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Abstract: The fifth-generation (5G) mobile network services are currently being made available
for different use case scenarios like enhanced mobile broadband, ultra-reliable and low latency
communication, and massive machine-type communication. The ever-increasing data requests from
the users have shifted the communication paradigm to be based on the type of the requested data
content or the so-called information-centric networking (ICN). The ICN primarily aims to enhance
the performance of the network infrastructure in terms of the stretch to opt for the best routing path.
Reduction in stretch merely reduces the end-to-end (E2E) latency to ensure the requirements of the
5G-enabled tactile internet (TI) services. The foremost challenge tackled by the ICN-based system is to
minimize the stretch while selecting an optimal routing path. Therefore, in this work, a reinforcement
learning-based intelligent stretch optimization (ISO) strategy has been proposed to reduce stretch and
obtain an optimal routing path in ICN-based systems for the realization of 5G-enabled TI services. A
Q-learning algorithm is utilized to explore and exploit the different routing paths within the ICN
infrastructure. The problem is designed as a Markov decision process and solved with the help of the
Q-learning algorithm. The simulation results indicate that the proposed strategy finds the optimal
routing path for the delay-sensitive haptic-driven services of 5G-enabled TI based upon their stretch
profile over ICN, such as the augmented reality /virtual reality applications. Moreover, we compare
and evaluate the simulation results of propsoed ISO strategy with random routing strategy and
history aware routing protocol (HARP). The proposed ISO strategy reduces 33.33% and 33.69% delay
as compared to random routing and HARP, respectively. Thus, the proposed strategy suggests an
optimal routing path with lesser stretch to minimize the E2E latency.

Keywords: ICN; 5G; reinforcement learning; markov decision process; AR/VR; stretch reduction;
tactile internet

1. Introduction

The evolution of wireless and cellular communication has played a key role in making
lives easy and smart [1]. European telecommunications standards institute and inter-
national telecommunication union have worked and improved the cellular networks to
the current; fifth-generation (5G) [2,3]. The 5G provides faster communication, wider
bandwidth, and higher throughput [4]. The 5G enables enhanced mobile broadband com-
munications (eMBB), ultra-low latency and reliable communication (URLLC), and massive
machine-type communication services depending on the use cases [5]. Mainly, 5G and
beyond networks offer seamless communication and support various applications of tactile
internet (TI) such as teleoperation, virtual reality (VR), augmented reality (AR), etc. [6].
These TI applications demand ultra-low delay of 1 ms, ultra-high reliability of 1× 10−7,
and availability up to 99.999999% [7]. The 5G provides URLLC and eMBB services to users
that improve quality of service (QoS), quality of tasks (QoT), and quality of experience
(QoE) for TI applications [8]. Recently, the AR/VR applications with haptic feedback
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are getting more attention in 5G-enabled TI [9]. Moreover, the TI applications and the
application specific requirements and characteristics are illustrated in Table 1.

Table 1. TI requirements and characteristics for specific use cases [7].

Use Case Scenario Traffic Type Reliability Latency (ms) Average Data Rate

Immersive VR Master→ Slave 99.999% <5 1–4 k pkts/sSlave→Master 1–50

Tele-Operation Master→ Slave 99.999% 1–10 1–4 k pkts/sSlave→Master

Automotive Master→ Slave 99.9% 1–10 100–2000 pkts/s
Slave→Master 100–500 pkts/s

Internet of drones Master→ Slave 99.999% 50–100 1–4 k pkts/sSlave→Master case dependent

Inter-personal Communication User 1→ User 2 99.999% 50 [10] only VR users 600 Mbps

Cooperative automated driving Master→ Slave 99.9% 1–20 10–40 MbpsSlave→Master 10–50

The 5G network is an application-driven network infrastructure [11]. The research
community has designed diverse network functionalities that enable 5G to meet the rapidly
increasing demand for TI applications. The Multi-access edge computing (MEC) paradigm
is one of the best key enablers of URLLC in the 5G ecosystem [12]. It brings the cloud-like
capabilities at the edge of the network with limited abilities, i.e., caching, communication,
control, and computation. The edge computing framework for 5G and beyond networks
has three tiers, i.e., cloud, core, and edge devices [13]. Base station acts as an edge device
for MEC-based 5G infrastructure. The massive increase in data requests results in a
significant load on the network [14]. Thus, it is essential to offload some data requests
and services at the edge of the network [15]. The edge device filters, parses, processes,
and forwards data requests to the core network [16]. The MEC enables resource utilization,
task offloading and management, content, and cache management that improves the QoE,
QoS, and QoT for 5G at the edge of the network [17]. The MEC also lowers the traffic
overhead at the core network [18]. Therefore, MEC is the driving factor to enable URLLC,
high bandwidth, location awareness, and contextual services at the edge of the network [19].
Hence, MEC-based 5G is one of the key enablers to realize TI and allow haptic-driven
AR/VR users to access the concerned application data from edge devices [20,21]. Therefore,
the current MEC-based 5G system provides URLLLC services for haptic-driven AR/VR
applications [22,23].

Edge caching is the key enabler to cache the most requested content using information-
centric networking (ICN), such as videos, close to users [24]. Recent studies also revealed
that tactile users or haptic-driven TI applications such as inter-personal communication
for AR/VR users are more concerned about the data presence than the geographical lo-
cation of requested data [25,26]. This leads to the introduction of ICN for MEC [27,28].
The ICN enables named-based networking rather than the host addressing scheme in
internet protocol (IP) [29]. The ICN uses content names for communication, which makes
the communication architecture simple. The ICN is more concerned about content se-
curity rather than communication channel security [30]. Therefore, ICN contributes in
achieving URLLC that improves QoS and maximizes QoE for the inter-personal commu-
nication of AR/VR users [31]. Moreover, ICN also minimizes the routing problems that
lead to better network throughput in MEC-based 5G-enabled TI infrastructure [32]. Hence,
it is a promising solution to enhance the MEC performance, and efficiency in terms of
URLLC [33]. The ICN deals with the data cache and management in the network infras-
tructure. The ICN enables in-network caching in 5G core network. Therefore, ICN enables
routing optimization and task scheduling in MEC-based 5G networks [34]. It lessens the
forwarding of requests to the core network and tries to cache the most popular contents to
the most appropriate place or node, depending on the cache strategies [35,36]. The ICN
opens the 5G communication with other benefits like in-network caching, mobility, and
multi-cast [37]. The ICN provides efficient caching and routing for MEC-based 5G system.
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Furthermore, as discussed in Table 1 the inter-personnel communication deals with the
users with different connected routers therefore, ICN enables content, cache, and routing
optimization, and therefore, it increases QoS for inter-personal communication for AR/VR
applications. Hence, ICN enabled MEC-based 5G system ensures high bandwidth capacity,
content caching capability, and routing optimization to support low latency, and high
reliability to users [38].

In ICN, the routing is performed based on three tables, i.e., content store (CS), pending
interest table (PIT), and forward interest base (FIB) [39]. The caching node stores a list of
caching objects in its CS. In a radio access network (RAN), the caching node has a PIT that
monitors and forwards the state of interest packets for the content object [40]. Similarly,
the node enlists all the possible next-hops for forwarding interest packets to the provider
in FIB [41]. The routing path defines the stretch encountered while completing the request
from the publisher to the consumer as illustrated in Figure 1. The path with the lesser
number of hops encounters lesser stretch [42]. Routing optimization leads to the efficient
path for content retrieval. Hence, optimal routing path between consumer and publisher
leads to a reduction in end-to-end latency [11]. Therefore, we have proposed a strategy to
select the optimal routing path i.e., intelligent stretch optimization (ISO) with lesser stretch
for haptic-driven inter-personal communication for AR/VR applications.

Cloud

A1

A2

A3

R1

R2

R3

R4

R5

Producer

Content packet

Interest packet

Content (Browsing, File, Video, Audio, etc.)

Caching and computing capability

BS1 BS2

Cache capability

Figure 1. Overview of the basic ICN architecture for haptic-driven AR/VR applications.

The motivations of this paper are as follows:

• First, an intelligent model should be designed to evaluate stretch in ICN to obtain an
optimal stretch reduction scheme for improving ICN-based 5G network performance.

• Second, reinforcement learning (RL) tends toward optimal stretch with an autonomous
and intelligent decision based on previous experiences in the routing decision.

This paper proposes a RL-based ISO strategy in ICN for haptic-driven AR/VR ap-
plications in TI based on the above considerations. The contributions of this paper are
as follows:
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• The RL-based stretch reduction scheme has been proposed, promoting the optimal
routing path selection with fewer hops. Integration of ICN, MEC, and 5G is employed
to illustrate and evaluate the proposed routing scheme for stretch reduction for AR/VR
users in TI.

• We propose an iterative algorithm to optimize the content retrieval path between the
AR/VR user and the content provider. Furthermore, through rigorous simulation
variations, the convergence and optimality of the proposed strategy is proved.

• We have pursued extensive simulation in this proposed strategy and proved that
our RL-based stretch reduction strategy achieves significant routing path savings.
Moreover, the proposed strategy opts for the path with the minimum stretch.

2. Related Work

Extensive work has been pursued in the field of ICN to improve the overall efficiency
of network architecture. In [43–47], the researchers studied and investigated many cache
strategies. Each cache strategy is discussed and evaluated in terms of a cache hit ratio
(CHR), cache diversity (CD), and content redundancy (CR). The study in [44] presents
a content placement strategy. The effectiveness of the proposed strategy is evaluated in
terms of CHR, CD, and CR. The radio content router (RCR) caches the content according to
between centrality router strategy, i.e., the router with most connections to other routers.
The strategy is also evaluated in terms of CHR, CD, CR, and stretch based on the content
placement. Similarly, in [45] authors have discussed and evaluated different probabilistic
cache strategies in terms of the same parameters of CHR, CR, CD, and stretch. Furthermore,
the authors presented a 5G-based ICN infrastructure content caching at BS, and user [37].

The authors proposed a joint optimizing the caching scheme, which discusses transcod-
ing and routing decisions for adaptive video streaming over ICN [48]. They evaluated
the work in terms of access delay and CHR. Most ICN work pursued primarily considers
the model based on content providers, content caching, and content delivery. In [49]
the authors have dealt with these three areas. The work mainly focuses on the content
provider’s selection, caching, and content delivery. The authors have proposed a cache-
aware QoS routing scheme. This routing scheme discusses the proximal content available
to the consumer. They have also devised the routing decision based on the appropriate FIB
of the nearest proximal data providers. In [50] the Authors have investigated a new cache
strategy by implementing the unsupervised learning-based proactive caching scheme for
ICN networks. They introduced proactive data caching while creating clusters of the BS.
Moreover, they evaluated their caching scheme based on CHR and user satisfaction ratio.
In [10] authors have discussed the communication perspective regarding the VR users only
keeping in view the IP protocol for communication. They worked in providing better QoS
for haptic-driven VR users only. Moreover, our work improves the QoS by implementing
the ISO and reduces the delay for better QoS for both AR and VR users.

In the perspective of edge network caching, ML method enables edge devices to mon-
itor the network environment actively and intelligently by learning and predicting various
network characteristics such as channel dynamics, traffic patterns, and content requests,
allowing them to take proactive decisions that maximize a predefined objective such as
QoS and CHR [51]. Currently approximately all research challenges are utilizing AI to
obtain optimal results and performance. Similarly AI is also widely used for edge caching
most of the current approaches use more than one machine learning methodology [52].
Unsupervised methods mainly clusters the users, contents, and BSs based on their location
or access parameters [53,54]. Unsupervised learning approaches investigates structure or
patterns in unlabeled data, such as user geolocation or content requests patterns. Given
the network states, actions, and cost, RL algorithms are used to address the core problems
of cache optimization [55]. The majority of published work deals with caching and main
goal is to increase CHR [56]. CHR variations are intimately linked to all other caching
targets [57]. When content is available in-network and not accessed via CDNs and back-
haul lines, it directly affects content access latency, user QoE and,data offload ratio [58].
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Therefore almost no work is done towards intelligent and efficient routing scheme for ICN
infrastructure. The caching strategies proposed so far are introduced for efficient content
placement according to user’s request pattern. Different network topologies are used to
verify the caching strategies. Each caching strategy provides different stretch results for
requested content. Therefore, the caching strategies computes the stretch after the content
discovery and placement. We proposed an ISO strategy that is applicable to different
caching strategies.

3. Problem Statement

Currently, the cache strategies introduced so far have aimed to improve the overall
efficiency of the ICN framework. This paper discusses optimal routing path selection
in ICN for 5G and next-generation cellular networks to realize haptic-driven AR/VR
applications. In ICN, most of the work evaluates the network infrastructure in terms of
cache strategies. This paper focuses on providing better content validity while increasing
the performance in terms of stretch. This paper proposes and enables intelligent routing
in the whole network, mainly RCR and BS. According to our proposed ISO strategy, it
is better to opt for the path with fewer hopes for minimum latency and better reliability.
Thus our ISO algorithm, after experiences, will learn the best optimal path with the lesser
stretch between consumer and producer with the main focus for AR/VR applications in TI.
After the content has been identified at a certain router in RCR, the RL agent will learn the
best optimal path with less stretch. Let us suppose that the content is present in the router
H9 of RCR in Figure 2. As it can be seen from Figure 2, the content has been requested by
the 2 AR and 1 VR users. Our proposed algorithm will learn the optimal path with lesser
stretch for better reliability, QoT, QoE, and QoS for haptic-driven AR/VR applications H1
to H9.

Core 
Network

Cloud
Cache capability

Caching and computing capability

RCR

RCR = RAN based on ICN routers

AR user

VR user

BS1

Content packet to AR user
Interest packet from AR user

AR2

AR1

AR3

AR4

AR5

AR6

AR7

AR8

VR6

VR5

VR4
VR3

VR1

VR2

BS2

H2

H1

H3

H5

H8

H7

H9

H4

H6

Figure 2. RL-based ISO strategy over ICN for haptic-driven AR/VR applications.
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4. System Model
4.1. Methodology

This section describes the proposed ISO strategy for future ICN networks in TI.
The proposed strategy achieves maximum gain when the stretch is least that increases the
QoT, QoS, and QoE. Thus, it only discusses the stretch reduction via following the optimal
path from consumer to producer and vice versa. Conclusively, we proposed a reinforcement
learning-based model, and the primary goal is to reduce stretch for the ICN framework.
Firstly, we formulate the markov decision process (MDP) of our system and then solve it
with the help of Q-learning. We have described RL, Q-learning, and MDP, which we have
used as a learning approach for our problem statement. Moreover, we describe our system
model in detail while considering a case scenario of AR/VR application to understand our
approach better.

Our ISO algorithm mainly focuses on selecting the optimal path, i.e., the path with
fewer hopes or ICN routers from RCR to BS. As RL learns from the experience, it will
converge to a better policy after iterations. Thus, proposed ISO algorithm aims to reach the
optimal routing policy after learning from different routing paths. Our scenario has the
following entities:

• AR User/ VR User
• A content router in RCR having the contents that are of interest of a user
• BS

Our proposed system model has been shown in Figure 3. We supposed that router
H1 has the content according to the user connected with router H9. We have observed
the mesh network of routers in RCR. All the routers H1-H9 are connected just like a mesh
network. Consumers are associated with BS1. A mesh topology connects almost every
routing device. The total number of hops encountered in each step by the agent from its
present or current hope H1 to terminal hope H9 helps to compute the stretch reward Sij.

4.2. Reinforcement Learning

In RL, a node learns to take actions and then maps possible outcomes or situations
for the agent’s actions. Generally, the node or device does not have the knowledge about
what actions to perform. The RL agent has to discover the best reward by exploring the
possibilities. RL has some preliminary elements like agent and environment. Besides that,
it has some policy that acts as a strategy. It characterizes the states of the respective
environment to take action relatively. The other elements include reward, value function,
or environment model. The reward is the parameter that helps the policy to learn it better
and calculate better policy. The value function is the sum of rewards encountered in the
whole episode. The environment model shows how the environment behaves and what
the conditions are. The overview of our RL-based approach for ICN networks for stretch
reduction is illustrated in Figure 3.
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Agent

Environment

Action (At)

Reward (Sij)

State (Hi)

Hi + 1

Sij +1 

Observe state (Hi)
Choose action (At)
Receive reward (Sij)

H1

H7
H4

H5

H3

H2

H8

H9

H6

BS

Figure 3. Overview of RL-based stretch reduction strategy.

4.2.1. Markov Decision Process

The process in which the agent observes the environment’s output in parameters
like a reward, next state, and then what action would be taken next is the MDP. We have
illustrated the overview of MDP in Figure 4. The Figure 4 shows that when state jumps
from initial or current state Hi to next state Hi+1 it has taken some action Ai. The action
taken will lead to the reward Sij. Reward is actually the routing cost in our case and state
space in our scenario are routers H1 to H9.

P[Hi+1|Hi] = P[Hi+1|H1, . . . , Hi] (1)

The MDP for our router Hi at time t can be described as follows:

• The router Hi senses its current state and obtains the current state.
• Based on current state of router Hi, agent selects action Ai at time ti.
• Based on Hi the environment makes a transition to new state Hi+1 and get a reward Sij.
• That reward Sij is feedback to the router and the process continues to next states with

the same process.
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Reward
Routing 

cost
Routing 

cost
Routing 

cost

Actions space for routing path

State space

H1 H2 H3 Hn

A1 A2 Ai-1

S12 S23 Sij+1

Figure 4. Framework for the stretch reduction strategy in ICN: (1) BSs estimates the state based on
received observations over time t, Hi; (2) following the policy the system select the optimal action Ai;
(3) and finally system receives reward Sij correspond to the selected action.

4.2.2. Q-Learning

Q-learning is an off-policy RL algorithm to solve the MDP of the proposed strategy.
We modeled a stretch reduction problem as an MDP shown in Figure 4 and proposed a
Q-learning-based stretch reduction strategy.

First, we construct an MDP based on the stretch for mesh network topology. The MDP
model can be defined by H, A, S. The state space Hn is the set of possible states in our
network topology from router H1 to next router. Ai is the set of actions that denotes which
what are the required actions in our topology. Sij is the reward function that has the
feedback of reward of what action has been taken by the agent. The goal is to minimize the
stretch, and reward shows the quality of step taken by the agent. To estimate the optimal
value function, the optimal Q-value is selected for router Hi is defined as:

Qi+1(si, ai) = (1− α)Qi(si, ai) + α∆Qi(si, ai) (2)

∆Q(si, ai) = ri + γ(max
a

Q(si+1, a)−Q(si, ai)) (3)

We have used the Q-learning-based RL approach; therefore, it is mandatory to de-
clare the environment with some states, actions, policy, and reward. Therefore, Hn =
[H1, H2, H3, . . . , Hn] is state space in our infrastructure. Where n = 9 in our scenario. Simi-
larly, the action space is defined as A = [A1, A2, A3, A4, A5]. The action space defines the
possible hop the content should follow to reach the consumer based on taking the policy.
As discussed, the higher the reward minimum will be our stretch. Thus the higher reward
declares the minimum stretch in the whole topology.

Sij = 1/Gij (4)

where Gij is the number of routers or hops traveled by the interest packet. Therefore,
the inverse of Gij help to compute stretch Sij between consumer and publisher.

For routing decisions in given network topology, an agent searches for an optimal
routing path with less number of routers from the BS to final router, where the content
is identified with the help of PIT and FIB. The proposed ISO algorithm is discussed and
illustrated in Figure 5 and Algorithm 1.



Appl. Sci. 2021, 11, 7351 9 of 18

Algorithm 1: Pseudo-code for proposed ISO strategy.
Procedure: RL-BASED STRETCH REDUCTION
Hi← Set of all routers
Ai← Action space for routing
Sij← Reward space
Q(s, a)← Q-table record for every episode
Q∗(s, a)← Optimal Q-value function
α← Learning rate
γ← Discounted factor
ε← Exploration/exploitation factor
Input: Initialization of Hi, Ai, Q(s, a), α, γ, ε
Output: Q∗(s, a) for shortest path selection
Initialization of (Q(s, a)) with zeros
for i = 0, . . . , T − 1 do

Observe current intersection state st = Hi;
The agent selects action:

at ← argmax q(st, at) with probability 1− ε
The agent executes action An
The agent calculates reward;

r(t) = Sij and
Next state st+1;
Choose nearest st+1 router based on (at+1)
Calculate reward r(t):1/Gi,j
Calculate Q-value and save it into Q-table

Q(st, at) = Q(st, at) + α(rt + γ×max
a

Q(st+1, a)−Q(st, at))

Update routing table based on Q-table
end

Start

Initialize Q-table Q 
(H, A) and other 

parameters

Observation of 
environment

Checking initial 
router’s FIB

Explore network of 
routers

Best Values

A: Select routers 

Sij: Reward

Update Q-table

Greedy 
Policy

If ε>=50%

End
yes

No

Figure 5. Q-learning algorithm for ISO strategy.
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5. Performance Evaluation

We have built our simulation environment using MATLAB 2020a and consider nine
content routers illustrated in Figure 2. Our proposed ISO strategy utilizes the mesh
network of routers as a core network for 5G and next-generation cellular networks. We
have compared our proposed strategy with random routing algorithm and history aware
routing protocol (HAPR). In random algorithm the agent randomly takes the action for the
routing path and there is no consistency in the routing path. Furthermore, HAPR follows
the first path taken. Therefore, as the name suggests it tends to follow the same path for
content retrieval and interest forwarding once the successful routing path is completed in
the previous iteration. In our model AR/VR users are connected to BS1 and BS2, and the
router H9 has the desired content in its cached memory, according to consumer AR1. Our
simulation results illustrate that the RL-based network will help the consumer retrieve
the content from that path with less stretch that will help get a better data rate and lesser
latency as compared to random and HAPR. Table 2 illustrates the default parameter values
of simulation environment.

Table 2. Simulation parameters.

Parameters Values

Simulation environment Matlab 2020a
Network topology Mesh network of routers

Number of AR/VR user requesting 1 at a time
RCR nodes in core network n = 9

Link delay 10 ms
Routing decision MDP (Ai)
Learning rate (α) 0.1, 0.5, 0.9

Discounted factor (γ) 0.1, 0.5, 0.9
Exploitation/exploration factor (ε) 0.5

Action space [1,5]
State space [1,9]

This section will evaluate the proposed ISO strategy in ICN systems for optimal
routing path that lowers the E2E for haptic-driven AR/VR applications in TI. We computed
the stretch as the performance metric for the routing path of the agent. The stretch reward
is maximum for the least number of hops. Meanwhile, the proposed ISO algorithm opts
for a better routing path for the least stretch. We kept different parameters of the learning
rate (α) and discounted factor (γ) while keeping the exploration/exploitation factor (ε)
constant. The learning speed of an agent is controlled and supervised by using α. Similarly,
the learning rate γ controls the effect of past values on the current value or transition state.
While ε factor controls the exploration or exploitation of the agent. On the basis of the
learning rate, discounted factor, and epsilon, we have illustrated our model in terms of
accumulated reward, instant episode, the average stretch of agent, and total hopes covered
in each episode.

We have kept the value of ε at 0.5 in all of our simulation results. Therefore, it means
that the model explores and exploits 50%. We have computed accumulated reward as
the agent covers the routing path to content router where content is placed. in Figure 6a,
we have varied the learning rate from 0.1–0.9 and illustrated our agent’s convergence at
three different values of learning rate. The agent converges at the 121st iteration when the
alpha value is 0.1, but still, the convergence is not complete, as evident from successive
episodes. In comparison to the value of α at 0.5, the results are better than α value at 0.1
as it convergence at 117th episode, and hence a little better reward is attained. However,
at the value of α at 0.9, convergence has been observed at the 128th episode. This shows
that α value at 0.5, the proposed algorithm achieves better and optimal reward with the
value of γ at 0.1.
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Figure 6. Stretch reduction and routing optimization progress of Q-learning agent at γ = 0.1: (a) Accu-
mulated reward gain; (b) Average stretch gain; (c) Reward earned per episode; (d) Total hops/routers
covered per episode.

Furthermore, the average stretch has been evaluated and illustrated in Figure 6b.
We have illustrated the random routing strategy and HARP and compared them with
our proposed strategy. It describes the number of hope traveled between the consumer
and the producer. It manifests that all the initial stages of α value at 0.1, 0.5, and 0.9,
the average number of hope count between consumer and producer varies between 3
and 4. Therefore, it means that at the initial stage, the agent is learning. After some
experiences, because of the exploration/exploitation factor, the average number of hop
count decreases gradually between consumer and producer. Moreover, at the alpha value
of 0.5, the system is much more converged and optimal as compared to the rest of alpha 0.1
and 0.9. Moreover, The results clearly shows that the proposed strategy clearly converges
towards the optimal stretch values and lesser number of hopes as compared to random and
HARP strategy. Thus our proposed strategy outperforms in comparison to both routing
strategies i.e., random and HARP.

Moreover, Figure 6c illustrates the instant reward incurred in each episode the agent
has taken. We have illustrated the reward gained by the agent or the cost value reward
attained by the agent when the agent has followed a certain routing path. It is observed
that even after the agent has convergence to the optimal path, there is still some point
where the agent has shown the reward of 2, 5, and 7. This is due to the fact that we have
kept the ε value at 0.5, which leads the agent to 50% explore and 50% exploit. Figure 6d
illustrates the total hops covered by an agent from consumer to producer in one episode by
an agent. Thus, Figure 6b illustrates the average stretch incurred while the path has been
opted by the agent from consumer to producer. Figure 6d shows the hop count incurred
in one episode. Similar to Figure 6c, it can be seen that even after the convergence to



Appl. Sci. 2021, 11, 7351 12 of 18

optimality, there are still some spikes at 4, 3 because of the reinforcement learning nature
of exploration and exploitation.

Figure 7a–d has been evaluated and illustrated by changing γ value from 0.1 to 0.5.
The performance of the agent is also evaluated γ value of 0.5 with different variants of
learning rate i.e., 0.1, 0.5 and 0.9. Figure 7a computes and illustrates the behavior of agent
with performance metric of the accumulated reward of routing path between agent and
final content router. The γ value is increased to 0.5 and accumulated reward is evaluated
at α values 0.1, 0.5, and 0.9. in Figure 7a more optimal and better trend at α value 0.5 is
observed. Similarly, Figure 7b illustrates the average stretch between the consumer and
publisher when the content has been identified at content router.
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Figure 7. Stretch reduction and routing optimization progress of ISO at γ = 0.5: (a) Accumulated
reward gain; (b) Average stretch gain; (c) Reward earned per episode; (d) Total hops/routers covered
per episode.

Similarly, we have computed and evaluated the performance of our model with other
routing strategies i.e., random and HARP. In our proposed algorithm the stretch incurred
at one episode when the agent has completed one episode is illustrated in Figure 7c. It
is also illustrated at different α values of 0.1, 0.5, and 0.9 when γ value is kept constant.
The average steps show the corresponding hop count while st in Figure 7a, it illustrates the
average stretch. Therefore, Figure 7a,b are describing each other for example, when the
average reward is eight at episode 200, then the number of hops taken by the agent from
consumer to the producer is 2. Therefore, the agent has been passed two routers while
choosing the optimal path. Similarly, Figure 7c illustrates instant reward incurred at each
episode the consumer has requested the content and Figure 7d illustrates the total hops the
interest packet has traveled. At the same time, the discounted factor is increased to 0.5 and
observing the agent’s behavior at different α values.

Thus we have observed that while changing the γ value to 0.5 and at α value of 0.5 we
have gained the optimality with minimum stretch described and illustrated in Figure 7a–d
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with less overall average stretch, average hop count, stretch per episode, and hop count at
each step, respectively.

In Figure 8a–d we have observed the results while the γ is 0.9 with α varying to 0.1,
0.5 and 0.9. Figure 8a evaluates and illustrates the behavior of the agent when the γ value
is increased to 0.5. It illustrates that the average stretch at α value of 0.5 outperforms in
comparison to other α values of 0.1 and 0.9 and provides optimal and better stretch.
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Figure 8. Stretch reduction and routing optimization progress of Q-learning agent at γ = 0.9: (a) Accu-
mulated reward gain; (b) Average stretch gain; (c) Reward earned per episode; (d) Total hops/routers
covered per episode.

Moreover, the average hop count between the AR/VR user and content router where
the content has been identified is illustrated in Figure 8b. In Figure 8c we have illustrated
the stretch incurred at one episode when the agent has completed one episode. We have
also illustrated at different α values of 0.1, 0.5, and 0.9 when γ value is constant at 0.9.
The average steps shows the corresponding hop count while Figure 8a illustrates the
average stretch.

Therefore, Figure 8a,b are describing each other for example, when the average reward
is eight at the 150th iteration, then the number of hops taken by the agent from consumer
to the producer is 2. Therefore, the agent has been passed two routers while choosing
the optimal path. In Figure 8c, we have illustrated that instant reward incurred at each
episode the consumer has requested the content, and Figure 8d represents the total hops
the interest packet has traveled. At the same time, the discounted factor is increased to 0.5
and observing the agent’s behavior at different α values. Thus we have observed that while
changing the γ value to 0.5. At α value of 0.5, we have obtained the optimality i.e., the
minimum stretch described as illustrated in Figure 8a–d with less overall average stretch,
average hop count, stretch per episode, and hop count at each step, respectively. We have
compared our results while changing the γ value to 0.9.
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The whole performance of the RL agent has been summarized in Table 3. The con-
vergence and optimal routing path attained at a specific episode given the corresponding
values of α and γ of an agent are recorded. It can be observed that when γ = 0.5, we have
achieved a better and faster optimal routing path.

Table 3. Optimal stretch comparison of learning agent.

Discounted Factor (γ) Learning Rate (α) Convergence Attained at Respective Episode

0.1
0.1 121
0.5 117
0.9 128

0.5
0.1 115
0.5 116
0.9 115

0.9
0.1 452
0.5 118
0.9 115

We have also illustrated the link delay of our proposed strategy in comparison with the
random routing and HARP in Figure 9. We have kept the link delay between two content
routers of 10 ms. Therefore, as our proposed algorithm converges towards optimal stretch
in comparison to random routing and HARP. The average of random routing evaluated
to 30.163 ms. Similarly, the HARP is converging at 30 ms. Furthermore, the proposed
strategy converges to 20 ms. Therefore, our proposed strategy is 33.69% efficient and better
in performance than that of random routing. Similarly, the proposed strategy is 33.33%
good in performance in comparison to HARP.
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Figure 9. ISO link delay at γ = 0.5 and comparison with random routing and HARP.

6. Conclusions

In this paper, we have proposed and evaluated the use of ISO as a routing path
optimization technique for the stretch reduction in the ICN framework in 5G and next-
generation TI. We tested our simulation using Q-learning. We evaluated our results for
different reinforcement learning parameters like α, γ, and ε. We have compared the average
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and instantaneous results with three experiments of γ, and hence the optimal routing
path selection in ICN using Q-learning algorithm proves to be efficient. The path with
the lesser stretch gives the higher reward. Therefore, the performance and efficiency of
the system is greatly improved. We designed the MDP model for our problem statement
and solved that MDP with the help of Q-learning. The algorithm decides the optimal path
between consumer and publisher based on previous experiences. We have evaluated our
algorithm to illustrate the efficiency of our proposed algorithm towards stretch reduction.
The proposed algorithm discusses the identification of requested content for AR/VR users
at the certain content router in RCR and retrieves the content from the certain content
router back to the AR/VR user. Moreover, we evaluated our performance and compared
our proposed ISO strategy with random routing algorithm and HARP. The best optimal
path lead to better QoS, QoT, and QoE for the proposed infrastructure, for haptic-driven
applications of TI. Our Results show that our ISO algorithm converges to the optimal
stretch within a lesser number of episodes with less link delay and is 33.69% better and
33.33% better than random routing and HARP, respectively.
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