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Abstract: In this work, we apply a machine learning algorithm to the regression analysis of the nuclear
cross-section of neutron-induced nuclear reactions of molybdenum isotopes, 92Mo at incident neutron
energy around 14 MeV. The machine learning algorithms used in this work are the Random Forest
(RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance
of each algorithm is determined and compared by evaluating the root mean square error (RMSE)
and the correlation coefficient (R2). We demonstrate that machine learning can produce a better
regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of 92Mo
isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous
literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with
R2 = 1 and RMSE = 0.33557. We also employed the crude estimation of property (CEP) as inputs,
which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code
alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental
only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to
generate an accurate enough regression curve which indicates a potential use in training machine
learning models for the nuclear reaction that is unavailable in EXFOR.

Keywords: (n,2n) nuclear reaction; machine learning; supervised learning

1. Introduction

Nuclear reaction induced by fast neutrons is pivotal in the development of the fusion
reactor. Hence, cross-section data for a neutron-induced nuclear reaction are needed in the
design of a nuclear reactor. Plasma facing components are one of the main materials that
make up parts of a fusion reactor, such as the first wall and divertor. The plasma-facing
components are the first to be exposed to plasma generated from the D-T reaction in the
reactor, which is heavily bombarded by fast neutrons (around 14 MeV). Thus, the materials
used to fabricate plasma-facing components must be able to withstand the high neutron
flux and are usually made from beryllium [1], tungsten [2], and molybdenum [3].

The nuclear cross-section can usually be determined utilizing empirical measurements,
which are available in the public database EXFOR [4]. However, there is a low amount of
experimental nuclear cross-sections for some nuclear reactions in certain energy ranges
due to experiment complexities. There is also a possible discrepancy between nuclear
cross-section data obtained through experimental measurement, especially around 14 MeV
incident neutron energy. Thus, theoretical models, such as the preequilibrium exciton
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model [5] and Weisskopf-Ewing theory [6], and systematic analysis of empirical and semi-
empirical formulas [7–10] have been developed to provide measurements for otherwise
unavailable nuclear cross-section data.

In recent years, machine learning algorithms have been very popular with applications
spanning a wide range of scientific applications. The main idea behind machine learning
algorithms is to unearth the patterns and successfully make predictions. This is done by
training a machine learning model with a pre-existing dataset. Random forest algorithm
has also been employed in benchmarking the quality of Evaluated Nuclear Data Files
(ENDF) [11]. The benchmarking is done by tracing the discrepancy between simulated and
experimental effective neutron multiplication factors, ke f f . Gaussian process regression
has also been applied in generating the nuclear cross-section of proton-induced reactions
on the nickel target [12]. The data-driven approach has successfully generated a regression
curve along with its corresponding uncertainties which can be used in designing a nuclear
experiment with reduced uncertainty.

Here, we present the study on the prediction of nuclear cross-section data of 92Mo(n, 2N)
91Mo nuclear reaction using machine learning algorithms. However, the availability of
experimental data over the wide range of incident neutron energy and the discrepancy of
datasets, due to the differences in equipment and experimental methodology limits the
predictive capability of machine learning algorithms. We proposed to increase the accuracy
of the algorithms by introducing crude estimation of property (CEP) as the input [13]. CEP
consists of estimations made from the model and the simulation results of a physical system
which is based on the physics of the experiments. Hence, the dataset fed into the machine
learning algorithms consists of nuclear cross-sections computed from nuclear code EMPIRE
3.2 [14] and TALYS 1.9 [15], experimental nuclear cross-section and the energy of the incident
neutron. The outputs are then compared to the experimental data from EXFOR [4] and
evaluated data library ENDF/B-VIII.0 [16].

2. Materials and Methods

There are three main components to the input to feed into our algorithms, which are the
incident energy of the neutron, En, experimental cross-section data (EXP) and the computation
cross-section, which consists of various output from EMPIRE 3.2 and TALYS 1.9 nuclear code
done in the previous study [3,16–20]. The output is the ENDF/B-VIII.0 library nuclear
cross-section, and the list of inputs and outputs can be seen in Table 1. Here, we define the
computational cross-section datasets from TALYS 1.9 and EMPIRE 3.2 as the crude estimation
property (CEP). TALYS 1.9 is one of the most common codes used to simulate the nuclear
reaction involving protons, photons, neutrons, deuterons, and alpha particles as projectiles
with incident energy up to 200 MeV. EMPIRE 3.2 is another code to simulate nuclear cross-
section data for pre-equilibrium, direct nuclear, and compound nuclear reaction.

Each of the datasets is normalized by using min-max normalization. The input being
fed into our machine consists of experimental data only, and experimental and CEP data
(EXP + CEP) and CEP data only of 92Mo(n, 2N) 91Mo. We plotted the experimental nuclear
cross-section of 92Mo(n, 2N) 91Mo from EXP, CEP and ENDF/B-VIII.0 library datasets in
Figure 1. To avoid overfitting, the datasets are partitioned using k-fold cross-validation.
The dataset is divided into k randomly chosen subset of an equal size set, and one of the
subsets will be used for testing. The procedure is then repeated until all k subsets are used
as the testing dataset at least once. In this work, 5-fold cross-validation is performed, where
(i) the dataset is randomized and split into 5 subsets, (ii) the machine is trained using 4 of
the subsets (80%), (iii) testing is done using the remaining subset (20%), (iv) repeat step
(i) to (iii) until each subset is used once for testing and (v) the root means square error for
each cross-validation is averaged.
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Table 1. Variables used as the input and output for prediction of nuclear cross-section data of
92Mo(n, 2N) 91Mo. The experimental dataset (EXP) includes experimental data from Borman et al. [17],
Abboud et al. [18] and Kanda et al. [20] while the crude estimation property (CEP) includes EMPIRE 3.2
and TALYS 1.9 data from Luo and Jiang3 and TALYS1.9 data from Naik et al. [19].

Variable Variable Name No of Data Points Variable Type

X1 Incident Energy (MeV) 41 Input

X2 EMPIRE 3.2 output (mB) [3] 41 Input

X3 TALYS 1.9 output (mB) [3,19] 82 Input

X4 Borman et al. [17] 7 Input

X5 Abboud et al. [18] 11 Input

X6 Kanda et al. [20] 21 Input

Y1 ENDF/B-VIII.0 library (mB) [16] 41 Output
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3. Results and Discussions

Three algorithms are applied in this study which are the random forest (RF), Gaus-
sian process regression (GPR), and support vector machine (SVM). Random forest is a
supervised learning algorithm that utilizes the recursive partitioning of regression trees.
For non-linear regression problems, the ensemble method is used to grow trees, where
successive trees are independent of previous trees. Instead, each tree is independently
determined using a bootstrap sample of datasets. Gaussian process regression is a type of
supervised learning algorithm that is based on Bayesian non-linear regression. The GPR
algorithm is non-parametric, where probability distributions are surmised over all possible
values of x. Theoretically, the data points can be represented as multivariate Gaussian
distribution form where GPR is performed to constrain possible form of covariance func-
tion and covariance matrix. Support vector machine was first formulated as supervised
learning that utilizes hyperplanes for the separation of classes. Essentially, SVM transforms
a non-linear regression into linear regression by mapping input space to new feature space
by using kernel functions. After classifying data points into clusters using hyperplanes,
the algorithms draw a line or hyperplanes that minimize the error or loss function.

The performance for each algorithm is compared by using the root mean square error
(RMSE) as a quality criterion. The relationship of RMSE evaluated for each algorithm
with different combination of experimental data and computational data used as input is
reported. However, the experimental dataset provided by EXFOR for 92Mo(n,2n)91Mo nu-
clear reaction mostly consists of single data points, which are shown in Figure 1. This leads
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to a very sparse dataset, especially after the removal of the incomplete data points when
being fed into machine learning algorithms. Thus, we find it is important to selectively
choose the dataset used as the input. The first step is to remove the experimental nuclear
cross-section input data sets that have only single data points. Here, we are left with an
experimental nuclear cross-section dataset by Borman et al. (1976), Abboud et al. (1969)
and Kanda et al. (1972).

To obtain our results, the feature selection is done by Recursive Feature Elimination
(RFE) where RMSE and correlation coefficient served as an estimator to determine the
best dataset and number of the dataset used as a predictor. The same step is repeated
for the CEP-only dataset and a combination of experimental nuclear cross-section and
CEP. The results of the feature selection are tabulated in Tables A1–A3. By using RFE,
we can decrease the number of features used while increasing the performance of our
machine learning model which can be seen in Tables A1 and A2. For the RFE done on the
combination of CEP and EXP in Table A3, we will only consider the combination of CEP
with a single experimental dataset since the combination of two and three EXP dataset
does not give better performance in terms of RMSE and correlation coefficient as shown
in Tables A1 and A2. From Tables A1–A3, the best selection of features is highlighted in
yellow. After performing the RFE step, Bayesian optimization of the hyperparameters
is performed, with up to 100 iterations of the hyperparameters, choosing the ones that
minimize CV error. For RF, the methods in which trees are constructed using bagged tree
where multiple trees are constructed by randomly training independent variable composed
of the same size. The range of search for the number of leaves, number of learners, number
of a predictor to sample for RF are set in between 1–34, 10–500, 1–3 and 0.001–1.

For GPR, the Bayesian optimization is performed with a search range of three different
basis functions which are constant, radial, and linear, four different kernel functions which
are rational quadratic, exponential, squared exponential, and the Matérn kernel function
with parameters of either 3/2 or 5/2. Kernel scale is set in between 0.4166 to 416.6 and
noise standard deviation; σ is set in between 0.0001 to 1248.651. For SVM, the Bayesian
optimization is performed with a search range for box constraint and kernel scale in
between 0.001 to 1000, ε in between 0.164 to 16,400.0208. Kernel function considered is
Gaussian, linear, quadratic, and cubic. From the Bayesian optimization performed, we
determined the optimized hyperparameters of each machine learning algorithm with
different input in Table 2. The performance of three proposed machine learning algorithms
has been investigated using the correlation coefficient and RMSE as reported in Table 3.
We can observe from Table 3, for EXP, EXP + CEP and CEP input, the GPR algorithms have
the highest correlation coefficient with R2 = 1 and the lowest RMSE compared to the RF
and SVM algorithm. Among those three inputs, the EXP input displayed better prediction
capabilities with RMSE = 0.33557 mb followed by CEP input with RMSE = 0.86292 mb
and EXP + CEP input with RMSE = 7.4093 mb.

RF and SVM algorithms also exhibit the same trends where the EXP input performs
better in terms of RMSE followed by CEP and EXP + CEP. For RF, the differences of RMSE
for all three inputs are small with RMSE ranging from 7.4838 to 7.885. This indicates little
change in terms of performance regardless of the type of inputs being fed into the model.
Figures 2–4 depict the predicted vs. actual plot where we can observe the accuracy of the
prediction made by GPR, RF and SVM algorithms, respectively. From Figures 2–4, we
observed the comparisons of the performances of our machine learning models for the three
different types of input (EXP, CEP and EXP + CEP), respectively. For GPR, the predicted
nuclear cross-section shows a good fit with ENDF/B-VIII.0 library data points when being
fed input sets, with R2 = 1. The performance of the RF model is similar for all three different
inputs, where it shows a good fit with ENDF/B-VIII.0 library data points (R2 = 1) as it
can be seen in Figure 3a–c. This might be attributed to the property of RF algorithms that
build multiple decision trees (bagging) and averaged the RMSE of all of the individual
decisions tree. SVM algorithms also show good fits using all three inputs with EXP are
the best input, followed by CEP and EXP + CEP. The GPR gives generally a much better
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prediction followed by SVM and RF with EXP, EXP + CEP and CEP inputs. GPR models
can give a good fit even with the unavailability of experimental data of EXP input over a
wide range of En as shown in Figure 2a. This is due to the non-parametric nature of GPR
algorithms, which are known to work well with a sparse dataset [21]. Hence, we found that
the GPR is a much more versatile and robust machine learning algorithm as a prediction
tool for our EXP, EXP + CEP, and CEP datasets as compared to the SVM and RF models.
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Figure 2. Graph of prediction vs. measured nuclear cross-section of 92Mo(n, 2N) 91Mo for GPR
machine learning algorithm. The black line is the ENDF/B-VIII.0 library data while the red dot is the
predictions done by the GPR algorithms with (a) EXP, (b) CEP and (c) EXP + CEP as input.

Table 2. Hyperparameters optimization using Bayesian Optimization.

Algorithms Input Hyperparameters

GPR

EXP Linear basis function, isotropic rational quadratic, 39.2269 kernal scale,
σ = 0.00010974

EXP + CEP Radial basis function, non-isotropic matern 3/2, 114.1658 kernal scale,
σ = 1246.4488

CEP Radial basis function, non-isotropic matern 3/2, 249.3891 kernal scale, σ = 3.477

RF

EXP Bagged tree, 3 leaves, 10 learners and 2 predictors

EXP + CEP Bagged tree, 2 leaves, 172 learners and 4 predictors

CEP Bagged tree, 1 leaf, 13 learners and 4 predictors

SVM

EXP Quadratic kernel funcion, 992.923 box constraints, ε = 1.1308

EXP + CEP Linear kernel function, 0.01304 box constraints, ε = 1.5412

CEP Cubic kernel function, 150.2836 box constraints, ε = 5.6412
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Table 3. The statistical analysis of the performance of GPR, RF, and SVM algorithms using EXP,
EXP + CEP and CEP input. The machine learning model with R2 closed to 1 and lowest RMSE is
highlighted in yellow.

Algorithms Input R2 RMSE (mB)

GPR
EXP 1 0.33557

EXP + CEP 1 7.4093

CEP 1 0.86292

RF
EXP 1 7.4838

EXP + CEP 1 7.7885
CEP 1 7.6552

SVM
EXP 1 1.6296

EXP + CEP 1 5.9236

CEP 1 4.3059
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Figure 4. Graph of prediction vs. measured nuclear cross-section of 92Mo(n, 2N) 91Mo for SVM
machine learning algorithm. The black line is the ENDF/B-VIII.0 library data while the red dot is the
predictions done by the SVM algorithms with (a) EXP, (b) CEP and (c) EXP + CEP as input.

In Figure 5, we plotted the predicted cross-section of GPR algorithms using EXP, EXP+CEP,
and CEP inputs together with the experimental nuclear cross-section, simulated cross-section
and ENDF/B-VIII.0 library data. From Figure 5, we can observe that the prediction done by
the GPR algorithms fit better with ENDF/B-VIII.0 library data compared to the experimental
and simulation nuclear cross-section (TALYS 1.9 and EMPIRE 3.2). Similar observation goes
to the generated cross-section using RF and SVM algorithms for all inputs. This indicates a
potential use of training machine learning models using simulated input instead of the exper-
imental dataset for nuclear reactions that are hard to be experimented with or unavailable
in the EXFOR database. This is useful for both interpolation and extrapolation of nuclear
cross-section; however, there are limitations of our work. We have not yet tested machine
learning on the region beyond what is provided by EXFOR. Error bar of the experimental
cross-section from EXFOR is also not included here; however, it is possible to simulate the
confidence band using machine learning algorithms. Support Vector Machine (SVM) and
Random Forest (RF) is also capable of producing a confidence band by measuring the distance
to separating the hyperplanes and by taking every individual response in the leaf to build a
distribution from which the range of appropriate percentiles can be taken as confidence band.
Artificial neural network (ANN) is also capable to produce predictive distribution which can
serve as a confidence interval. The confidence band of the nuclear cross-section has been
simulated in previous work using GPR [12]. Thus, these limitations can be used as a basis for
future studies.
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4. Conclusions

In this paper, we have studied the performance of machine learning algorithms (RF,
SVM, and GPR) in predicting the nuclear cross-section of 92Mo(n, 2N) 91Mo nuclear reac-
tions. We also studied the performance of machine learning algorithms using experimental
and simulation input. We perform the feature selection step in determining the best number
of predictors and a combination of predictors that give the highest correlation coefficient
and lowest RMSE for our GPR, RF, and SVM machine learning models. We found that
we do not need the whole experimental nuclear cross-section dataset to generate nuclear
cross-section data that can fit ENDF/B-VIII.0 library data. It is generally known that
training machine learning in the region outside of the explored range, either unknown
data points or in between data points with high sparsity tend to fail to generalize, which
indicates the dependency of the training on the regime studied. Thus, we introduce crude
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estimation property (CEP) dataset alongside experimental dataset (EXP) to increase the
predictive abilities of the machine learning algorithms where it helps to reduce the sparsity
of EXP dataset in between data points. Although not yet explored, it also has potential
in extrapolating nuclear cross-section data by providing data points outside the explored
range of incident energy in the EXP dataset. We found that EXP input works the best in
training machine learning models to generate nuclear cross-section data despite being
sparse and not covering the whole range of neutron incident energy (13 MeV–17 MeV). This
is then followed by CEP and EXP + CEP input in terms of correlation coefficient and RMSE.
The performance of GPR (RMSE = 0.33557) algorithms better follows by SVM (RMSE =
1.6296) and RF (RMSE = 7.4838) algorithms. We also find our machine performs better
in generating the nuclear cross-section as compared to the simulation cross-section using
TALYS 1.9 and EMPIRE 3.2 code.
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Appendix A

Table A1. Feature Selection by Recursive Feature Elimination for CEP cross-section using Gaussian
process regression (GPR), random forest (RF) and support vector machine (SVM). Crude estimation
property (CEP) is used as input includes EMPIRE 3.2 and TALYS 1.9 data from Luo and Jiang [3] and
TALYS1.9 data from Naik et al. [19]. The machine learning model with R2 closed to 1 and lowest
RMSE is highlighted in yellow.

Algorithms Input Data RMSE R2

GPR

TALYS 1.9 [19] 1.7712 0.99
TALYS 1.9 [3] 1.8748 0.99

EMPIRE 3.2 [3] 1.6036 0.99
TALYS 1.9 [3,19] 2.3065 0.99

TALYS 1.9 + EMPIRE 3.2 [3,19] 2.6242 0.99

TALYS 1.9 + EMPIRE 3.2 [3] 1.7649 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 [3,19] 2.4981 0.99

RF

TALYS 1.9 [19] 11.739 0.99

TALYS 1.9 [3] 11.072 0.99

EMPIRE 3.2 [3] 12.113 0.99

TALYS 1.9 [3,19] 10.423 0.99

TALYS 1.9 + EMPIRE 3.2 [3,19] 6.7575 0.99
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Table A1. Cont.

Algorithms Input Data RMSE R2

TALYS 1.9 + EMPIRE 3.2 [3] 11.253 0.99
TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 [3,19] 6.6829 0.99

SVM

TALYS 1.9 [19] 6.4485 0.99

TALYS 1.9 [3] 7.5603 0.99

EMPIRE 3.2 [3] 4.3977 0.99

TALYS 1.9 [3,19] 2.7543 0.99

TALYS 1.9 + EMPIRE 3.2 [3,19] 4.5357 0.99
TALYS 1.9 + EMPIRE 3.2 [3] 1.8763 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 [3,19] 4.2918 0.99

Table A2. Feature Selection by Recursive Feature Elimination for EXP cross-section using Gaussian
process regression (GPR), random forest (RF) and support vector machine (SVM). Experimental
dataset (EXP) is used as input includes experimental data from Borman et al. [17], Abboud et al. [18]
and Kanda et al. [20]. The machine learning model with R2 closed to 1 and lowest RMSE is
highlighted in yellow.

Algorithms Input Data RMSE R2

GPR

Borman et al. [17] 18.996 0.98

Abboud et al. [18] 2.7569 0.99
Kanda et al. [20] 0.88192 0.99

RF

Borman et al. [17] 7.0876 0.99

Abboud et al. [18] 10.64 0.99
Kanda et al. [20] 6.5792 0.99

Borman et al. + Abboud et al. [17,18] 8.4342 0.99

Borman et al. + Kanda et al. [17,20] 7.1418 0.99

Abboud et al. + Kanda et al. [18,20] 10.872 0.99

Borman et al. + Abboud et al. + Kanda et al. [17,18,20] 10.598 0.99

SVM

Borman et al. [17] 38.494 0.92

Abboud et al. [18] 126.95 0.07
Kanda et al. [20] 1.1155 0.99

Table A3. Feature Selection by Recursive Feature Elimination for EXP + CEP cross-section using
Gaussian process regression (GPR), random forest (RF) and support vector machine (SVM). Exper-
imental dataset (EXP) includes experimental data from Borman et al. [17], Abboud et al. [18] and
Kanda et al. [20], and crude estimation property (CEP) input includes EMPIRE 3.2 and TALYS 1.9
data from Luo and Jiang [3] and TALYS1.9 data from Naik et al. [19] are used as input. The machine
learning model with R2 closed to 1 and lowest RMSE is highlighted in yellow.

Algorithms Input Data RMSE R2

GPR

TALYS 1.9 + Borman et al. [17,19] 79.079 0.61

TALYS 1.9 + Borman et al. [3,17] 70.147 0.69

EMPIRE 3.2 + Borman et al. [3,17] 24.114 0.96

TALYS 1.9 + Borman et al. [3,17,19] 82.77 0.57

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17,19] 60.895 0.77

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17] 62.863 0.75

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17,19] 68.467 0.71
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Table A3. Cont.

Algorithms Input Data RMSE R2

TALYS 1.9 + Abboud et al. [18,19] 4.9163 0.99

TALYS 1.9 + Abboud et al. [3,18] 7.1168 0.99
EMPIRE 3.2 + Abboud et al. [3,18] 2.2094 0.99

TALYS 1.9 + Abboud et al. [3,18,19] 5.0829 0.99

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18,19] 4.938 0.99

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18] 9.1249 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Abboud et al.
[3,18,19] 4.2338 0.99

TALYS 1.9 + Kanda et al. [19,20] 88.581 0.51

TALYS 1.9 + Kanda et al. [3,20] 86.902 0.53

EMPIRE 3.2 + Kanda et al. [3,20] 89.188 0.50

TALYS 1.9 + Kanda et al. [3,19,20] 86.423 0.53

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,19,20] 88.112 0.51

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,20] 86.835 0.53

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Kanda et al.
[3,19,20] 86.697 0.53

RF

TALYS 1.9 + Borman et al. [17,19] 6.6887 0.99
TALYS 1.9 + Borman et al. [3,17] 6.8452 0.99

EMPIRE 3.2 + Borman et al. [3,17] 7.6775 0.99

TALYS 1.9 + Borman et al. [3,17,19] 12.598 0.99

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17,19] 9.9778 0.99

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17] 7.886 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Borman et al.
[3,17,19] 8.3505 0.99

TALYS 1.9 + Abboud et al. [18,19] 6.9508 0.99

TALYS 1.9 + Abboud et al. [3,18] 9.8844 0.99

EMPIRE 3.2 + Abboud et al. [3,18] 6.8545 0.99

TALYS 1.9 + Abboud et al. [3,18,19] 12.626 0.99

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18,19] 6.7171 0.99

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18] 10.747 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Abboud et al.
[3,18,19] 6.75 0.99

TALYS 1.9 + Kanda et al. [19,20] 11.376 0.99

TALYS 1.9 + Kanda et al. [3,20] 6.6964 0.99

EMPIRE 3.2 + Kanda et al. [3,20] 8.2924 0.99

TALYS 1.9 + Kanda et al. [3,19,20] 7.4009 0.99

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,19,20] 10.413 0.99

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,20] 6.6962 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Kanda et al.
[3,19,20] 13.099 0.99

SVM

TALYS 1.9 + Borman et al. [17,19] 133.6 −0.12

TALYS 1.9 + Borman et al. [3,17] 133.6 −0.12

EMPIRE 3.2 + Borman et al. [3,17] 133.6 −0.12
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Table A3. Cont.

Algorithms Input Data RMSE R2

TALYS 1.9 + Borman et al. [3,17,19] 133.6 −0.12

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17,19] 133.6 −0.12

TALYS 1.9 + EMPIRE 3.2 + Borman et al. [3,17] 133.6 −0.12

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Borman et al.
[3,17,19] 133.6 −0.12

TALYS 1.9 + Abboud et al. [18,19] 7.1575 0.99

TALYS 1.9 + Abboud et al. [3,18] 8.6507 0.99

EMPIRE 3.2 + Abboud et al. [3,18] 31.192 0.95
TALYS 1.9 + Abboud et al. [3,18,19] 5.8921 0.99

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18,19] 27.998 0.96

TALYS 1.9 + EMPIRE 3.2 + Abboud et al. [3,18] 5.9724 0.99

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Abboud et al.
[3,18,19] 11.044 0.99

TALYS 1.9 + Kanda et al. [19,20] 138.43 −0.2

TALYS 1.9 + Kanda et al. [3,20] 138.43 −0.2

EMPIRE 3.2 + Kanda et al. [3,20] 138.43 −0.2

TALYS 1.9 + Kanda et al. [3,19,20] 138.43 −0.2

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,19,20] 138.43 −0.2

TALYS 1.9 + EMPIRE 3.2 + Kanda et al. [3,20] 138.43 −0.2

TALYS 1.9 + TALYS 1.9 + EMPIRE 3.2 + Kanda et al.
[3,19,20] 138.43 −0.2
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