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Abstract: Data with a multimodal pattern can be analyzed using a mixture model. In a mixture
model, the most important step is the determination of the number of mixture components, because
finding the correct number of mixture components will reduce the error of the resulting model. In a
Bayesian analysis, one method that can be used to determine the number of mixture components is the
reversible jump Markov chain Monte Carlo (RJMCMC). The RJMCMC is used for distributions that
have location and scale parameters or location-scale distribution, such as the Gaussian distribution
family. In this research, we added an important step before beginning to use the RJMCMC method,
namely the modification of the analyzed distribution into location-scale distribution. We called this
the non-Gaussian RJMCMC (NG-RJMCMC) algorithm. The following steps are the same as for the
RJMCMC. In this study, we applied it to the Weibull distribution. This will help many researchers in
the field of survival analysis since most of the survival time distribution is Weibull. We transformed
the Weibull distribution into a location-scale distribution, which is the extreme value (EV) type 1
(Gumbel-type for minima) distribution. Thus, for the mixture analysis, we call this EV-I mixture
distribution. Based on the simulation results, we can conclude that the accuracy level is at minimum
95%. We also applied the EV-I mixture distribution and compared it with the Gaussian mixture
distribution for enzyme, acidity, and galaxy datasets. Based on the Kullback–Leibler divergence
(KLD) and visual observation, the EV-I mixture distribution has higher coverage than the Gaussian
mixture distribution. We also applied it to our dengue hemorrhagic fever (DHF) data from eastern
Surabaya, East Java, Indonesia. The estimation results show that the number of mixture components
in the data is four; we also obtained the estimation results of the other parameters and labels for each
observation. Based on the Kullback–Leibler divergence (KLD) and visual observation, for our data,
the EV-I mixture distribution offers better coverage than the Gaussian mixture distribution.

Keywords: Reversible Jump Markov Chain Monte Carlo (RJMCMC); location-scale distribution;
mixture distribution; Bayesian analysis

1. Introduction

Understanding the type of distribution of data is the first step in a data-driven sta-
tistical analysis, especially in a Bayesian analysis. This is very important because the
distribution that we use must be as great as possible to cover the data we have. By knowing
the distribution of the data, the error in the model can be minimized. However, it is not
rare for the identified data to have a multimodal pattern. A model with data that has a
multimodal pattern becomes imprecise when it is analyzed using a single mode distribu-
tion. This type of data is best modeled using mixture analysis. The most important thing
in the mixture analysis is to determine the number of mixture components. If we know
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the correct number of mixture components, then the error in the resulting model can be
minimized. In this way, our model will describe the real situation, because it is data-driven.

There are several methods for determining the number of mixture components in
a dataset. Roeder [1] used a graphical technique to determine the number of mixture
components in the Gaussian distribution. The Expectation-Maximization (EM) method
was carried out by Carreira-Perpinán and Williams [2], while the Greedy EM method
was carried out by Vlassis and Likas [3]. The likelihood ratio test (LRT) method has been
carried out by Jeffries, Lo et al., and Kasahara and Shimotsu [4–6]. The LRT method was
also carried out by McLachlan [7], but to the assessment null distribution, a bootstrapping
approach was employed. A comparison between EM and LRT methods to determine the
number of mixture components was carried out by Soromenho [8]. The determination
of the number of mixture components using the inverse-Fisher information matrix was
carried out by Bozdogan [9], and modification of the information matrix was carried out by
Polymenis and Titterington [10]. Baudry et al. [11] used the Bayesian information criterion
(BIC) method for clustering. In a comparison of several methods carried out by Lukočiene
and Vermunt [12], these methods are the Akaike information criterion (AIC), BIC, AIC3,
consistent AIC (CAIC), the information theoretic measure of complexity (ICOMP), and
log-likelihood. Miller and Harrison [13] and Fearnhead [14] used the Dirichlet mixture
process (DPM). Research conducted by McLachlan and Rathnayake [15] investigated
several methods, including the LRT, resampling, information matrix, Clest method, and
BIC methods. The methods mentioned above are used in the Gaussian distribution.

For complex computations, there is a method from the Bayesian perspective to de-
termine the number of mixture components of the distribution, namely the reversible
jump Markov chain Monte Carlo (RJMCMC). This method was initially introduced by
Richardson and Green [16]. They used this method to determine the number of mixture
components in the Gaussian distribution. This method is very flexible since it allows
one to identify the number of components in data with a known or unknown number of
components [17]. RJMCMC is also able to move between subspace parameters depending
on the model, though the number of mixture components is different. Mathematically,
the RJMCMC is simply derived in its random scan form; when the available moves are
scanned systematically, the RJMCMC will be as valid as the idea from Metropolis-Hastings
methods [18]. In real life, the RJMCMC can be applied to highly dimensional data [19].
Several studies have used the RJMCMC method for the Gaussian distribution [17,18,20–28].

Based on the advantages of the RJMCMC method as well as the previous studies
mentioned above, this method will be powerful if it can be used not only in the Gaus-
sian mixture distribution, because the Gaussian mixture is certainly not always the best
approximation in some cases, although it may provide a reasonable approximation to
many real-word distribution situations [29]. For example, if this method can be used on
data with a domain more than zero, this would be very helpful to researchers in the fields
of survival, reliability, etc. In most cases, survival data follow the Weibull distribution.
Several studies of survival data using the Weibull distribution have been conducted [30–37].
Studies using the Weibull distribution for reliability were carried out by Villa-Covarrubias
et al. and Zamora-Antuñano et al. [38,39]. In addition, some studies used Weibull mix-
ture distribution for survival data [40–51]. According to the above studies that used the
Weibull mixture distribution, the determination of the number of mixture components is a
consideration. Determining the number of mixture components is an important first step
in the mixture model. Therefore, we created a new algorithm that is a modification of the
RJMCMC method for non-Gaussian distributions; we called it the non-Gaussian RJMCMC
(NG-RJMCMC) algorithm. What we have done is to convert the original distribution of the
data into a location-scale distribution, so that it has the same parameters as the Gaussian
distribution, and finally the RJMCMC method can be applied. Thus, the number of mixture
components can be determined before further analysis. In particular, our algorithm can
help researchers in the field of survival by utilizing the Weibull mixture distribution. In
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general, our algorithm can be applied to any mixture distribution, converting the original
distribution into a location-scale family.

Several studies using the RJMCMC method on the Weibull distribution have been
carried out. First, Newcombe et al. [52] used the RJMCMC method to implement a Bayesian
variable selection for the Weibull regression model for breast cancer survival cases. The
study conducted by Denis and Molinari [53] also used the RJMCMC method as covariate
selection for the Weibull distribution in two datasets, namely Stanford heart transplant and
lung cancer survival data. Mallet et al. [54] used the RJMCMC method to search for the best
configuration of functions for Lidar waveforms. In their library of modeling functions, there
are generalized Gaussian, Weibull, Nakagami, and Burr distributions. With their analysis,
the Lidar waveform is a combination of these distributions. In our research, we have used
the RJMCMC method on the Weibull distribution but from a different perspective, namely
identifying multimodal data by determining the number of components, then determining
the membership of each mixture component and determining the estimation results.

This paper is organized as follows. Section 2 introduces the basic formulation for
the Bayesian mixture model and hierarchical model in general. Section 3 describes the
location-scale distributions and NG-RJMCMC algorithm. Section 4 describes the transfor-
mation from the Weibull distribution to the location-scale distribution, determining the
prior distributions, and explaining the move types in the RJMCMC method. Section 5
contains the simulation study. Section 6 provides misspecification cases as the opposite of
a simulation study to strengthen the proposed method. Section 7 provides analysis results
for applications of enzyme, acidity, and galaxy datasets, as well as our data, namely dengue
hemorrhagic fever (DBD) in eastern Surabaya, East Java, Indonesia. The conclusions are
given in Section 8.

2. Bayesian Model for Mixtures
2.1. Basic Formulation

For independent scalar or vector observations ti, the basic mixture model can be
written as in Equation (1):

ti ∼
k

∑
j=1

wj f
(
·
∣∣θj
)

independently for i = 1, 2, · · · , n, (1)

where f (·|θ ) is a given parametric family of densities indexed by a scalar or vector pa-
rameter θ [16]. The purpose of this analysis is to infer to the unknown: the number of
components (k), the weights of components (wj), and the parameters of components (θj).
Suppose a heterogeneous population consists of groups j = 1, 2, · · · , k in proportion to wj.
The identity or label of the group is unknown for every observation. In this context, it is
natural to create a group label zi for the i-th observation as a latent allocation variable. The
unobserved vector z = (z1, z2, · · · , zn) is usually known as the “membership vector” of the
mixture model [29]. Then, zi is assumed to be drawn independently of the distributions

Pr(zi = j) = wj for j = 1, 2, · · · , k. (2)

2.2. Hierarchical Model in General

As explained in the previous subsection, there are three unknown components, k, w, and
θ. In the Bayesian framework, these three components are drawn from the appropriate prior
distribution [16]. The joint distribution of all variables can be written as in Equation (3):

Pr(k, w, z, θ, t) = Pr(k)Pr(w|k )Pr(z|w, k )Pr(θ|z, w, k )Pr(t|θ, z, w, k ), (3)

where w =
(
wj
)

j=1,2,··· ,k, z = (zi)i=1,2,··· ,n, θ =
(
θj
)

j=1,2,··· ,k, t = (ti)i=1,2,··· ,n, and Pr(·|· )
are the generic conditional distributions [16]. Then, Equation (3) may be forced naturally,
so that Pr(θ|z, w, k ) = Pr(θ|k ) and Pr(t|θ, z, w, k ) = Pr(t|θ, z ) [16]. Therefore, for the
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Bayesian hierarchical model, the joint distribution in Equation (3) can be simplified into
Equation (4):

Pr(k, w, z, θ, t) = Pr(k)Pr(w|k )Pr(z|w, k )Pr(θ|k )Pr(t|θ, z ). (4)

Next, we add an additional layer to the hierarchy, namely hyperparameters γ, δ, and
ξ for k, w, and θ, respectively. These hyperparameters will be drawn from independent
hyperpriors. The joint distribution of all variables is then given in Equation (5):

Pr(γ, δ, ξ, k, w, z, θ, t) = Pr(γ)Pr(δ)Pr(ξ)Pr(k|γ )Pr(w|k, δ )Pr(z|w, k )Pr(θ|k, ξ )Pr(t|θ, z )
(5)

3. Non-Gaussian Reversible Jump Markov Chain Monte Carlo (NG-RJMCMC)
Algorithm for Mixture Model
3.1. The Family of Location-Scale Distributions

A random variable T is defined as belonging to the location-scale family when its
cumulative distribution function (CDF)

FT(t|µ, σ ) = Pr(T ≤ t|µ, σ )

is a function only of t−µ
σ , as in Equation (6) [55]:

FT(t|µ, σ ) = F
(

t− µ

σ

)
; µ ∈ R, σ > 0, (6)

where F(·) is a distribution without other parameters. The two-dimensional parameter
(µ, σ) is called the location-scale parameter, with µ being the location parameter and σ
being the scale parameter. For fixed σ = 1, we have a subfamily that is a location family
with a parameter µ, and for fixed µ = 0, we have a scale family with a parameter σ. If T is
continuous with the probability density function (p.d.f.)

fT(t|µ, σ ) =
dFT(t|µ, σ )

dt

then (µ, σ) is a location-scale parameter for T if (and only if)

fT(t|µ, σ ) =
1
σ

g
(

t− µ

σ

)
, (7)

where the functional form g is completely specified, but the location and scale parameters, µ and
σ, of fT(t|µ, σ ) are unknown, and g(·) is the standard form of the density fT(t|µ, σ ) [56,57].

3.2. NG-RJMCMC Algorithm

In the mixture model analysis, one method is known, namely the reversible jump
Markov chain Monte Carlo (RJMCMC). The RJMCMC method can be used to estimate an
unknown quantity, such as the number of mixture components, the weights of mixture
components, and the distribution parameters of mixture components. For its usefulness
in determining the number of mixture components in the indicated multimodal data,
RJMCMC has been extensively used. For the Gaussian distribution, this was initially carried
out by Richardson and Green [16]. Over time, RJMCMC can be used for distributions other
than Gaussian. RJMCMC for general beta distribution was carried out in two studies by
Bouguila and Elguebaly [29,58]. In their research, the general beta distribution consists of
four parameters, namely the lower limit, the upper limit, and two shape parameters. Then,
to use the RJMCMC algorithm, they obtained the location-scale parameterization for this
distribution. Another study followed the location-scale parameterization for the RJMCMC
method, namely research on the symmetry gamma distribution [59].
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Not only in the RJMCMC method but also in other methods, the location-scale param-
eterization is carried out in the mixture analysis. First, research on the exponential and
Gaussian distribution using the Dirichlet process mixture was carried out by Jo et al. [60].
Secondly, research on the asymmetric Laplace error distribution using the likelihood-based
approach was carried out by Kobayashi and Kozumi [61]. Finally, research on the exponen-
tial distribution using the Gibbs sampler was carried out by Gruet et al. [62]. Based on the
studies mentioned above, in the mixture analysis using any method, it will be easier if the
distribution used in the research follows the location-scale (family) parameterization. Thus,
we given Algorithm 1 as a modification of the RJMCMC algorithm.

Algorithm 1. NG-RJMCMC Algorithm

1. Modify the distribution to be analyzed into a member of the location-scale family,
determine:

(a) form of transformation, and
(b) location-scale parameter

2. Determine the appropriate priors for:

(a) component weights (w),
(b) location-scale parameter (µ, σ), and
(c) latent allocation variable (z)

3. Do all six types of RJMCMC moves by Richardson and Green [16]. A sweep is defined as a
complete run on these six moves [16]:

(a) updating the component weights (w),
(b) updating the location-scale parameter (µ, σ),
(c) updating the latent allocation variable (z),
(d) updating the hyperparameters (γ, δ, and ξ). Moves (a), (b), (c), and (d) can therefore

be performed in parallel
(e) do the splitting or combining mixture component
(f) do the birth or death of an empty component.

Letting ∆ denote the state variable (in this study, ∆ be the complete set of unknowns
(µ, σ, k, w, z)), and p(∆) be the target probability measure (the posterior distribution), we
consider a countable family of move types, indexed by m = 1, 2, · · · . When the current
state is ∆, a move type m and destination ∆∗ are proposed, with joint distribution given by
qm(∆, ∆∗). The move is accepted with probability

αm(∆, ∆∗) = min
{

1,
p(∆∗)qm(∆∗, ∆)
p(∆)qm(∆, ∆∗)

}
. (8)

If ∆∗ has a higher dimensional space than ∆, it is possible to create a vector of con-
tinuous random variables u, independent of ∆ [16]. Then, the new state ∆∗ is set by an
invertible deterministic function of ∆ and u: f (∆, u). Then, the acceptance probability in
Equation (8) can be rewritten as in Equation (9):

αm(∆, ∆∗) = min
{

1,
p(∆∗)rm(∆∗)

p(∆)rm(∆)q(u)

∣∣∣∣ ∂∆∗

∂(∆, u)

∣∣∣∣}, (9)

where rm(∆) is the probability of choosing move type m when in the state ∆, and q(u) is
the p.d.f. of u. The last term,

∣∣∣ ∂∆∗
∂(∆,u)

∣∣∣, is the determinant of Jacobian matrix resulting from
modifying the variable from (∆, u) to ∆∗.
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4. Bayesian Analysis of Weibull Mixture Distribution Using NG-RJMCMC Algorithm
4.1. Change the Weibull Distribution into a Member of the Location-Scale Family
4.1.1. Form of Transformation and Location-Scale Parameter of Weibull Distribution

If the random variable T follows the Weibull distribution with the shape parameter
η > 0 and the scale parameter λ > 0, T ∼ Weibull(η, λ), then the p.d.f. is given by
Equation (10) [63]:

fT(t|η, λ ) =

{
η
λ

( t
λ

)η−1e−(
t
λ )

η

, t ≥ 0
0 , t < 0

(10)

and CDF is given by Equation (11) [64]:

FT(t|η, λ ) =

{
1− e−(

t
λ )

η

, t ≥ 0
0 , t < 0 .

(11)

Equation (11) can be rewritten as Equation (12):

FT(t|η, λ ) =

{
1− e−(

t−0
λ )

η

, t ≥ 0
0 , t < 0

= FT

(
t−µ

λ

)
µ=0

.
(12)

Based on Equation (12) and the explanation in Section 3.1, it can be concluded that the
Weibull distribution is a member of the scale family. To facilitate the analysis of the Weibull
distribution, it is necessary to transform it into a location-scale distribution.

If the random variable T is transformed into a new variable, Y = ln T, then Y has
an extreme value (EV) type 1 (Gumbel-type for minima) distribution with the location
parameter µ = ln λ and the scale parameter σ = 1

η [64,65] (this explanation can be seen in

Appendix A). Therefore, the p.d.f. and CDF for Y ∼ EV− I
(

µ = ln λ, σ = 1
η

)
are given by

Equations (13) and (14), respectively [56,66,67]:

fY(y|µ, σ ) =
1
σ

exp
[(

y− µ

σ

)
− exp

(
y− µ

σ

)]
(13)

FY(y|µ, σ ) = 1− exp
[
− exp

(
y− µ

σ

)]
, (14)

where −∞ < y < ∞, −∞ < µ < ∞, and 0 < σ < ∞.

4.1.2. Finite EV-I Mixture Distribution

Based on the explanation provided in the previous subsection, T ∼Weibull(η, λ) as a
member-scale family can be transformed into a member of the location-scale family Y ∼
EV− I

(
µ = ln λ, σ = 1

η

)
, where Y = ln T. It is well-known that T ∼ Weibull(η, λ) and

Y ∼ EV− I
(

µ = ln λ, σ = 1
η

)
are equivalent models [68]. As Y ∼ EV− I

(
µ = ln λ, σ = 1

η

)
belongs to the location-scale family, it is sometimes easier to work with Y ∼ EV− I(

µ = ln λ, σ = 1
η

)
rather than T ∼ Weibull(η, λ) [68], especially in the analysis of the

mixture model. Consequently, the next analysis will use the variable Y. The EV-I mixture
distribution with k components is defined as in Equation (15):

f (y|Θ ) =
k

∑
j=1

wj f
(
y
∣∣µj, σj

)
, (15)

where Θ = (θ, w) refers to the complete set of parameters to be estimated, where θ =
(µ1, σ1; µ2, σ2; · · · ; µk, σk).
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4.2. Determine the Appropriate Priors
4.2.1. Hierarchical Model

According to the general form of the hierarchical model in Section 2.2, a hierarchical
model for the EV-I mixture distribution can be written as in Equation (16):

Pr(γ, δ, ξ, k, w, z, θ, y) = Pr(γ)Pr(δ)Pr(ξ)Pr(k|γ )Pr(w|k, δ )Pr(z|w, k )Pr(θ|k, ξ )Pr(y|θ, z ), (16)

where k is the number of components, w =
(
wj
)

j=1,2,··· ,k is the weights of the compo-

nents, z = (zi)i=1,2,··· ,n is the latent allocation variable, θ =
(
θj
)
=
(
µj, σj

)
j=1,2,··· ,k is the

location-scale parameter, y = (yi)i=1,2,··· ,n is the data with Y ∼ EV− I(µ, σ), and γ, δ, and
ξ are the hyperparameters for k, w, and θ, respectively. If we condition on z, the distribution

of yi is given by the zi-th component in the mixture, so that Pr(y|θ, z ) =
n
∏
i=1

Pr(yi|θzi ) [29].

Then, the final form of the joint distribution can be found via Equation (17):

Pr(γ, δ, ξ, k, w, z, θ, y) = Pr(γ)Pr(δ)Pr(ξ)Pr(k|γ )Pr(w|k, δ )Pr(z|w, k )Pr(θ|k, ξ )
n

∏
i=1

Pr(yi|θzi ). (17)

4.2.2. Priors and Posteriors

In this section, we define the priors. In the hierarchical model in Equation (16), for
each parameter, we assume that the priors are drawn independently. Based on research
conducted by Yoon et al. [69], Coles and Tawn [70] and Tancredi et al. [71], the priors for
the location and scale parameters in the extreme value distribution are flat. In research
by Yoon et al. [69], they chose the adoption of near-flat priors for the location and scale
parameters. In research by Coles and Tawn [70], the location and scale parameter priors
are almost noninformative: the prior for µ is extremely flat, while that for σ resembles 1

σ .
Based on research by Tancredi et al. [71], they have chosen a uniform distribution for the
location and scale parameters. Therefore, in this study, the Gaussian distribution (with the
large variance) with mean ε and variance ζ2 was selected as a prior for location parameter
µ. Thus, µj for each component is given by

f
(

µj

∣∣∣ε, ζ2
)
=

1√
2πζ2

exp

{
−1

2

(
µj − ε

ζ

)2
}

. (18)

Since the scale parameter σ controls the dispersion of the distribution, an appropriate
prior is an inverse gamma distribution with the shape and scale parameters are ϑ and v,
respectively. This prior selection is supported by Richardson and Green [16], and Bouguila
and Elguebaly [29]. Thus, σj for each component is given by

f
(
σj|ϑ, v

)
=

vϑ exp
(
−v

σj

)
Γ(ϑ)σϑ+1

j

, (19)

where v ∼ Gamma(g, h). Used Equations (18) and (19), we get

f (θ|k, ξ ) =
k

∏
j=1

f
(
µj
∣∣ε, ζ2 ) f

(
σj|ϑ, v

)
=

k
∏
j=1

[
1√

2πζ2
exp

{
− 1

2

(
µj−ε

ζ

)2
}]vϑ exp

(
− v

σj

)
Γ(ϑ)σϑ+1

j


=

(
vϑ

Γ(ϑ)
√

2πζ2

)k k
∏
j=1

exp

{
− 1

2

(
µj−ε

ζ

)2
}

exp
(
− v

σj

)
σϑ+1

j

= vϑk

Γ(ϑ)k(2π)
k
2 ζk

k
∏
j=1

exp

{
− 1

2

(
µj−ε

ζ

)2
− v

σj

}
σϑ+1

j

(20)
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Therefore, the hyperparameter ξ in Equation (17) is actually (ε, ζ2, ϑ, v). Thus,
according to Equation (20) and the joint distribution in Equation (17), the fully conditional
posterior distribution for µj and σj are

f
(
µj|· · ·

)
∝

k
∏
j=1

f
(
µj
∣∣ε, ζ2 ) f

(
σj|ϑ, v

) n
∏
i=1

f (yi|θzi )

∝ f
(
µj
∣∣ε, ζ2 ) n

∏
i=1

f (yi|θzi )

∝
[

1√
2πζ2

exp
{
− 1

2

(
µj−ε

ζ

)2
}]
×

n
∏
i=1

1
σj

exp
{( yi−µj

σj

)
− exp

( yi−µj
σj

)}
∝
[

1√
2πζ2

exp
{
− 1

2

(
µj−ε

ζ

)2
}]
×
(

1
σj

)nj
∏

zi=j
exp

{( yi−µj
σj

)
− exp

( yi−µj
σj

)}
(21)

and

f
(
σj|· · ·

)
∝

k
∏
j=1

f
(
µj
∣∣ε, ζ2 ) f

(
σj|ϑ, v

) n
∏
i=1

f (yi|θzi )

∝ f
(
σj|ϑ, v

) n
∏
i=1

f (yi|θzi )

∝

vϑ exp
(
− v

σj

)
Γ(ϑ)σϑ+1

j

× n
∏
i=1

1
σj

exp
{( yi−µj

σj

)
− exp

( yi−µj
σj

)}

∝

vϑ exp
(
− v

σj

)
Γ(ϑ)σϑ+1

j

× ( 1
σj

)nj
∏

zi=j
exp

{( yi−µj
σj

)
− exp

( yi−µj
σj

)}
,

(22)

where nj = #{i : zi = j} represents the number of vectors in the cluster j, and we use ‘|· · · ’
to designate conditioning on all other variables.

As we know that the weights of components w =
(
wj
)

j=1,2,··· ,k are defined on the sim-

plex

{
(w1, w2, · · · , wk) :

k−1
∑

j=1
wj < 1

}
, the appropriate prior for the weights of components

is a Dirichlet distribution with parameters δ = (δ1, δ2, · · · , δk) [72], with the p.d.f. as in
Equation (23):

f (w|k, δ ) = 1
B(δ)

k
∏
j=1

w
δj−1
j

=
Γ

(
k
∑

j=1
δj

)
k

∏
j=1

Γ(δj)

k
∏
j=1

w
δj−1
j ,

(23)

where B(δ) =

k
∏
j=1

Γ(δj)

Γ

(
k
∑

j=1
δj

) . According to Equation (2), we also have

f (z|w, k ) =
k

∏
j=1

w
nj
j . (24)

Using Equations (23) and (24), and our joint distribution from Equation (17), we
obtained

f (w|· · · ) ∝ f (w|k, δ ) f (z|w, k )

∝

 Γ

(
k
∑

j=1
δj

)
k

∏
j=1

Γ(δj)

k
∏
j=1

w
δj−1
j


[

k
∏
j=1

w
nj
j

]

∝
k

∏
j=1

w
nj+δj−1
j ,

(25)
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where
Γ

(
k
∑

j=1
δj

)
k

∏
j=1

Γ(δj)
is a constant. This is in fact proportional to a Dirichlet distribution with pa-

rameters (δ1 + n1, δ2 + n2, · · · , δk + nk). Using Equations (2) and (17), we get the posterior
for the allocation variables

f (zi = j|· · · ) ∝ wj
1
σj

exp

[(
yi − µj

σj

)
− exp

(
yi − µj

σj

)]
. (26)

The last, proper prior for k is the Poisson distribution with hyperparameter γ [16],
then the p.d.f. for k can be seen as in Equation (27):

f (k|γ ) =
γke−γ

k!
. (27)

Our hierarchical model can be displayed as a directed acyclic graph (DAG), as shown
in Figure 1.
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4.3. RJMCMC Move Types for EV-I Mixture Distribution

It was mentioned in Section 3.2 that the Algorithm 1, which moves (a), (b), (c), and (d),
can be run in parallel. This section will explain in more detail moves (e) and (f), namely
split and combine moves, and birth and death moves.

4.3.1. Split and Combine Moves

For move (e), we choose between split or combine, with the probabilities bk and
dk = 1− bk, respectively, depending on k. Note that d1 = 0 and bkmax = 0, where kmax is the
maximum value for k; otherwise, we choose bk = dk = 0.5, for k = 1, 2, · · · , kmax − 1. The
combining proposal works as follows: choose two components j1 and j2, where µ1 < µ2
with no other µj ∈ [µ1, µ2]. If these components are combined, we reduce k by 1, which
forms a new component j∗ containing all the observation previously allocated to j1 and
j2, and then creates values for wj∗ , µj∗ , and σj∗ by preserving the first two moments, as
follows:

wj∗ = wj1 + wj2
wj∗µj∗ = wj1 µj1 + wj2 µj2

wj∗
(

µ2
j∗ + σj∗

)
= wj1

(
µ2

j1
+ σj1

)
+ wj2

(
µ2

j2
+ σj2

)
.

 (28)
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The splitting proposal works as follows: a random j∗ component is selected then split
into two new components, j1 and j2, with the weights and parameters (wj1 , µj1 , σj1) and
(wj2 , µj2 , σj2 ), respectively, conforming to Equation (28). Based on this information, we have
three degrees of freedom, so we generate three random numbers u = (u1, u2, u3), where
u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2), and u3 ∼ Beta(1, 1) [16]. Then, split transformations are
defined as follows:

wj1 = wj∗u1, wj2 = wj∗(1− u1)

µj1 = µj∗ − u2
√

σj∗

√
wj2
wj1

, µj2 = µj∗ + u2
√

σj∗

√
wj1
wj2

σj1 = u3
(
1− u2

2
)
σj∗

wj∗
wj1

, σj2 = (1− u3)
(
1− u2

2
)
σj∗

wj∗
wj2

.

 (29)

Then, we compute the acceptance probabilities of split and combine moves: min{1, A}
and min

{
1, A−1}, respectively. According to Equation (9), we obtain A as in Equation (30):

A =
Pr(z,w,k+1,θ,ε,ζ,ϑ,v|y)dk+1

Pr(z,w,k,θ,ε,ζ,ϑ,v|y)bk pallocq(u)

∣∣∣ ∂∆∗
∂(∆,u)

∣∣∣
= likelihood ratio

[
f (k+1)

f (k)

]
(k + 1)

wj1
δ+l1−1wj2

δ+l2−1

wj∗
δ+l1+l2−1B(δ,kδ)

×
(

1
2πζ2

) 1
2 e
− 1

2ζ2 [(µj1
−ε)2+(µj2−ε)2−(µj∗−ε)2]

× vϑ

Γ(ϑ)

(
σj∗

σj1
σj2

)ϑ+1
exp

(
−v

(
1

σj1
+ 1

σj2
− 1

σj∗

))
× dk+1

bk palloc
1

g2,2(u1)g2,2(u2)g1,1(u3)

× wj∗ |µj1
−µj2 |σj1

σj2
u2(1−u2

2)u3(1−u3)σj∗

, (30)

where k is the number of components before the split, l1 and l2 are the numbers of observations
proposed to be assigned to j1 and j2, B(·, ·) is the beta function, palloc is the probability that
this particular allocation is made, gp,q is the beta (p, q) density, the (k + 1)-factor in the second

line is the ratio (k+1)!
k! from the order statistics densities for the location-scale parameters

(µ, σ) [16], and the other terms have been fully explained in Appendices B and C.

4.3.2. Birth and Death Moves

The following is an explanation of move (f), namely birth and death moves. These
moves are simpler than split and combine moves [16]. The first step consists of making a
random choice between birth and death, with the same probabilities bk and dk as stated
above. For birth, the proposed new component has parameters µj∗ and σ2

j∗ , which are gener-
ated from the associated prior distributions shown in Equations (18) and (19), respectively.
The weight of the new component wj∗ follows a beta distribution, wj∗ ∼ Beta(1, k). To

remain valid for the constraint
k
∑

j=1
wj + wj∗ = 1, the previous weights wj for j = 1, 2, · · · , k

must be rescaled by multiplying all by
(
1− wj∗

)
. Therefore,

(
1− wj∗

)k is the determinant
of Jacobian matrix corresponding to the birth move. For the opposite move, namely the
death move, we randomly choose any empty component to remove. This step always
considers the constraint that the remaining weights are rescaled to sum 1. The accep-
tance probabilities of the birth and death moves: min{1, A} and min

{
1, A−1}, respectively.

According to Equation (9), we obtain A as in Equation (31):

A =
Pr(k + 1)

Pr(k)
1

B(kδ, δ)
wδ−1

j∗
(
1− wj∗

)n+kδ−k
(k + 1)

dk+1
bk(k0 + 1)

1
g1,k
(
wj∗
) (1− wj∗

)k, (31)

where k0 is the number of empty components before birth, and B(·, ·) is the Beta function.
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5. Simulation Study

In this section, we have 16 scenarios, namely Weibull mixture distribution with two
components, three components, four components, and five components, each of which is
generated with a sample of 125, 250, 500, and 1000 per component. Detailed descriptions
of each scenario are given in Table 1, where the “Parameter of EV-I distribution” column is
transformed from the “Parameter of Weibull distribution” column.

Table 1. Sixteen scenarios of the Weibull mixture distribution and their transformation into the EV-I mixture distribution.

Scenario
Number of

Components
Component Number of

Generated Data

Parameter of Weibull
Distribution

Parameter of EV-I
Distribution

η λ µ σ

1 2
1st 125 1 exp(−2) −2 1

2nd 125 1/0.5 exp(0) 0 0.5

2 2
1st 250 1 exp(−2) −2 1

2nd 250 1/0.5 exp(0) 0 0.5

3 2
1st 500 1 exp(−2) −2 1

2nd 500 1/0.5 exp(0) 0 0.5

4 2
1st 1000 1 exp(−2) −2 1

2nd 1000 1/0.5 exp(0) 0 0.5

5 3

1st 125 1 exp(−2) −2 1

2nd 125 1/0.5 exp(0) 0 0.5

3rd 125 1/1.5 exp(3) 3 1.5

6 3

1st 250 1 exp(−2) −2 1

2nd 250 1/0.5 exp(0) 0 0.5

3rd 250 1/1.5 exp(3) 3 1.5

7 3

1st 500 1 exp(−2) −2 1

2nd 500 1/0.5 exp(0) 0 0.5

3rd 500 1/1.5 exp(3) 3 1.5

8 3

1st 1000 1 exp(−2) −2 1

2nd 1000 1/0.5 exp(0) 0 0.5

3rd 1000 1/1.5 exp(3) 3 1.5

9 4

1st 125 1 exp(−2) −2 1

2nd 125 1/0.5 exp(0) 0 0.5

3rd 125 1/1.5 exp(3) 3 1.5

4th 125 1/0.2 exp(5) 5 0.2

10 4

1st 250 1 exp(−2) −2 1

2nd 250 1/0.5 exp(0) 0 0.5

3rd 250 1/1.5 exp(3) 3 1.5

4th 250 1/0.2 exp(5) 5 0.2

11 4

1st 500 1 exp(−2) −2 1

2nd 500 1/0.5 exp(0) 0 0.5

3rd 500 1/1.5 exp(3) 3 1.5

4th 500 1/0.2 exp(5) 5 0.2
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Table 1. Cont.

Scenario
Number of

Components
Component Number of

Generated Data

Parameter of Weibull
Distribution

Parameter of EV-I
Distribution

η λ µ σ

12 4

1st 1000 1 exp(−2) −2 1

2nd 1000 1/0.5 exp(0) 0 0.5

3rd 1000 1/1.5 exp(3) 3 1.5

4th 1000 1/0.2 exp(5) 5 0.2

13 5

1st 125 1 exp(−2) −2 1

2nd 125 1/0.5 exp(0) 0 0.5

3rd 125 1/1.5 exp(3) 3 1.5

4th 125 1/0.2 exp(5) 5 0.2

5th 125 1 exp(7) 7 1

14 5

1st 250 1 exp(−2) −2 1

2nd 250 1/0.5 exp(0) 0 0.5

3rd 250 1/1.5 exp(3) 3 1.5

4th 250 1/0.2 exp(5) 5 0.2

5th 250 1 exp(7) 7 1

15 5

1st 500 1 exp(−2) −2 1

2nd 500 1/0.5 exp(0) 0 0.5

3rd 500 1/1.5 exp(3) 3 1.5

4th 500 1/0.2 exp(5) 5 0.2

5th 500 1 exp(7) 7 1

16 5

1st 1000 1 exp(−2) −2 1

2nd 1000 1/0.5 exp(0) 0 0.5

3rd 1000 1/1.5 exp(3) 3 1.5

4th 1000 1/0.2 exp(5) 5 0.2

5th 1000 1 exp(7) 7 1

In these scenarios, our specific choices for the hyperparameters were ζ = R, ϑ = 2,
g = 0.2, h = 10

R2 , δ = 1, and kmax = 30, where R and ε are the length and midpoint
(median) of the observed data, respectively (see Richardson and Green [16]). Based on the
selection of the hyperparameters, we performed an analysis with 200,000 sweeps. With
these 200,000 sweeps, we got a value of k as high as 200,000. From this, we took the most
frequently occurring (mode) of k. Then, we replicated this step 500 times. Thus, we already
had one mode k for each replication. Finally, we had 500 k and we calculated them as a
percentage. The results of grouping the mixture components can be seen in Table 2, while
the parameter estimation results can be seen in Table 3. Based on Table 2, each scenario
provides a grouping with an accuracy level of at least 95%; the accuracy level is not 100%
only when the sample size is 125 per component. Based on Table 3, it can be seen that the
estimated parameters are close to their real parameters for all scenarios. Note: details of
the computer and time required for the running simulation study are given in Appendix D.
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Table 2. Summary of the results of grouping the EV-I mixture distribution with 200,000 sweeps and replicated 500 times.

Scenario Number of
Components

Sample Size (per
Component) k=1(%) k = 2(%) k = 3(%) k = 4(%) k = 5(%)

1 2 125 0 100 0 0 0
2 2 250 0 100 0 0 0
3 2 500 0 100 0 0 0
4 2 1000 0 100 0 0 0
5 3 125 0.8 4.2 95 0 0
6 3 250 0 0 100 0 0
7 3 500 0 0 100 0 0
8 3 1000 0 0 100 0 0
9 4 125 0 0 3.2 96.8 0
10 4 250 0 0 0 100 0
11 4 500 0 0 0 100 0
12 4 1000 0 0 0 100 0
13 5 125 0 0 0 2.4 97.6
14 5 250 0 0 0 0 100
15 5 500 0 0 0 0 100
16 5 1000 0 0 0 0 100

Table 3. Parameter estimation of 16 scenarios, where µ, σ, and w are the real parameters and µ̂, σ̂, and ŵ are the estimated
parameters.

Scenario
Number of

Components Component Number of
Generated Data

Parameter of EV-I
Distribution

Estimated Parameter of EV-I
Distribution

µ σ w µ̂ σ̂ ŵ

1 2
1st 125 −2 1 0.5 −1.9483 1.019 0.498

2nd 125 0 0.5 0.5 −0.2771 0.5077 0.502

2 2
1st 250 −2 1 0.5 −2.0034 0.9911 0.4978

2nd 250 0 0.5 0.5 0.0266 0.4911 0.5022

3 2
1st 500 −2 1 0.5 −2.0009 0.9959 0.5024

2nd 500 0 0.5 0.5 −0.037 0.4942 0.4976

4 2
1st 1000 −2 1 0.5 −2 1.0023 0.4998

2nd 1000 0 0.5 0.5 −0.002 0.5082 0.5002

5 3

1st 125 −2 1 0.3333 −1.9736 1.004 0.336

2nd 125 0 0.5 0.3333 0.005 0.5009 0.328

3rd 125 3 1.5 0.3333 2.9974 1.4818 0.336

6 3

1st 250 −2 1 0.3333 −1.9734 1.0019 0.3376

2nd 250 0 0.5 0.3333 0.0179 0.5115 0.3296

3rd 250 3 1.5 0.3333 3.038 1.5129 0.3328

7 3

1st 500 −2 1 0.3333 −1.9598 0.9935 0.332

2nd 500 0 0.5 0.3333 −0.0049 0.5162 0.3295

3rd 500 3 1.5 0.3333 3.021 1.5046 0.3385

8 3

1st 1000 −2 1 0.3333 −2.0062 1 0.3346

2nd 1000 0 0.5 0.3333 0.0324 0.4943 0.3331

3rd 1000 3 1.5 0.3333 3.0292 1.5013 0.3323

9 4

1st 125 −2 1 0.25 −1.9909 1.0021 0.2568

2nd 125 0 0.5 0.25 −0.0563 0.4958 0.2461

3rd 125 3 1.5 0.25 3.0346 1.497 0.2452

4th 125 5 0.2 0.25 5.0297 0.205 0.2519
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Table 3. Cont.

Scenario
Number of

Components Component Number of
Generated Data

Parameter of EV-I
Distribution

Estimated Parameter of EV-I
Distribution

µ σ w µ̂ σ̂ ŵ

10 4

1st 250 −2 1 0.25 −2.028 0.9977 0.246

2nd 250 0 0.5 0.25 −0.0213 0.4975 0.2484

3rd 250 3 1.5 0.25 2.9958 1.496 0.2486

4th 250 5 0.2 0.25 5.0453 0.2054 0.257

11 4

1st 500 −2 1 0.25 −2.0375 1.0029 0.2499

2nd 500 0 0.5 0.25 −0.0127 0.4979 0.2489

3rd 500 3 1.5 0.25 2.987 1.499 0.249

4th 500 5 0.2 0.25 5.0461 0.2035 0.2522

12 4

1st 1000 −2 1 0.25 −2.023 1.0001 0.2506

2nd 1000 0 0.5 0.25 0.0266 0.5048 0.2507

3rd 1000 3 1.5 0.25 2.9932 1.4988 0.2496

4th 1000 5 0.2 0.25 5.0021 0.1985 0.2491

13 5

1st 125 −2 1 0.2 −1.9904 0.9984 0.1953

2nd 125 0 0.5 0.2 −0.0613 0.4978 0.1948

3rd 125 3 1.5 0.2 3.0027 1.4953 0.1909

4th 125 5 0.2 0.2 5.0289 0.2024 0.1926

5th 125 7 1 0.2 6.9631 0.9953 0.2264

14 5

1st 250 −2 1 0.2 −2.0178 0.9991 0.1952

2nd 250 0 0.5 0.2 0.0599 0.498 0.1969

3rd 250 3 1.5 0.2 3.0547 1.4995 0.2026

4th 250 5 0.2 0.2 4.9164 0.2005 0.1997

5th 250 7 1 0.2 6.952 0.9979 0.2056

15 5

1st 500 −2 1 0.2 −2.0065 0.996 0.1992

2nd 500 0 0.5 0.2 0.0085 0.4998 0.2033

3rd 500 3 1.5 0.2 3.0289 1.5015 0.1974

4th 500 5 0.2 0.2 5.0036 0.1965 0.1983

5th 500 7 1 0.2 7.057 0.9978 0.2018

16 5

1st 1000 −2 1 0.2 −2.0132 1.0048 0.2

2nd 1000 0 0.5 0.2 −0.0128 0.5025 0.2009

3rd 1000 3 1.5 0.2 2.9889 1.5011 0.2002

4th 1000 5 0.2 0.2 4.9884 0.1999 0.2004

5th 1000 7 1 0.2 7.0045 0.9996 0.1985

Besides displaying the results of grouping in Table 2 and parameter estimation results
in Table 3, we also provide an overview of the histogram and predictive density for each
scenario. Histograms and predictive densities for the first to fourth scenarios can be seen
in Figure 2a–d, the fifth to eighth scenarios in Figure 3a–d, the ninth to twelfth scenarios in
Figure 4a–d, and the thirteenth to sixteenth scenarios in Figure 5a–d.
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6. Misspecification Cases

For the simulation study, we provided 16 scenarios to validate our proposed algorithm.
In this section, we provide the opposite—i.e., we intentionally generate data that are not
derived from the Weibull distribution and then analyze them using our proposed algorithm.
We generate two datasets taken from different distributions. The first dataset is taken from a
double-exponential distribution with location and scale parameters of 0 and 1, respectively,
and the second dataset is taken from a logistic distribution with location-scale parameters
of 2 and 0.4, respectively. Each of these datasets has as many as 1000 data points from the
distribution.

We used the EV-I mixture and Gaussian mixture distributions to analyze the data
described above. We used the same hyperparameters as in the simulation study section
because the double-exponential and logistic distributions both have location and scale
parameters. To compare the performance between the EV-I mixture and Gaussian mix-
ture distributions, we used the Kullback–Leibler divergence; a complete explanation and
formula for the Kullback–Leibler divergence (KLD) can be found in Van Erven and Har-
remos [73]. In the simple case, the KLD value of 0 indicates that the true values with fitted
densities have identical quantities of information. Thus, the smaller the KLD value, the
more identical the true and fitted densities are.

The posterior distribution of k for the misspecification cases data can be seen in Table 4.
Based on Table 4, the data that we generate are detected with multimodal data, even though
the data we generate are unimodal. Then, in Table 5 can be seen the comparison of KLD
for EV-I mixture distribution and Gaussian mixture distribution. Based on Table 5, it can
be concluded that the EV-I mixture distribution covers more than the Gaussian mixture
distribution for these data.

Table 4. Posterior distribution of k for misspecification cases data based on mixture model using the EV-I distribution.

Distribution of Random Data n Pr(k|y)

Double-exponential (0,1) 1000 Pr(1) = 0 Pr(2) = 0.2519 Pr(3) = 0.2631 Pr(4) = 0.1703 Pr(5) = 0.1182
Pr(6) = 0.0789 Pr(7) = 0.0515 ∑≥8 Pr(k|y) = 0.0661

Logistic (2,0.4) 1000 Pr(1) = 0.1492 Pr(2) = 0.4960 Pr(3) = 0.2175 Pr(4) = 0.0843 Pr(5) = 0.0318
Pr(6) = 0.0122 Pr(7) = 0.0055 ∑≥10 Pr(k|y) = 0.0035

Table 5. Comparison of Kullback–Leibler divergence using EV-I mixture and Gaussian mixture distributions for misspecifi-
cation cases data.

Distribution of
Random Data

Number of Components
Kullback–Leibler

EV-I Mixture Distribution Gaussian Mixture
Distribution

Double-exponential (0,1)

2 0.0935 0.5311

3 0.0789 0.5924

4 0.0902 0.6840

5 0.0873 0.3892

6 0.0789 0.2908

7 0.0677 0.2471

Logistic (2,0.4)

2 0.0629 0.4920

3 0.0632 0.3288

4 0.0760 0.2981

5 0.0754 0.2765

6 0.0707 0.2587

7 0.0633 0.2563
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7. Application
7.1. Enzyme, Acidity, and Galaxy Datasets

In this section, we analyze enzyme, acidity, and galaxy datasets such as those of
Richardson and Green [16] (these three datasets can be obtained from https://people.
maths.bris.ac.uk/~mapjg/mixdata, accessed on 22 March 2021). We analyzed the datasets
using EV-I mixture distribution with the hyperparameters for enzyme data being R = 2.86,
ε = 1.45, ζ = 2.86, ϑ = 2, g = 0.2, h = 1.22, δ = 1; for acidity data, R = 4.18, ε = 5.02,
ζ = 4.18, ϑ = 2, g = 0.2, h = 0.573, δ = 1; and for galaxy data, R = 25.11, ε = 21.73,
ζ = 25.11, ϑ = 2, g = 0.2, h = 0.016, δ = 1; for these three datasets, we used kmax = 30.
The provisions for selecting these hyperparameters are explained in the Section 5. The
posterior distribution of k for all three datasets can be seen in Table 6. Then, we compared
the predictive densities of the enzyme, acidity, and galaxy datasets using the EV-I mixture
and the Gaussian mixture distributions, which can be seen in Figures 6–8. Visually, based
on Figures 6–8, it can be seen that the EV-I mixture distribution has better coverage than
the Gaussian mixture distribution. Then, by using the KLD, it can be seen in Table 7, that
the EV-I mixture distribution covers more than the Gaussian mixture distribution.

Table 6. Posterior distribution of k for enzyme, acidity, and galaxy datasets based on mixture model using the EV-I
distribution.

Dataset n Pr(k|y)

Enzyme 155 Pr(1) = 0 Pr(2) = 0.0181 Pr(3) = 0.2444 Pr(4) = 0.3232 Pr(5) = 0.2232
Pr(6) = 0.1135 Pr(7) = 0.0484 ∑≥8 Pr(k|y) = 0.0292

Acidity 245 Pr(1) = 0 Pr(2) = 0.0663 Pr(3) = 0.2470 Pr(4) = 0.2486 Pr(5) = 0.1890
Pr(6) = 0.1197 Pr(7) = 0.0685 ∑≥8 Pr(k|y) = 0.0609

Galaxy 82 Pr(1) = 5× 10−6 Pr(2) = 0.0004 Pr(3) = 0.0649 Pr(4) = 0.1410 Pr(5) = 0.1993
Pr(6) = 0.2095 Pr(7) = 0.1708 ∑≥8 Pr(k|y) = 0.2141
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7.2. Dengue Hemorrhagic Fever (DHF) in Eastern Surabaya, East Java, Indonesia

In this section, we apply the EV-I mixture distribution using RJMCMC to a real dataset.
These data are the time until patient recovery from dengue hemorrhagic fever (DHF). We
obtained the secondary data from medical records from Dr. Soetomo Hospital, Surabaya,
East Java, Indonesia. The data concern patients in eastern Surabaya, which consists of
seven subdistricts. Our data consist of 21 cases, with each case widespread over each
subdistrict. The histogram of the spread of DHF in each subdistrict can be seen in the
research conducted by Rantini et al. [36]. It was explained in their study that the data have
a Weibull distribution. Whether the data are multimodal or not is unknown. The histogram
of our original data is shown in Figure 9a.
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Table 7. Comparison of Kullback–Leibler divergence using EV-I mixture and Gaussian mixture
distributions for enzyme, acidity, and galaxy datasets.

Dataset
Number of

Components

Kullback–Leibler

EV-I Mixture
Distribution

Gaussian Mixture
Distribution

Enzyme

2 0.3699 0.7173

3 0.2670 0.5673

4 0.6710 0.7992

5 0.7657 0.9251

6 2.0578 2.5590

7 3.4676 3.6022

Acidity

2 0.6508 1.5108

3 0.5785 1.2076

4 1.0884 1.4265

5 1.2894 1.4491

6 1.2604 1.3877

7 1.2102 1.3409

Galaxy

2 0.1692 0.2071

3 0.0880 0.1445

4 0.0771 0.1542

5 0.1469 0.1556

6 0.2005 0.2266

7 0.2648 0.4460
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To determine the number of mixture components in our data, we applied the NG-
RJMCMC algorithm. Of course, the first step was to transform the original data into a
location-scale family, which can be seen in Figure 9b. Then, for our transformed data, we
used the hyperparameters R = 1.9459, ε = 1.3863, ζ = 1.9459, ϑ = 2, g = 0.2, h = 2.6409,
δ = 1, and kmax = 30. Then, we did all six moves type on the data with 200,000 sweeps.
The results of the grouping are shown in Table 8. Based on Table 8, the DHF data in
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eastern Surabaya have a multimodal pattern with the highest probability of having four
components.

Table 8. Summary of the results of grouping for DHF data in eastern Surabaya using the EV-I mixture
distribution.

n Pr(k|y)

21 Pr(1) = 0.0055 Pr(2) = 0.0095 Pr(3) = 0.0068 Pr(4) = 0.3487 Pr(5) = 0.2778
Pr(6) = 0.1618 Pr(7) = 0.0845 Pr(8) = 0.0454 Pr(9) = 0.0255 ∑≥10 Pr(k|y) = 0.0345

Using the EV-I mixture distribution with four components, the results of the parameter
estimation for each component are shown in Table 9. Then, the membership label of each
observation in each mixture component is shown in Figure 10. Finally, the analysis was
compared using the four-component EV-I mixture distribution and the four-component
Gaussian mixture distribution, as shown in Figure 11. According to Table 10 and Figure 11,
it can be seen that our data are better covered by using the four-components EV-I mixture
distribution.

Table 9. The result of parameter estimation for each component of the EV-I mixture distribution on
the DHF data in eastern Surabaya.

Component w µ σ

1st 0.0805 0.0006 0.0053
2nd 0.1614 0.6957 0.0048
3rd 0.2408 1.1022 0.0048
4th 0.5174 1.6265 0.1927

Table 10. Kullback–Leibler divergence using EV-I mixture and Gaussian mixture distributions for
the DHF data in eastern Surabaya.

Number of Components
Kullback–Leibler

EV-I Mixture Distribution Gaussian Mixture
Distribution

4 0.0711 0.2131
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8. Conclusions

We provided an algorithm in the Bayesian mixture analysis. We called it non-Gaussian
reversible jump Markov chain Monte Carlo (NG-RJMCMC). Our algorithm is a modifi-
cation of RJMCMC, where there is a difference in the initial steps, namely changing the
original distribution into a location-scale family. This step facilitates the grouping of each
observation into the mixture components. Our algorithm allows researchers to easily ana-
lyze data that are not from the Gaussian family. In our study, we used Weibull distribution,
then transformed it into the EV-I distribution.

To validate our algorithm, we performed 16 scenarios for the EV-I mixture distribution
simulation study. The first to fourth scenarios had two components, the fifth to eighth
scenarios had three components, the ninth to twelfth scenarios had four components, and
the thirteenth to sixteenth scenarios had five components. We generated data in different
sizes, ranging from 125 to 1000 samples per mixture component. Next, we analyzed them
using a Bayesian analysis with the appropriate prior distributions. We used 200,000 sweeps
per scenario and replicated them 500 times. The results of this simulation indicate that
each scenario provides a minimum level of accuracy of 95%. Moreover, the estimated
parameters come close to the real parameters for all scenarios.

To strengthen the proposed method, we provided misspecification cases. We deliber-
ately generated unimodal data with double-exponential and logistic distributions, then
estimated them using the EV-I mixture distribution and Gaussian mixture distribution. The
results indicated that the data we generated are multimodally detected. Based on the KLD,
the EV-I mixture distribution has better coverage than the Gaussian mixture distribution.

We also implemented our algorithm for real datasets, namely enzyme, acidity, and
galaxy datasets. We compared the EV-I mixture distribution with the Gaussian mixture
distribution for all three datasets. Based on the KLD, we found that the EV-I mixture
distribution has better coverage than the Gaussian mixture distribution. Then, visually, the
results also show that the EV-I mixture distribution has better coverage. We also compared
the EV-I mixture distribution with the Gaussian mixture distribution for the DHF data
in eastern Surabaya. In our previous research, we analyzed the data using the Weibull
distribution. We do not know whether the data were identified as multimodal or not.
Using our algorithm, we found that the data are multimodal with four components. We
also compared the EV-I mixture distribution and the Gaussian mixture distribution. Again,
the EV-I mixture distribution indicated better coverage, seen both through the KLD and
visually.
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Appendix A

T ∼Weibull(η, λ) with the CDF

FT(t|η, λ ) =

{
1− e−(

t
λ )

η

, t ≥ 0
0 , t < 0 .

Define a new variable, Y = ln T, its CDF is

FY(y) = Pr(Y ≤ y) = Pr(ln T ≤ y) = Pr(T ≤ ey) = FT(ey) = 1− exp
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−
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λ
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note that: eln (·) = (·)
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− exp

(
(y−ln λ)

1
η

))
and its p.d.f is

fY(y) = dFY(y)
dy

=
d

(
1−exp

(
− exp

(
(y−ln λ)

1
η

)))
dy

= η exp[(y− ln λ)η] exp{− exp[(y− ln λ)η]}

= 1
1
η

exp
(

y−ln λ
1
η

)
exp

(
− exp

(
y−ln λ

1
η

))
.

Based on its CDF and p.d.f, it can be seen that Y ∼ EV− I(µ, σ) where µ = ln λ and
σ = 1

η . Then the appropriate support is as follows:

• t ≥ 0→ y = ln t ∈ (−∞, ∞)
• λ > 0→ µ = ln λ ∈ (−∞, ∞)

• η > 0→ σ = 1
η ∈ (0, ∞)

Appendix B

A = posterior ratio× proposal ratio
= (likelihood ratio× prior ratio)× proposal ratio
= (likelihood ratio× prior ratio)× ratio between two states× 1

q(u) × |Jacobian|
= (likelihood ratio× prior ratio)× dk+1

bk palloc
× 1

q(u) × |Jacobian|
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In this section, we have explained the above equation term by term

� likelihood ratio term

likelihood ratio =
new
old

=

N
∏

i=1,zi=j1
p
(
yi
∣∣µj1 , σj1

) N
∏

i=1,zi=j2
p
(
yi
∣∣µj2 , σj2

)
N
∏

i=1,zi=j∗
p
(
yi
∣∣µj∗ , σj∗

)
� prior ratio term

ratio of z = new
old =

{wj1 |···∼Dirichlet(δ+l1)}|×{wj2 |···∼Dirichlet(δ+l2)}
wj∗ |···∼Dirichlet(δ+(l1+l2))

=
1

B(δ,kδ)
wj1

δ+l1−1 1
B(δ,kδ)

wj2
δ+l2−1

1
B(δ,kδ)

wj∗
δ+l1+l2−1 =

1
B(δ,kδ)

wj1
δ+l1−1wj2

δ+l2−1

wj∗
δ+l1+l2−1 =

wj1
δ+l1−1wj2

δ+l2−1

wj∗
δ+l1+l2−1B(δ,kδ)

ratio of µ = new
old =

f (µj1) f (µj2)
f (µj∗)

=

 1√
2πζ2 e

− 1
2
(µj1
−ε)2

ζ2


 1√

2πζ2 e
− 1

2
(µj2
−ε)2

ζ2


1√

2πζ2 e
− 1

2
(µj∗−ε)2

ζ2

= 1√
2πζ2

e
− 1

2

(µj1
−ε)2

ζ2 − 1
2

(µj2
−ε)2

ζ2 + 1
2

(µj∗−ε)2

ζ2 =
√

1
2πζ2 e

− 1
2ζ2 [(µj1

−ε)2+(µj2−ε)2−(µj∗−ε)2]

=
(

1
2πζ2

) 1
2 e
− 1

2ζ2 [(µj1
−ε)2+(µj2−ε)2−(µj∗−ε)2]

ratio of σ2 = new
old =

f (σj1) f (σj2)
f (σj∗)

=


vϑ exp

(
− v

σj1

)
Γ(ϑ)σϑ+1

j1

×


vϑ exp
(
− v

σj2

)
Γ(ϑ)σϑ+1

j2


vϑ exp

(
− v

σj∗

)
Γ(ϑ)σϑ+1

j∗

= vϑ

Γ(ϑ)

σϑ+1
j∗

σϑ+1
j1

σϑ+1
j2

exp
(
− v

σj1
− v

σj2
+ v

σj∗

)
= vϑ

Γ(ϑ)

(
σj∗

σj1
σj2

)ϑ+1
exp

(
−v

(
1

σj1
+ 1

σj2
− 1

σj∗

))
ratio of k =

new
old

=
f (k + 1)

f (k)

�
dk+1

bk palloc
term

palloc = ∏
zi=j1

wj1
f (yi|µj1

,σj1 )
wj1

f (yi|µj1
,σj1 )+wj2 f (yi|µj2 ,σj2 )

× ∏
zi=j2

wj2 f (yi|µj2 ,σj2 )
wj1

f (yi|µj1
,σj1 )+wj2 f (yi|µj2 ,σj2 )

�
1

q(u)⊕ term q(u) = f (u1) f (u2) f (u3), where u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2), and
u3 ∼ Beta(1, 1), so q(u) = g2,2(u1)g2,2(u2)g1,1(u3)

� |Jacobian| term

Because this part has a deeper explanation than others, so we write separately in
Appendix C.
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Appendix C

Based on Equation (29), we have partial derivatives for each variable as follows
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so that the determinant of the Jacobian can be written as
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Manually, calculating the determinant of a 6 × 6 matrix is not easy, so we can use

software for calculations. In this calculation, we used Maple software, and we obtained
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Mathematically, the equation above can be rewritten as
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Two things must be considered mathematically for this proof:
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Appendix D

The simulation study ran well when using a computer with processor Intel Core i7,
32GB RAM, 447GB SSD. We have used the R software. Then, we calculated the CPU time
by using the “proc.time()” function in R. The CPU time can be seen in Table A1. The “user”
is the CPU time charged for the execution of user instructions of the calling process, while
the “system” is the CPU time charged for execution by the system on behalf of the calling
process. This CPU time is for one replication, so the total CPU time required for the sixteen
scenarios is to multiply each time in the Table A1 by 500.
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Table A1. Report the CPU time for simulation study.

Scenario
Number of

Components
Sample Size

(per Component)
CPU Time (in Second)

User System Elapsed

1 2 125 181.65 3.06 262.43
2 2 250 221.25 2.56 288.73
3 2 500 302.20 2.78 542.76
4 2 1000 760.76 4.32 1270.12
5 3 125 204.40 2.73 1111.32
6 3 250 274.46 2.95 321.70
7 3 500 404.71 3.34 607.15
8 3 1000 656.23 3.40 708.84
9 4 125 253.71 3.01 566.96

10 4 250 347.84 3.09 364.46
11 4 500 551.57 3.10 1197.01
12 4 1000 973.84 3.53 1403.56
13 5 125 299.40 3.26 2535.14
14 5 250 446.78 3.03 627.54
15 5 500 740.00 3.18 1197.18
16 5 1000 1324.29 3.84 3526.37
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