiles (CLPPs) were assessed by using
the Biolog® ECO microplatesTM system (Biolog Inc., Hayward, CA, USA). Aliquots (100 µL)
of each CT (sampled at the end of the extraction process) diluted at 10−3 were inoculated
in each well. The plates were incubated at 25 ◦C for 4 days and color development in each
well was recorded daily as optical density at 590 nm using a Bio-Rad Microplate Reader
550 (Biorad, Hercules, CA, USA). Measures were carried out in triplicate. Average well
color development (AWCD) and Shannon index (H’) were determined, as described by
Pane et al. [27]:

AWCD =
Σ (Ai−Ac)

31
(3)

where Ai is the absorbance value in the ith well and Ac is the absorbance in the control
(blank).

H′ = −ΣPi LnPi (4)

where Pi is the ratio between the absorbance value in the ith well and the total absorbance
values of all the wells.

The AWCD data were used to develop the Boltzmann function.
The variability coefficient (VC) was calculated as follow:

VC =
SD

mean
× 100 (5)

where SD is the standard deviation.

2.4.3. In Vitro Suppression Assay of CTs

Fungi used in this assay were: Alternaria sp., Botrytis cinerea, Colletotrichum lin-
demuthianum, Fusarium oxysporum f. sp. lycopersici, Fusarium semitectum, Fusarium
solani, Pyrenochaeta lycopersici, Rhizoctonia solani and Verticillium dahlie, which were
maintained on potato dextrose agar (PDA) medium at 20 ◦C. In vitro suppression by CTs
was evaluated on samples recovered after 48 h from the start of the extraction process, and
was carried out using the well-cut diffusion technique [27] with modifications. Twenty
milliliters of sterile PDA medium were poured into 90 mm plates and, after solidifica-
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tion, four wells were then punched out using a 0.5 cm sterile cork borer, orthogonally,
on the edge of each plate. Each of the well bottoms was sealed with two drops of sterile
water agar. One hundred microliters of different diluted teas were transferred into each
well, and sterile water was placed in the wells of the control plates. One disc (0.5 cm) of
mycelium of each fungus was inverted and placed centrally between the wells on PDA
medium. All plates were incubated at 25 ◦C, until the mycelium reached the wells in
water-amended control plates. After incubation, the radius of the clear zone around each
well was measured linearly.

2.4.4. Rhizoctonia Disease Suppressiveness Assay by CTs

One-month-old kohlrabi (Brassica oleracea var. gongylodes) nursery seedlings, were
used to screen the in vivo CT suppressive ability. Pots (20 cm diam.) filled with sterile
peat were inoculated with R. solani-infected common millet seeds prepared, as described
by Pane et al. [28], at 0.5% (w/w, dry weight). Non-inoculated common millet was added
to healthy control pots. Five pots per treatments were used and five plants/pot were
transplanted and drenched with 100 mL of 1:10 water diluted CT each. The treatments
included the six CTs sampled at 48 h from the start of extraction, one healthy control
and one non-treated infected control. The pots were then placed in a growth chamber
(25 ◦C) in a completely randomized experimental design. After three weeks, the number
of symptomatic plants per pot was measured to calculate disease incidence as percentage
of diseased plants. The total fresh and dry weight of plants per pot (g pot−1) was also
recorded. The assay was repeated.

2.5. Phytotoxicity Assays

Assays on seed germination and root growth inhibition [29] were carried out to
determine the phytotoxicity effects of the six CTs sampled after 24 and 48 h from the start
of extraction. Seeds of three dicotyledonous plants, Cucumis sativus L., Lepidium sativum L.
and Solanum lycopersicum L., were used. Five replicates for each CT were tested. For each
species, ten seeds were placed in 10 cm Petri dishes, containing 10 mL of CT diluted with
water in a 1:3 ratio (v:v; CT: water) and a paper filter. The control was performed in five
replicates, using ultrapure water. The seeds were incubated for 72 h in a dark environment
at 25 ◦C. At the end of the test, the germinated seeds were counted and their root extensions
were measured using standard procedures. The germination index (GI) was then calculated
by multiplying the average of the germinated seeds and the average of root elongation at
the end of the test. The percentage of GI (GI%) was determined as the percentage of the
ratio between the GI of the sample and the GI of the control:

GI% =
GI sample
GI control

× 100 (6)

2.6. Statistical Analyses

Statistical analysis of the data (ANOVA) was carried out using Sigmastat 3.1 SPSS Inc.
software. Means that were statistically different were separated according to Duncan’s
multiple range test at p < 0.05.

3. Results
3.1. Substrates and Additives Characteristics

Chemical and physical features of the compost and the additives used to produce CTs
are reported in Table 1. Whey showed acid pH values, low N content and TOC content
higher than that shown by molasses (33 g kg−1 versus 10 g kg−1). Differently, molasses
had an alkaline reaction and showed a N concentration equal to 3%. Differences among
additives were observed, even in metal concentrations. Molasses showed higher metal
contents than whey, except for Fe. On the other hand, considering the total amounts of
constituents used to produce the different CTs, whey supplied higher amounts of metals
than molasses with the exception for Mn and Zn (Table 2).
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Table 2. Amounts of metals added to the CTs by means of the source materials.

Metal
CT-Wh1 CT-Wh2 CT-M1 CT-M2 CT-M3

g Supplied

Ca 411 685 88 146 292
Mg 117 195 32 53 106
K 1776 2960 121 201 403

Na 2826 4710 357 595 1190
Fe 0.780 1.300 0.009 0.016 0.032
Cu 0.120 0.200 0.064 0.107 0.214
Zn 0.810 1.350 0.525 0.875 1.750
Mn 0.030 0.050 0.776 1.293 2.587
Cr 0.036 0.060 0.007 0.012 0.024
Cd 0.000 0.000 0.001 0.001 0.002
Ni 0.033 0.055 0.182 0.303 0.606
Pb 0.081 0.135 0.026 0.044 0.088

3.2. Evolution of the Measured Parameters during the Production Process of CTs
3.2.1. Electrical Conductivity and pH

During the extraction process, the temperature of all CTs was around 19 ◦C (as the
room temperature). EC and pH during the extraction process (0 h, 24 h and 48 h from the
start of the process) are reported in Table 3.

Table 3. pH and electrical conductivity (EC) measured in the CTs during the extraction process (at 0 h, after 24 h, after 48 h).
Comparison between total organic carbon (TOC, g L−1), humic and fulvic acids (HA + FA, g L−1), and humic and fulvic
acids to TOC ratio [(HA + FA)/TOC] × 100, measured after 24 and 48 h from the start of the extraction process.

CT

pH EC TOC (HA + FA) [(HA + FA)/TOC] × 100

mS cm−1 g L−1 g L−1

0 h 24 h 48 h 0 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h

CT-Wa 8.00 8.47 8.60 0.92 4.41 4.45 1.67 1.53 0.19 0.03 11.41 1.66
CT-Wh1 6.46 4.90 5.00 2.18 5.92 6.87 2.14 2.18 0.30 0.52 13.99 23.91
CT-Wh2 6.05 4.81 6.02 2.34 6.60 8.20 2.73 2.89 0.61 0.66 22.33 22.64
CT-M1 8.04 8.54 8.72 2.35 5.51 5.82 2.49 1.97 0.43 0.25 17.35 12.90
CT-M2 8.24 8.60 8.77 2.34 5.66 6.03 2.40 1.61 0.18 0.41 7.43 25.30
CT-M3 8.32 8.62 8.99 4.36 7.10 7.45 2.14 1.76 0.31 0.53 14.54 30.32

From the start to the end of CTs extraction, pH values showed a slight increasing trend
in both CT-Wa and in all the CTs obtained with molasses addition (Table 3). CT-Wh1 and
CT-Wh2 pH decreased from 0 to 24 h to then reach values close to the starting ones.

Marked differences were observed for EC from 0 h to 48 h (Table 3). A more detailed
description of the EC pattern is displayed in Figure 1. Particularly, it evolved according an
exponential model (sigmoidal) for all the CTs, even if it showed (just after 24 h) growing
values according to the following sequence CT-Wh2 > CT-M3 > CT-Wh1 > CT-M2 > CT-M1
> TC-Wa. The same sequence was also observed after 48 h (Figure 1).
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Figure 1. Electrical conductivity (EC) measured in the different CTs during the extraction procedure. Measurements were
performed at the beginning of the extraction and then every 30 min for the first five surveys, and each hour for the remaining
part of the experiment (except at night).

3.2.2. Total Organic Carbon, Humic and Fulvic Acids

The organic components measured after 24 and 48 h from the start of the extraction
process, are reported in Table 3. By comparing the two sampling points, CT-Wa, CT-Wh1
and CT-Wh2 showed similar TOC values, while TOC decreased in molasses-added CTs
after 48 h of extraction. Different behavior was followed by the humic-like substances,
which decreased along with time in CT-Wa and CT-M1, whereas it increased in CT-Wh1,
CT-M2 and CT-M3. In these cases, the humic fraction showed a greater weight on the value
of TOC. CT-Wh2 had the highest content of humic-like substances (Table 3).

3.3. Final Characteristics of the Obtained CTs
3.3.1. Chemical Features of the Final CTs and Their Dilutions

The chemical characteristics of the final CTs are reported in Table 4. With respect to
the pH values, Wh-CTs could be classified as acid to sub-acid. The pH of the remaining
CTs showed an alkaline reaction. EC of the final CTs ranged from 4.45 to 8.20 mS cm−1,
resulting particularly high and not suitable for a direct agronomical application of CTs.

SAR, as a salinity index, ranged from a minimum of 2.4, measured for CT-Wh2, to 8.1
for CT-M3 (Table 4).

In all CTs, total N content showed an increasing trend with respect to the concentration
measured in CT-Wa. Such increases were proportional to the applied doses of additives.
Total N concentrations ranged from 97 mg L−1 measured in CT-Wa to 288 mg L−1 found
in CT-M3 (Table 4). On average, N-NH4

+ represented 22% of the total N, ranging from a
minimum of 15% and a maximum of 26%.

Whey CTs showed the highest TOC contents followed by the molasses ones and
finally CT-Wa (Table 4). The lowest HA + FA value was observed for the CT-Wa which
accounted for a low TOC to HA + FA ratio (1.66%). The humified fraction ranged from 0.25
to 0.66 g L−1 for the other CTs (Table 4) which showed decreasing TOC to HA + FA ratios,
according to the following sequence CT-M1 < CT-Wh2 < CT-Wh1 < CT-M2 < CT-M3.
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Table 4. Chemical and physical features of the final CTs and concentration limits of total heavy metals imposed by the
Italian law for wastewater reuse (Decree No. 185, 12/06/2003, Ministry for Environment).

Parameter CT-Wa CT-Wh1 CT-Wh2 CT-M1 CT-M2 CT-M3 Limits Imposed by the
Italian Law

pH U pH 8.60 5.00 6.02 8.72 8.77 8.99 -
EC mS cm−1 4.45 6.87 8.20 5.82 6.03 7.45 -

SAR 3.6 3.4 2.4 5.6 7.1 8.1 -
Total-N mg L−1 97 138 197 151 194 288 -

N-NH4
+/ ” 24 21 50 39 47 50 -

N-NH4
+/Total-N 0.25 0.15 0.25 0.26 0.24 0.17 -

TOC g L−1 1.53 2.18 2.89 1.97 1.61 1.76 -
HA + FA g L−1 0.03 0.52 0.66 0.25 0.41 0.53 -

Ca mg L−1 51 226 416 59 59 74 -
Mg ” 12 33 60 14 16 17 -
K ” 373 545 731 524 567 615 -

Na ” 103 199 187 170 218 275 -
Fe ” 1.86 1.6 3.37 2.62 2.19 2.43 2.0
Cu ” 0.20 0.15 1.16 0.23 0.25 0.20 1.0
Zn ” 0.32 0.37 0.43 0.53 0.44 0.45 0.5
Mn ” 0.18 1.07 1.91 0.30 0.28 0.28 0.2
Cr ” 0.244 0.029 0.034 0.027 0.021 0.045 0.1
Cd ” 0.000 0.004 0.001 0.002 0.000 0.000 0.005
Ni ” 0.037 0.029 0.054 0.064 0.071 0.105 0.2
Pb ” 0.04 0.05 0.07 0.05 0.06 0.05 0.1

A general increase in the metals concentration was observed in all CTs with additives
compared to the CT obtained only with water addition (Table 4). Such evidence was
confirmed by the enrichment factors of the CTs, calculated as the ratio between the heavy
metal concentration in CT and the concentration in the corresponding extracting solution
(Table 5). Such findings underline the high extractive capacity of metals from the compost.

Table 5. Enrichment factors (Bi/Ai ratio) of the final CTs referred to the metal content of tap water and the used additives
(molasses and whey).

Metal A1 A2 A3 A4 A5 A6 B1 B2 B2 B4 B5 B6 Bi/Ai

Wa +Wh1 +Wh2 +M1 +M2 +M3 CT-
Wa

CT-
Wh1

CT-
Wh2

CT-
M1

CT-
M2

CT-
M3 I = 1 2 3 4 5 6

Ca 21 31 38 24 25 29 51 226 416 59 59 74 2.4 7.3 11.1 2.5 2.3 2.5
Mg 4 7 9 5 6 7 12 33 60 14 16 17 3.0 4.7 6.7 2.9 2.9 2.4
K 2 53 86 5 8 14 373 545 731 524 567 615 186.5 10.4 8.5 96.1 73.2 45.6

Na 3 83 137 13 20 37 103 199 187 170 218 275 34.3 2.4 1.4 12.9 10.9 7.4
Fe 0.09 0.10 0.11 0.090 0.090 0.091 1.86 1.60 3.37 2.62 2.19 2.43 20.7 15.3 29.5 29.0 24.2 26.7
Cu 0.02 0.02 0.02 0.022 0.023 0.026 0.2 0.15 1.16 0.23 0.25 0.2 10.0 6.9 50.8 10.5 10.8 7.7
Zn 0.46 0.44 0.43 0.475 0.485 0.510 0.32 0.37 0.43 0.53 0.44 0.45 0.7 0.8 1.0 1.1 0.9 0.9
Mn 0.01 0.01 0.01 0.032 0.047 0.084 0.18 1.07 1.91 0.3 0.28 0.28 18.0 107.0 191.0 9.3 6.0 3.3
Cr 0.015 0.01 0.01 0.015 0.015 0.016 0.244 0.03 0.03 0.027 0.021 0.045 16.3 2.0 2.3 1.8 1.4 2.9
Cd 0 0.00 0.00 0.000 0.000 0.000 0 0.004 0.001 0.002 0 0 - - - 133.3 0.0 0.0
Ni 0.013 0.01 0.01 0.018 0.022 0.030 0.037 0.03 0.05 0.064 0.071 0.105 2.8 2.3 4.2 3.5 3.3 3.5
Pb 0.024 0.02 0.02 0.025 0.025 0.027 0.04 0.05 0.07 0.05 0.06 0.05 1.7 2.1 2.9 2.0 2.4 1.9

Figure 2 shows pH and EC values measured in the CT diluted with tap water. The
CTs seemed well buffered at all the dilutions examined. All the extracts at dilution ratio 1:4
(CT to water) showed EC ranging from 1 and 2 mS cm−1. Such EC values are opportune
for agronomical purposes (CT distribution by means of an irrigation system).
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Figure 2. pH values (a) and electrical conductivity (EC) (b) measured in CTs diluted with tap water
at different ratios (1:2; 1:4; 1:6; 1:8).

3.3.2. Microbiological Features

Microbial counting revealed the effects of additives in changing the levels of the
culturable populations, as shown in Table 6. Whey CTs showed the highest level of fungi
Log CFU, while yeast population were higher in CT-M1, followed by CT-W2, than the
others. Total bacteria population levels were significantly increased by both additives
compared to CT-Wa, with a pattern that only for whey was increasing in a dose-dependent
manner. Microbial population consistency revealed that fungi-to-bacteria and fungi-to-
yeast ratios were higher in whey CTs, while yeast-to-bacteria ratio was fluctuating around
the control value (Table 6). Bacillus spp. were not affected by additives, contrary to what
happened for the others, which showed significant increases. For example, Pseudomonas spp.
were higher in whey-amended CTs.
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Table 6. Microbiological features of the final CTs. Values followed by different lowercase letters were significantly (p ≤ 0.05)
different.

COMPOST
TEAS

Fungi
(LogCFU

ml−1)

Yeast
(LogCFU

ml−1)

Bacteria
(LogCFU

ml−1)

Fungi/
Bacteria

Ratio

Fungi/
Yeast
Ratio

Yeast/
Bacteria

Ratio

Pseudomonas
spp.

(LogCFU
ml−1)

Bacillus
spp.

(LogCFU
ml−1)

CT-Wa 3.1c 4.4 c 5.6 c 0.562 0.711 0.789 3.8 d 4.1 a
CT-Wh1 6.3 a 5.0 c 7.2 bc 0.868 1.264 0.687 5.1 d 4.0 a
CT-Wh2 6.1 b 5.9 b 8.3 a 0.741 1.044 0.710 6.8 b 4.3 a
CT-M1 4.4 c 6.3 a 7.4 bc 0.601 0.699 0.859 7.2 a 4.4 a
CT-M2 3.6 c 5.3 c 7.8 b 0.462 0.683 0.676 6.3 cd 3.7 a
CT-M3 3.4 c 5.5 c 7.6 bc 0.453 0.623 0.727 6.8 bc 3.6 a

Additives significantly influenced the assessed community levels of physiological
profiles (Table 7). The indexes describing the metabolic diversity, such as H’ and VC,
increased by the addition of additives: molasses, in particular, induced highest increments
that were directly linked to the dose that was applied. The general metabolic activity,
described by Boltzmann transformation of BIOLOG AWCD, indicated a similar behavior
(Table 7).

3.4. CTs Fungal Pathogen Suppressiveness

All raw CTs exhibited in the plate diffusion assays, variable levels of fungal growth
inhibition (Table 8). Plate experiments showed a reduction of mycelial development
that ranged between 61 and 21%, with a global value that are, on average, around 45%.
Although, additive type and dose and dilution interact significantly (MANOVA) with
in vitro CTs suppression, all these factors did not give univocal effects. Therefore, no
consistent characterizing trend could be deducted. Sterilized teas, on the contrary, has not
produced any inhibition hole; therefore, they proved to be ineffective in fungal growth
reduction (data not shown).

In vivo assay showed that CTs significantly reduced the detrimental effects of the
fungal pathogen Rhizoctonia solani on cabbage (Figure 3). Although CT-Wh1 treatment
proved higher control activity, there were no differences among CTs.
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Table 7. Microbial population and levels of physiological profiles of CT communities detected by Biolog Eco Plate system. In each group, values followed by different lowercase letters
were significantly (p ≤ 0.05) different.

CTs

Biolog CLPPs

Fungi Yeast Bacteria Fungi/Bacteria Fungi/Yeast Yeast/Bacteria Pseudomonas spp. Bacillus spp. Boltzmann Function of AWCD Metabolic Biodiversity

LogCFU ml−1 LogCFU ml−1 A2 x0 dx R2 VC H′

CT-Wa 3.1c 4.4 c 5.6 c 0.562 0.711 0.789 3.8 d 4.1 a 1.47 45.21 11.01 0.996 2.013 d 3.32 d
CT-Wh1 6.3 a 5.0 c 7.2 bc 0.868 1.264 0.687 5.1 d 4.0 a 1.11 43.26 13.40 0.996 1.362 d 3.32 d
CT-Wh2 6.1 b 5.9 b 8.3 a 0.741 1.044 0.710 6.8 b 4.3 a 1.22 36.71 14.26 0.991 1.869 d 3.37 c
CT-M1 4.4 c 6.3 a 7.4 bc 0.601 0.699 0.859 7.2 a 4.4 a 1.71 41.36 13.74 0.996 3.128 c 3.40 b
CT-M2 3.6 c 5.3 c 7.8 b 0.462 0.683 0.676 6.3 cd 3.7 a 1.80 37.84 14.19 0.993 4.500 b 3.41 a
CT-M3 3.4 c 5.5 c 7.6 bc 0.453 0.623 0.727 6.8 bc 3.6 a 1.70 37.96 15.12 0.990 5.180 a 3.41 a

Table 8. In vitro fungal growth inhibition of the final CTs. For each fungus, values followed by different lowercase letters were significantly (p ≤ 0.05) different.

Compost
Teas

Mycelial Inhibition Zone (%)

Fusarium
solani

Fusarium
oxysporum

Fusarium
sambucinum

Fusarium
semitectum

Alternaria
alternata

Botrytis
cinerea

Verticillium
dahliae

Colletotrichum
lindemutianum

Pyrenochaeta
lycopersici

Rhizoctonia
solani

1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10 1:5 1:10

CT-Wa 42 bc 41 ab 42 b 41 ab 54 a 61 a 45 a 45 ab 41 ab 39 b 46 ab 47 a 58 a 40 b 35 a 33 a 44 bc 67 a 25 b 24 bc
CT-S1 35 c 43 ab 38 b 33 b 31 b 35 b 37 b 40 c 50 a 38 b 45 ab 44 ab 47 c 34 c 29 a 28 ab 21 d 41 b 27 b 26 b
CT-S2 35 c 30 c 37 b 49 a 41 ab 38 b 43 ab 49 a 55 a 39 b 44 ab 44 ab 47 c 42 b 23 b 22 b 33 cd 28 c 33 a 32 a
CT-M1 49 ab 46 a 52 a 22 c 42 ab 43 b 45 a 47 ab 36 bc 53 a 56 a 45 ab 54 ab 61 a 27 ab 35 a 23 d 27 c 24 b 22 bc
CT-M2 54 a 41 ab 44 b 38 b 41 ab 39 b 44 ab 42 bc 28 c 32 b 28 c 41 ab 51 bc 44 b 28 ab 27 ba 64 a 25 c 26 b 21 c
CT-M3 54 a 33 bc 40 b 49 a 38 ab 36 b 39 ab 40 c 43 ab 43 b 38 b 34 b 49 c 42 b 30 ab 35 a 55 ab 20 d 29 ab 26 b
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Figure 3. Effects of CT treatments on kohlrabi plants grown in infected pots (fresh weight—f.w.;
dry weight—d.w.) and damping off incidence (%) due to Rhizoctonia solani infection. Bars indicate
value ±SE; different lowercase letters indicate statistically significant differences among treatments
at p ≤ 0.05. NI: Non-inoculated; I: inoculated. *: measurement equal to 0.

3.5. Phytotoxicity Assays on Seeds

Figure 4 shows the effects of the application of the different CTs, sampled after 24
and 48 h from the beginning of the extraction, on the GI% of seeds of cucumber, cress,
and tomato. Such an index allowed to synthetically evaluate the action of CTs on seed
germination and root extension, which are physiological processes particularly sensitive
to phytotoxic agents. Generally, CT-Wa was the least phytotoxic among the extracts: all
species treated with CT-Wa showed the highest GI values, except in the case of cucumber
treated with CT-M1 (Figure 4). In most cases, GI% decreased in treatments with higher
additives concentrations in both sampling moments (24 and 48 h) even if these differences
were not always statistically significant (Figure 4). With respect to the control, species
responses to CTs applications were more evident in 24 h samples (Figure 4). A particular
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behavior was observed for tomato seeds, which showed a higher GI% values when they
were treated with CTs after 48 h of extraction (Figure 4).
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Figure 4. Phytotoxicity assays on seeds of Solanum lycopersicum L. (tomato), Cucumis sativus L. (cucumber) and Lepidium
sativum L. (cress) treated with the different CTs (1:3 v:v, CT: water) sampled after 24 (a) and 48 h (b) from the start of the
extraction process. Lowercase letters indicate statistically significant differences (p ≤ 0.05) within the same sampling time.

4. Discussion

In this study a quality commercial compost, suitable for use in organic agriculture as
an amendment, was used to obtain CTs brewed with the addition of whey and molasses.
These two by-products of the food transforming chain were used as additives, at different
concentrations, to provide feeding sources for CT microbial populations.

The chosen additives showed different chemical characteristics (i.e., molasses had
higher pH values, N and heavy metal concentrations than the whey, which had greater
TOC content), which supposedly affected the quality of the produced CTs, together with
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the applied doses and the duration of the extraction process. In particular, a 48 h-extraction
duration was chosen with an intermediate sampling at 24 h, with the aim to cover the
optimal brew time range and to observe maximum microbial activity in CTs [17].

The combination of the different starting feedstock (compost and additives) influenced
pH and EC of CTs during the extraction process. This in accordance with what found by
Kim et al. [30] after 2-day incubation of four types of aerated CTs. The low pH values
showed by the whey CTs, especially after 24 h, could have an acidifying and potentially
toxic effect on crops and increase the availability for absorption of heavy metals into the
soil. Furthermore, the low pH of the whey CTs could accelerate irrigation system corrosion
in fertigation applications. Conversely, a gradual increase of pH was shown by the CTs
made using molasses, evidently due to its alkaline pH values. As reported by Schlegel [31],
pH can strongly affect development of the microbial population. Acid pH measured in
whey CTs probably favored growth of the fungal populations with respect to the bacterial
groups. Caballero et al. [32] assessed the biostimulating properties of a fermented whey
putatively associated to lactic acid, peptides, and free amino acids, with the further effect
to lead microbial changes towards biocontrol active populations.

EC values in the experimental CTs, ranging from 4.45 to 8.20 mS cm−1 (Table 4), were
well over the maximum threshold indicated for an irrigation water acceptable and usable
without restriction [33], suggesting the need of the CT’s dilution. Kim et al. [30] recorded
significantly increased EC values of aerated CTs sampled after 1-day incubation, resulting
in phytotoxic effects on cress seed germination, a species known to be highly sensitive
to salt stress. In the current work, cress GI was negatively correlated to CTs electrical
conductivity in both sampling points. An inverse behavior was observed on tomato seeds,
which showed increased germination when treated with the CTs sampled after 48 h. This
finding suggests further investigations on such a germination response.

With respect to the CTs dilutions, it seems that the best compost-to-water ratio for
agronomical utilization was 1:4 for all the CTs produced. Such ratio assured EC values
ranging from 1 to 2 mS cm−1, which can be suitable for crop fertigation.

The suitability of CTs for soil treatment can be evaluated by means of both salt amounts
and salt quality (especially the ratio among cations, Na+, Ca2+, Mg2+, in solution). SAR
indicates sodium activity in CTs and how it can participate in the exchange process, which
occurs in the soil in antagonism with calcium and magnesium. SAR showed by the CTs in
comparison falls within the usual range in irrigation water [33]. As recommended by many
Authors [5,17,34,35], a volume that is adequate enough to reach the root area should be
applied to protect roots from potential colonization of pathogens and promote the growth
of healthy plants. In addition, repeated applications are necessary in order to constantly
supply the soil system with nutrients and beneficial microorganisms [17,34,35]. On the
other hand, the repeated distribution of CT with a sodium imbalance could cause sodium
accumulation into the soil (sodicity phenomenon), which has negative impacts on soil
structure (swelling and dispersion of clays, soil surface crusting with consequent soil pore
sealing). Therefore, sodicity can significantly affect water infiltration into the soil causing
runoff and soil erosion especially on steep lands. In case of CT dilution, such detrimental
agronomic/environmental effects can be reduced.

A certain increase in N content was observed in CTs produced with the addition
of both whey and molasses. Such concentrations, although they are not exhaustive to
fully satisfy nutritional requirements of horticultural or fruit crops to be treated, has to
be considered complementary for nitrogenous nutrition of crops. By simulating the soil
distribution of 300 L year−1, as suggested by Ingham [17], the experimental CTs could apply
total nitrogen inputs ranging from 29.1 to 86.4 g ha−1. These amounts should be increased
by fertilizers, taking into account other agronomical principles, such as the real nutrient
needs of crops along the different stages of plant life cycle; soil nutrient availability and
crop nutritional status; synchronization between nutrient requirements by the crops and
their availability in soil volume where roots are present; fertilization techniques and their
efficiency; soil management techniques and water availability linked to natural conditions
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(rainfall) or irrigation practice. Probably, a longer brewing period could allow a greater
amount of nutrients to be extracted from the compost [36].

Generally, additives combined to the starting compost allowed to increase TOC and
humic and fulvic acid concentrations within the final CTs. These organic matter forms,
distributed in the soil by means of frequent CT applications, have important agronomic
implications: they improve soil fertility, provide for labile nutrients and create an environ-
ment useful for microbial proliferation and activity, increase soil water retention [37,38].
The latter is a positive effect, especially in arid climates where irrigation water may be
limited and high air temperatures quickens soil mineralization processes. In addition,
humic substances can incite plant biostimulations by affecting both nutrient uptake and
plant metabolism [39]. All such conditions create balanced and high-performance crop
systems, able to cut plant chemical needs and reduce external inputs (pesticides, fertilizers).

The high capacity to extract metals from compost by the used additives suggests
to take them into account in CT field application scheduling. The amount of elements
with nutritional functions for crops, such as Ca, Mg and K, applied by means of CTs
are low (data not shown) and, therefore, should be integrated according to the rules of
sustainable fertilization. Monitoring of Ca/Mg and K/Mg rations in compost extracts is
recommended to avoid possible equilibrium changes of these elements into the soil, which
could affect crop nutrition. In order to determine whether heavy metal concentrations
were of concern in terms of negative impacts on the soil system, they were compared with
the chemical limits, where available, imposed by Italian legislation, which regulates the
reuse of wastewater for irrigation purposes (Decree No. 185, 12/06/2003) [40]. With the
exception of Cu, Fe and Mn, the contents were found to be below the limits permitted
by law (Table 4). By assuming a CT-Wa, CT-Wh2 and CT-M3 distribution at a dose of
300 L year−1 for a medium period of 10 years, the total heavy metals applied to the soil
are extremely low and well below the maximum annual quantities allowed by Legislative
Decree No. 99, 27/01/1992 concerning the disposal on land of sewage sludge (application
of 5 t ha−1 year−1 of sewage sludge—on a dry matter basis) [41] (Table 9). Although total
heavy metal contents in the experimental CTs were low, an increase of their bioavailable
forms (ionic and chelated forms, presence in microorganisms) should be taken into account.
In addition, the distribution on soil of acid or/and chelating products by CTs, could increase
the bioavailability of heavy metals, especially in the case of several annual distribution
cycles and of medium-long term treatments.

Table 9. Total heavy metals applicable to the soil in the medium period (10 years) by means of CT-Wa,
CT-Wh2 and CT-M3 (300 L year−1). Comparison with the maximum annua1 amounts allowed by
the Italian law (Legislative Decree, No. 99, 27/01/1992) through the application of 5 t ha−1 year−1 of
sewage sludge—on a dry matter basis.

Element CT-Wa CT-Wh2 CT-M3 Maximum Annual Amounts Allowed by the
ltalian Lawg ha−1

Fe 5.6 10.1 7.3 -
Cu 0.6 3.5 0.6 5000
Zn 1.0 1.3 1.4 12,500
Mn 0.5 5.7 0.8 -
Cr 0.7 0.1 0.1 -
Cd 0.0 0.0 0.0 100
Ni 0.1 0.2 0.3 1500
Pb 0.1 0.2 0.2 3750

Here, CTs exhibited a broad-spectrum of suppressive properties against the tested
plant pathogens, interestingly, only when, independently from the concentration, they
are used as raw. This means that pathogen containment was mainly due to the microbial
components, probably responsible of antagonistic functions [42]. Actually, plate counts
retrieved microbial populations, such as Pseudomonas spp. and Bacillus spp., associated to
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the biological control of plant pathogens [43,44]. As expected, additives modulated both the
structure and composition of CT communities: molasses stimulated microbial shifts more
than whey, likely due to sugar content. Nevertheless, the kind of additive did not univocally
affect Rhizoctonia disease control efficacy, likely due to the high suppressive levels just
showed by the non-amended tea. Interestingly, additive used at the higher dosage, reduced
the suppressivity performances of the formulate suggesting strong effects on the microbial
community composition. A literature survey showed how additives might have a role in
suppressive functionalities and have a potential to help the definition of the systematic
production of CTs suitable for plant disease management [5]. Mohd Din et al. [45] pointed
up as an aerated CT added with molasses sourced from oil palm, was able to suppress
Grammothele lineata on the Malaysian plant Melicope ptelefolia. CTs have a great potential to
suppress both air and soil-borne pathogens [46], as also indicated here by the in vitro and
in vivo experiments. In a previous assay, whey CTs significantly reduced disease symptoms
of Alternaria alternata, Botrytis cinerea and Pyrenochaeta lycopersici on tomato, suggesting a
suitability of the extracting solution for suppressive CTs production [42]. CTs may explicate
the biocontrol action against plant diseases through the typical antagonistic mechanisms
operated by the resident microflora, including antibiosis, competition for the space and/or
for the nutrients, hyperparasitisms and induction of systemic resistance in the plants.
Microbial biodiversity in the compost is crucial for the suppressive properties [47] that can
be transferred into CT. In this regard, the additives may further affect the architecture of
the microbial community, by favoring general growth or some populations over others
(i.e., molasses) and/or by providing new microbial groups (i.e., whey) by establishing
new equilibriums. Thus, the biocontrol mechanisms, on the base of the complexity of
the resident communities, in the CT may synergize. The role of the specific antagonistic
structure of microbial groups for the biological control activity has highlighted in CTs able
at reducing disease symptoms caused by R. solani on savoy cabbage, Sclerotinia minor on
lettuce and Sclerotium rolfsii on pepper in drenching applications [48].

5. Conclusions

CT is a multifunctional product, especially usable in organically managed agricultural
systems and achievable on-farm at sustainable costs with easily available materials, for
example biowaste from agro-food processing industries. CTs with additives have proven to
be an important supplementary source in crop nutrition, to be taken into due consideration
in drawing up fertilization plans. On the other hand, it is necessary to pay particular
attention to the quality of the starting ingredients (compost, water, nutritional additives)
to ensure the production of “safe” CT. Without prejudice to the use of quality CT, it
is however advisable, for precautionary purposes, to monitor the system (soil–plant)
treated with CT to avoid long-term undesirable effects (accumulation of heavy metals,
salinization, phytotoxicity, etc.). The additives used in this research seem to have an
interesting function of being a microbial starter and exert a significant restraint of the
plant pathogen activities, probably by influencing and modulating CTs communities’
compositions. The features of this sustainable technique (low costs, ease of application,
waste recycling action, etc.), together with several agronomical benefits coming from
its application, should justify a political and economic effort by competent bodies to
spread it as much as possible to potential stakeholders (agro-food industries and operators,
agricultural experts, farmers, etc.).
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