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Abstract: Aim of the study was to develop a standardized model system to investigate endodontic
irrigation techniques and assess the efficiency of different activation methods on the removal of hard
tissue debris in complex root canal systems. Mesial roots of mandibular molars were firstly scanned
by micro-computed tomography (µCT) and allocated to three groups of irrigant activation: sonic
activation (EDDY, VDW, Munich, Germany), laser activation (AutoSWEEPS, FOTONA, Ljubljana,
Slovenia) and conventional needle irrigation (control). Roots were fixed in individual 3D-printed
holders to facilitate root canal enlargement under constant irrigation with NaOCl (5%). To enable
standardized quantification of remaining debris, BaSO4-enriched dentine powder was compacted
into the canals, followed by another µCT-scan. The final irrigation was performed using 17%
ethylenediaminetetraacetic acid (EDTA) and 5% sodium hypochlorite (NaOCl) with the respective
activation method, and the volume of remaining artificial debris was quantified after a final µCT-scan.
The newly developed model system allowed for reliable, reproducible and standardized assessment
of irrigation methods. Activation of the irrigant proved to be significantly more effective than
conventional needle irrigation regarding the removal of debris, which persisted particularly in the
apical third of the root canal in the control group. The efficiency of irrigation was significantly
enhanced with laser- and sonic-based activation, especially in the apical third.

Keywords: disinfection; sodium hypochlorite; ethylenediaminetetraacetic acid; lasers; computed to-
mography

1. Introduction

Caries, dental trauma and tooth malformations frequently cause an infection of the
dental pulp, which results, if untreated, in pulpitis, pulp necrosis and, finally, apical peri-
odontitis. In this case, root canal treatment (RCT) is indicated, as the removal of necrotic
pulp tissue and bacteria from the entire canal system enables healing of periapical patho-
sis [1–3]. During RCT, the endodontic canal system has to be explored, and the canals
are enlarged and debrided by endodontic files. However, mere mechanical instrumen-
tation results in insufficient cleanliness, as up to one-third of the canal surface remains
untouched [4–6]. Furthermore, accumulated hard tissue debris (AHTD) during treatment
locks isthmuses and lateral canals and, thus, impedes the transport of irrigant into these
areas [1]. Therefore, there is a demand for copious irrigation to support mechanical in-
strumentation and dissolve debris. Sodium hypochlorite (NaOCl) has proven to be very
effective, as it has both antibacterial and tissue-dissolving features [7]. If applied by needle
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irrigation only, thorough cleaning and disinfection of isthmuses, lateral canals and the
apical segment of root canals fails [8–11]. In addition, the endodontium can be considered
a closed-end-system; thus, air is trapped in the apical region during irrigation, which pre-
vents the penetration of disinfectant even further [12,13]. For this reason, various activation
methods have been developed to optimize the penetration of disinfecting agents into the
root canal system and enhance the removal of AHTD [14].

Several different activation methods are available to the endodontist. Among them,
the sonic-based activation system EDDY (VDW, Munich, Germany) uses a polyamide
tip, which oscillates at a frequency of 6 kHz. These oscillations create turbulences in
the surrounding disinfecting solution, supposedly resulting in removal of AHTD and
disruption of intracanal biofilm [15]. Various studies have reported sonic activation to be
more effective than needle irrigation in terms of AHTD elimination [16–21].

In recent years, newly developed laser systems have enabled the activation of disin-
fectants by photon-induced photoacoustic streaming (PIPS, FOTONA, Ljubljana, Slove-
nia). This method seems to be advantageous when cleaning confined spaces [22], where
(ultra)sonic-based systems are considered less effective due to limited space for oscilla-
tion [23]. In addition, curvatures hinder the distribution of (ultra)sonic energy in the
root canal [24], and rigid tips can damage dentine walls and thus alter the shape of the
canal [25,26].

Previous studies have shown that PIPS offers advantages over conventional needle
irrigation and passive ultrasonic activation regarding removal of debris and the smear
layer, as well as antibacterial effects [27–29]. Recently, a PIPS derivative, termed shock-
wave enhanced emission photoacoustic streaming (SWEEPS), has been introduced to
the market. An Er:YAG laser emits pulsed light at a wavelength of 2940 nm through a
fiberglass tip, which transfers the light into the surrounding disinfection solution. Due
to the high absorption of clear liquids at this wavelength, heat is generated locally and
causes spontaneous evaporation at the tip. The resulting gas bubbles collapse and trigger
shock waves that generate smaller secondary bubbles. In contrast to PIPS, SWEEPS emits
two subsequent laser pulses. The timing is adjusted such that the second pulse is emitted
at the time the gas bubble from the first pulse collapses. As a result, the first bubble is
pushed deeper into the root canal, and secondary bubbles collapse due to the additional
pressure [30]. This chain reaction may continue along the entire length of the root canal
to cause microstreaming and, thus, increase the penetration depth of the disinfectant [30].
Lukač et al. suspected that the velocity at which bubbles collapse during PIPS is too slow
to generate effective shock waves in narrow root canals due to friction along the canal
wall; however, SWEEPS facilitates an accelerated collapse and thus generates more shock
waves [30]. Whereas the first SWEEPS system appeared to be inferior to PIPS regarding
the penetration depth of the irrigation solution in root canals with simple anatomy [31], a
technically improved version, called AutoSWEEPS, was released shortly after [32]. Wang
et al. observed improved bacterial clearance of Enterococcus faecalis in palatal roots of
maxillary first molars using AutoSWEEPS when compared to PIPS [33]. However, previous
investigations based their studies on easily accessible root canal geometries, which do not
reflect complex configurations, such as isthmuses or branching canals.

Currently, studies on innovative activation techniques such as AutoSWEEPS are
sparse and often afflicted with considerable shortcomings in terms of methodology and
standardization [34]. In particular, variations in irrigation parameters (volume, time, flow
rate, etc.) and in debris formation, but also insufficient quantification methodology, hamper
the comparability of groups within a study as well as between different studies.

Multiple endodontic studies with a wide range of questions have been based on the
technology of µCT-imaging [35,36]. It is a highly precise tomographic method that allows
specimens to be examined non-destructively and, thus, repeatedly and to make clear metric
determinations, e.g., volume measurements. However, the quantitative determination
of volumes is often dependent on a subjective and manual definition of regions of inter-
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est, which may be a source of errors, particularly in the case of structures with similar
radiographical densities, such as dentine and AHTD.

To overcome the outlined methodical difficulties and to allow an objective comparison
of the described activation techniques, two objectives were addressed in this study: (i) to
develop a new model system for root canal irrigation, which introduces standardized
irrigation as well as insertion and compaction of artificial debris and, thus, allows for more
reliable quantification of debris removal; (ii) to assess the efficiency of debris removal by
conventional needle irrigation (CNI) compared to sonic-activated irrigation (SAI) with
EDDY and laser-activated irrigation (LAI) with AutoSWEEPS in this model system by
means of µCT-imaging.

2. Materials and Methods
2.1. Sample Preparation and Volumetric Measurement

Mesial roots of 45 extracted mandibular molars were collected with informed consent
of the donors and approval by the ethics committee of the University of Regensburg (No.
19-1327-101, Ethics Committee, University of Regensburg). Criteria for inclusion were the
absence of caries, complete root formation and patency of the root canals. To evaluate the
canal anatomy, the root length was adjusted to 10 mm and high resolution µCT-scans were
conducted (Phoenix v|tome|xs 240/180, Baker Hughes Digital Solutions, Houston, TX,
USA). Three-dimensional reconstructions were generated at a voxel size of 12 µm. The
scans were performed with the D-Tube in “fast scan”-mode and a 0.1 mm copper filter,
resulting in 2000 slices per sample. The detection limit for debris was set to 0.01 mm3,
which was determined with test bodies in preceding accuracy measurements.

All roots were classified according to the criteria of Vertucci et al. [37], and the root
canal volume was quantified. For data acquisition and 3D-reconstruction, phoenix datos|x
2 software (Version 2.5.1, Baker Hughes Digital Solutions) was used. Moreover, volumetric
analysis was performed using VG Studio Max software (Version 2.2.3, Volume Graphics,
Heidelberg, Germany). The volume of interest (VOI) was defined from the coronal separat-
ing plane to the apical endpoint, which was determined with a hand file ISO 15 (K-files,
VDW, Munich, Germany), 1 mm short of the anatomical root length. The length determina-
tion of the VOI was performed manually between the determined points with an accuracy
of ±0.1 mm in VG Studio Max software. Together with the outer contour of the roots, the
VOI was defined. The resulting 3D-structure was subdivided into three compartments of
equal height for further analysis. The µCT-scans and their processing were conducted by a
trained professional (BS); data analyses were performed by two experienced evaluators
(LK, MW). Subsequently, samples were allocated to three experimental groups (CNI, SAI,
LAI) and stratified according to their volume and anatomical classification (n = 15).

2.2. Production of 3D-Printed Irrigation Models

In order to facilitate sample fixation and standardized irrigation, a holding device was
produced for each individual root sample based on the initial µCT-scans. The two-piece
plug system (Figure 1a) was designed with the CAD software Onshape (PTC, Boston, MA,
USA). Individually shaped openings were created in the upper part to match the outer
contour of the respective root sample (Figure 1b) by use of a boolean operator tool (Blender,
Version 2.79b, Stichting Blender Foundation, Amsterdam, The Netherlands) to ensure a
perfect fit during handling (Figure 1c). In addition, the upper part was equipped with
hose connections for the flow of irrigants via a syringe pump and suction by a dental unit
(Figure 1d). Detailed construction plans can be accessed in Figure S1.

Subsequently, the devices were printed in a poly-jet printing process (Objet30 Dental
Prime, Stratasys, Eden Prairie, MN, USA) in high-speed mode (28-micron resolution)
using VeroGlaze MED620 with SUP705 support material (Stratasys). After 3D-printing
and cleaning of the objects, the roots were placed in the respective openings; the lower
part was filled with an impression material (Silagum, DMG, Hamburg, Germany) and
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connected to the upper part such that the root tip was fixed and the apical foramen was
sealed tightly [38].

Figure 1. (a) CAD model of the holding and rinsing device, consisting of an upper part (mint) and
a lower part (ocher), which were connected via a plug connection. (b) µCT-scan of the mesial root
of a mandibular molar with isthmus area after root canal preparation. This data was used to create
the individual opening in the respective holding device. (c) Tight fit of the root sample in the upper
part, enabling good sealing of the reservoir and stable fixation of the sample during manipulation.
(d) Experimental setup with the syringe pump for irrigant supplies, as well as the saliva ejector for
irrigant aspiration, connected to the rinsing device via infusion tubes.

2.3. Root Canal Preparation and Introduction of Artificial Debris

Following glidepath preparation with K-files to size 20.02 (VDW), both mesial root
canals were instrumented with rotary files to size 30.07 (Protaper Next X1 to X3, Dentsply
Sirona, York, PA, USA). After each use of files, the root canals were rinsed with NaOCl
(5%, 1 mL, preheated to 60 ◦C; SPEIKO, Münster, Germany). The irrigating solution was
introduced by a 30-gauge double-side-vented needle (Endo irrigation needle, Transcodent,
Kiel, Germany) that was inserted 1 mm short of working length, and a syringe pump cre-
ated a flow rate of 1 mL/min (Orchestra Module DPS, Fresenius Vial Infusion Technology,
Brezins, France). All endodontic procedures were carried out using a surgical microscope
(PROergo, Carl Zeiss Surgical, Oberkochen, Germany). Subsequently, excess liquid was
removed with paper points, and a second µCT-scan was carried out as described above.

During pilot experiments, it was observed that already copious irrigation without
activation led to nearly complete removal of debris. In order to enable a standardized
test system for the different activation techniques, an artificial hard tissue debris model
was developed. For this purpose, dentine powder from human molars was fabricated
as described previously [39]. Therefore, enamel and root cementum were removed by a
diamond bur, and the pulp tissue was separated from the teeth after cracking. Subsequently,
dentine was ground using a mixer mill (Mixer Mill MM 200, RETSCH, Haan, Germany).
The resulting powder was cleared of particles larger than 50 µm by sieving (Stainless-Steel
Test Sieve 50 µm, Thermo Fisher Scientific, Waltham, MA, USA) and mixed with NaOCl as
well as 15 wt% BaSO4 (Sigma-Aldrich, Steinheim, Germany) to a homogenous, paste-like
consistency. The artificial debris was applied to the root canals with a lentulo (Dentsply
Sirona) and compacted with two simultaneously inserted guttapercha points (Protaper
Next X3, Dentsply Sirona) until full working length was reached. This procedure ensured
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that isthmuses were blocked with debris, but the canal lumina were kept open, which
allowed for regular action of irrigants and activation systems (Figure 2). Excess liquid was
removed with paper points (Protaper Next X3, Dentsply Sirona), and the canal orifice was
sealed with PTFE tape (Scotch 4702, 3M, St. Paul, MI, USA). The teeth were stored moist
in Bijou-Tubes (Sterilin 7 mL Bijou tube, Thermo Fisher Scientific). A third µCT-scan was
performed to quantify the amount of artificial debris and verify blockage of the isthmus
and lateral canals. Due to the distinct difference in radiographical density between the
artificial debris containing BaSO4 and normal dentine, a clear and simple discrimination
was possible during image processing. Therefore, a histogram with the x-axis showing grey
values and the y-axis showing the number of voxels was extracted from the µCT-scans.
Four clearly distinguishable grey scale peaks were obtained for background (air and PTFE),
dentin and radiopaque debris. Based on these peaks, distinct grey scale thresholds were
defined for all samples for the background (0–0.07), dentin (0.07–0.15) and for radiopaque
artificial debris (0.15–0.40). Thus, only the volume of voxels with grey values between
0.15 and 0.40 was quantified in the VG Studio Max software using the “porosity/inclusion
analysis (VGDefX/Only threshold)” algorithm.

Figure 2. µCT-scan of a root sample filled with artificial debris, which appears in light grey color on the root canal walls and
in the isthmuses due to its high radiopacity. (a) Axial plane, showing the instrumented root canals and the artificial debris,
filling out lateral fins and the entire isthmus area. (b) Sagittal plane of the isthmus, where the artificial debris accumulates
in the coronal, middle and apical third. (c) Frontal plane of the root sample. (d) Three-dimensional reconstruction of the
artificial dentine debris volume after segmentation from the root sample. Scale bar: 2.5 mm.

2.4. Final Irrigation and Activation

Final irrigation to remove artificial debris was performed with and without activation
according to a protocol described previously [31]. A syringe pump (Orchestra Module DPS,
Fresenius Vial Infusion Technology) was used to standardize irrigant volume, flow rate
and contact time with the root canal surface in all experimental steps. The solutions used
for the experiments were 5% NaOCl (60 ◦C), ultrapure water (room temperature) and 17%
ethylenediaminetetraacetic acid (EDTA, room temperature). During final irrigation, the
following irrigation steps were carried out (Figure S2):

• 5 mL NaOCl for 1 min
• 5 mL ultrapure water for 1min
• 5 mL of EDTA for 1 min
• 5 mL ultrapure water for 1min
• 5 mL NaOCl for 1.5 min (30 s activation, 30 s resting phase, followed by 30 s activation).

The first four steps were performed equally in all experimental groups, with the
irrigant coming from a 30-gauge double side vented canula connected to the syringe pump
at a constant flow rate. Therefore, the canula was placed 1 mm short of working length
and kept stationary in one canal before it was inserted into the other canal after half of
the irrigation. In the fifth step, CNI was performed with a 30-gauge double side vented
needle connected to the syringe pump in an up and down motion of 4 mm amplitude
and 1 mm short of working length. The canula was only inserted into the canals during
the two activation intervals but not during the resting phase. In contrast, the irrigant in
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the SAI and LAI groups was supplied by the syringe pump connected to the 3D-printed
holding device. Neither for SAI nor LAI was an irrigation needle inserted into the canals.
Sonic activation was performed using the EDDY polyamide tip and a sonic handpiece
(SONICflex, KAVO Dental, Biberach, Germany) at power setting 3. The polyamide tip was
transferred from one canal to the other during the resting phase. In accordance with the
manufacturer’s instructions, the insertion depth was limited to 1 mm short of working
length, and a gentle up-and-down motion was performed during activation to ensure free
movement of the polyamide tip. For laser-activated irrigation, an Er:YAG laser with a R14
handpiece (FOTONA) was used in AutoSWEEPS mode (20 mJ, 15 Hz, 0.6 W, water and air
cooling turned off). The flat fiberglass tip (Flat SWEEPS 400/9, FOTONA) was inserted
into the access cavity filled with NaOCl, and the activation sequence was performed in
the same manner as in the other test groups. The experimental sequence ended with a
fourth µCT-scan to quantify the volume of remaining debris after final irrigation with the
thresholding method described above (Figure 3).

Figure 3. Representative scans of the initial canal system (left), artificial debris (mint) in the instru-
mented canal (middle) and the endodontium after final irrigation (right). (a) shows conventional
needle irrigation with residual debris in the coronal and apical canal; (b) shows sonic-activated
irrigation without any debris, and (c) shows laser-activated irrigation with residual debris in the
apical third of the canal. Scale bar: 3 mm.

2.5. Data Treatment and Statistical Analysis

The following volumes were computed after µCT-scans: root canals before and after
enlargement, dentine debris after instrumentation and artificial debris before and after final
irrigation. Medians and 25–75% percentiles were calculated for the respective data sets. In
addition, the volumes for artificial debris before and after final irrigation were separated
into coronal, middle and apical thirds of the root canals to further refine the evaluation of
the tested activation methods.
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Data were analyzed statistically by nonparametric tests (Mann–Whitney U) at a level
of significance of α = 0.05 (SPSS, version 25.0, SPSS, Chicago, IL, USA). p-values were
adjusted familywise for multiple comparisons by the error rates method (Tables S1–S6).

3. Results
3.1. Formation of AHTD

As shown in Figure 4a, samples were evenly allocated among the test groups without
statistical differences regarding initial root canal volumes (p > 0.595). After canal prepara-
tion, AHTD was observed in less than 30% of the samples (Figure 4a). The total volume of
debris formed was equally low (<0.64 mm3) in all groups (p > 0.436).

Figure 4. (a) Median root canal volumes with 25–75% quantiles of the samples and AHTD formation
after root canal preparation. (b) Median volume with 25–75% quantiles of artificial debris in the root
canal samples prior to final irrigation and remaining debris after final irrigation. Asterisks denote
statistical differences between groups.

3.2. Insertion and Removal of Artificial Debris

The insertion of radiopaque artificial debris into the isthmuses and lateral canals
was reproducible and resulted in equal volumes, where significant differences between
groups could not be detected (p > 0.713), as shown in Figure 4b. After final irrigation, a
significant reduction of artificial debris volume was observed both for test and control
groups. However, significant differences regarding the removal of artificial debris became
evident with SAI > LAI (p = 0.029) and LAI > CNI (p = 0.000).

3.3. Removal of Artificial Debris in the Individual Root Thirds

A more specific evaluation of the root segments revealed again equal volume of artifi-
cial radiopaque debris in the respective segments (Figure 5a) without significant differences
among groups (p > 0.389). After final irrigation, significantly more artificial debris was
observed in the control group as compared to both activation methods, irrespective of the
chosen segment (p ≤ 0.002). However, quantification revealed that the highest volumes
of artificial debris remained in the apical third (Figure 5b). No statistically significant
differences between LAI and SAI were found at the level of root segments (p > 0.174).
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Figure 5. (a) Median volumes with 25–75% quantiles of artificial dentine debris in the coronal, middle
and apical third of the root samples. (b) Median debris volume with 25–75% quantiles after final
irrigation at all levels of the root canal. Asterisks denote statistical differences between groups.

4. Discussion

A recent systematic review by Căpută et al. shed light on the lack of standardization
in in-vitro-studies investigating the cleaning and disinfection of root canals [34]. An uneven
contact time of irrigants with the root canal surface, differences in flow rate of the disin-
fectant and a variable volume used for irrigation represent imponderables and can alter
the reduction of debris [40]. Another point of criticism was a lack of documentation of the
power settings for the devices used for activation. Furthermore, it is worth considering the
dimensions of the fluid reservoir above the root canal representing the access cavity as well
as the detection limit for debris quantification, which may affect the outcomes. Therefore,
a major goal of this study was to develop a model system that provides a high level of
standardization. The intention was to keep the experimental focus on the research question,
whereas uncertainties due to anatomy or debris accumulation, as well as variabilities of
the operator in irrigation and activation, should be minimized.

A newly developed, 3D-printed model was used to fasten the roots during processing,
which offered the benefit of a standardized reservoir in size of a molar’s access cavity
that held a defined liquid volume. Differences in irrigation by anatomical variations of
the endodontic access in natural teeth were thus avoided. A syringe pump provided a
precise flow of liquids during root canal instrumentation and activation sequences. Hose
connectors in the 3D-printed device offered the possibilty to rinse the samples during
preparation and activation without use of a needle. Thus, alterations by irrigation needles
were averted in the SAI and LAI groups.

Another uncertainty is the formation and accumulation of hard tissue debris in root
canals. Preliminary experiments have shown that hard tissue debris accumulates un-
predictably and forms to a relevant degree when irrigation is kept artificially low [1,32].
However, a thorough disinfection of the root canals during the course of root canal in-
strumentation prevents accumulation of debris, at least in vitro, as shown in this study.
This corresponds to in-vivo-data, describing the absence of hard tissue debris after root
canal preparation with ample irrigation [41]. Another reason for the lack of AHTD could
be the root canal preparation technique, as rotating multi-file systems, which implement
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a crown-down technique, are known to produce less debris compared to single-file sys-
tems [42]. Although these findings highlight the importance of intensive irrigation during
instrumentation, an evaluation of activation methods based on those minute amounts of
debris is not reasonable. One corrective measure suggested in the literature is the reduction
of irrigation efforts to a minimum and, thus, provoking debris formation [1,32]. However,
this procedure differs from clinical recommendations, and a standardization of debris
formation is not possible. To overcome variations in debris formation and provide similar
baseline conditions before final irrigation, an artificial hard tissue debris based on human
dentine mixed with sodium hypochlorite and BaSO4 was fabricated, which has not been
described before. The focus was to reproduce the consistency of natural AHTD and to
achieve similar chemo–mechanical characteristics in the root canal.

Previously, research groups used artificial debris compounded with sodium hypochlo-
rite in a “root-canal-grove model” [43–45]. However, this preclinical model was based
on longitudinally dissected teeth with simple root canal morphology that does simulate
complex root canal configurations like in mandibular molars. Furthermore, previous µCT-
studies investigated how irrigation and activation does remove calcium hydroxide from
the root canal [46,47]. Radiopaque additives, like iodoform or BaSO4, contained in these
preparations were clearly differentiable from dentine in µCT-images and are thus easy to
quantify. On the other hand, calcium hydroxide has different qualities compared to dentine
debris and may therefore not be a suitable surrogate in the context of root canal cleaning
and disinfection. By combining human dentine powder with both sodium hypochlorite
and BaSO4, we were able to unite the advantages of the previous approaches, resulting in
debris formation that was technically quantifiable by µCT.

Clinically, the formation of AHTD during root canal preparation depends on various
parameters, such as canal configuration and diameter, the constitution of isthmuses or the
endodontic files and their mode of action [41,42]. In contrast, artificial debris introduced
into previously enlarged root canals offers great advantages in terms of standardization. A
compaction of artificial debris with guttapercha facilitated homogeneous and consistent
filling of isthmuses and voids right up to the apex. In particular the apical third of the
canal constitutes a critical region that must be reached by disinfection and activation. In
analogy to the results of this study, previous investigators reported AHTD volumes as low
as 0.81 mm3 after root canal preparation [48,49]. However, the artificial radiopaque debris
filled all voids and isthmuses with a free canal lumen, resulting in a median volume of
4.4 mm3, which presented a greater but equitable challenge for final irrigation.

From a methodical point of view, BaSO4, as a radiopaque additive to artificial debris,
simplified optical segmentation in µCT-scans at a detection limit of 0.01 mm3 through a
clear differentiation from root dentine. Another benefit of this method is the possibility
to quantify debris automatically via thresholding. In contrast, previous studies mainly
used co-registering and subtractive algorithms to determine the amount of debris, which
entails systematic errors and inaccuracies due to multiple offsetting of volumes [1,22,44]. In
another investigation, acrylic teeth were used for better differentiation; however, this does
not correspond to a natural tooth due to differing surface qualities and microanatomy [50].

In terms of endodontic irrigation, CNI is widely accepted among clinicians, as there
is no need for special equipment, and the procedure is easy to integrate in any workflow.
Previous research has shown that an up and down motion of the needle in the canal during
irrigation supports cleaning the dentine surface from collagen and allows for a better
exchange of disinfectant towards the apex [51,52]. However, it is also well accepted that
CNI has shortcomings in regards to cleaning compared to activated irrigation in terms
of AHTD removal [53–55] and comes with an increased risk of apical extrusion of the
irrigant [56].

Instead, SAI causes a thorough mechanical agitation of the disinfectant in the root
canal by “three-dimensional tip movement” [54]. Even though no cavitation effects are
associated with sonic activation, both the tip oscillation and the microstreaming of the
irrigant can loosen accumulated debris and pave the way for the irrigant to penetrate
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isthmuses and lateral canals [57]. The flexible and soft polyamide tip can move freely even
in constrained and curved canals, and it enables sufficient disinfection without unwanted
dentine preparation or alteration of the canal anatomy [17]. Although the efficiency can
be controlled by the power settings of the sonic handpiece connected [58], caution must
be exercised also with SAI because of the risk of instrument fracture [59] or apical irrigant
extrusion causing postoperative pain [60–62].

In contrast to SAI, traditional passive ultrasonic irrigation (PUI) systems use rigid
tips or endodontic files, which can cause dentine preparation during activation and may
cause irregularities in the root canal surface [25,63]. The study deliberately included an
innovative sonic-based system instead of PUI, because the efficiency of ultrasonic activation
was reportedly limited in constrained root canals due to wall contact [64]. Although PUI is
regarded as a gold standard, EDDY was reported to perform similarly in terms of debris
removal [21,54,65].

Another innovative method to activate the endodontic disinfectant during final irri-
gation is AutoSWEEPS. Here, a fiberglass tip is positioned in the access cavity to produce
vapor bubbles, which advance into the root canal without alteration of the canal anatomy.
Their collapse causes cavitation and photoacoustic streaming of the irrigant [66,67]. It
is described that dual-pulse laser modalities, like AutoSWEEPS, combined with a flat
fiberglass tip, as used in this study, show significantly more debris removal compared to
single-pulse laser modalities in an ex-vivo-setting [68]. Another clinical advantage over
sonic and ultrasonic instruments is the absent risk of instrument fracture [59,69,70]. How-
ever, the costs for purchase and consumption of laser-based systems are considerable. To
our knowledge, no study exists so far that directly compared EDDY and AutoSWEEPS by
µCT-imaging for their ability to remove dentine debris from a complex root canal system.

Overall, the results of this study confirmed that CNI is inferior to SAI and LAI
regarding hard tissue debris removal. After conventional needle irrigation, approximately
15% of the debris remained in the endodontic system, with up to 50% in the apical third,
which is in line with previous studies [11,21,54]. In contrast to CNI, SAI with EDDY led
to extensive removal of hard tissue debris in the coronal, middle and apical thirds of the
root canals. Summarizing data from the three segments, a slight advantage over LAI was
observed; however, there was no significant difference between sonic and laser activation
in the individual root thirds.

LAI also enabled sufficient removal of accumulated artificial debris with a significant
advantage over conventional needle irrigation. Remarkably, a few samples showed residual
debris in the apical third of the root canals after LAI, which was not observed in any of the
specimens after SAI. This finding may be related to the fact that compacted and solid debris
in the apical region may be more difficult to remove, since there is no direct mechanical
force with LAI. However, literature reports are controversial on this issue: Arslan et al.
reported a superiority of laser-based PIPS over sonic-activated irrigation (EndoActivator)
regarding the removal of artificial debris from artificial grooves in the apical third of root
canals [71]. When compared to EDDY, PIPS delivered equal results for hard tissue debris
removal [54]. As a further development of the laser-based systems, SWEEPS showed even
better results in hard tissue debris removal compared to PIPS [32]. Furthermore, SWEEPS
seemed to be advantageous over sonic activation with EndoActivator in terms of smear
layer removal [72].

5. Conclusions

The implementation of an individual, 3D-printed model with a defined flow rate and
the use of artificial debris enabled a reliable, reproducible and standardized assessment of
the different irrigation methods. All techniques were able to remove artificial debris during
final irrigation; however, SAI and LAI revealed a significantly higher reduction of hard
tissue debris compared to CNI, especially in the apical third.



Appl. Sci. 2021, 11, 7331 11 of 14

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11167331/s1, Figure S1. Detailed construction plan of 3D-printed Irrigation Models.
Figure S2. Schematic outline of the methodical workflow. Tables S1–S6. p-values adjusted familywise
for multiple comparisons by the error rates method for all results.

Author Contributions: Conceptualization, M.W., L.K., R.S. and K.M.G.; methodology, M.W., L.K.,
B.S., R.J. and K.M.G.; software, L.K. and B.S.; formal analysis, L.K. and K.-A.H.; investigation, M.W.,
L.K. and R.S.; resources, B.S. and R.J.; data curation, M.W., L.K. and K.-A.H.; writing—original draft
preparation, M.W. and L.K.; writing—review and editing, W.B. and K.M.G.; supervision, M.W. and
K.M.G. All authors have read and agreed to the published version of the manuscript.

Funding: Funding was provided by the German Society of Dentistry and Oral Medicine (DGZMK)
and the German Research Foundation (DFG-Nr. INST102|11-1 FUGG).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are included in this study or in Supplementary Materials.
Further details can be requested from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paqué, F.; Laib, A.; Gautschi, H.; Zehnder, M. Hard-Tissue Debris Accumulation Analysis by High-Resolution Computed

Tomography Scans. J. Endod. 2009, 35, 1044–1047. [CrossRef]
2. Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [CrossRef]
3. Meto, A.; Droboniku, E.; Blasi, E.; Colombari, B.; Tragaj, E.; Cervino, G.; Fiorillo, L.; Meto, A. Copper–Calcium Hydroxide and

Permanent Electrophoretic Current for Treatment of Apical Periodontitis. Materials 2021, 14, 678. [CrossRef] [PubMed]
4. Peters, O.A.; Schönenberger, K.; Laib, A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro

computed tomography. Int. Endod. J. 2001, 34, 221–230. [CrossRef] [PubMed]
5. Zhao, D.; Shen, Y.; Peng, B.; Haapasalo, M. Root canal preparation of mandibular molars with 3 nickel-titanium rotary instruments:

A micro-computed tomographic study. J. Endod. 2014, 40, 1860–1864. [CrossRef]
6. Siqueira, J.F.; Pérez, A.R.; Marceliano-Alves, M.F.; Provenzano, J.C.; Silva, S.G.; Pires, F.R.; Vieira, G.C.S.; Rôças, I.N.; Alves, F.R.F.

What happens to unprepared root canal walls: A correlative analysis using micro-computed tomography and histology/scanning
electron microscopy. Int. Endod. J. 2018, 51, 501–508. [CrossRef]

7. Zehnder, M. Root Canal Irrigants. J. Endod. 2006, 32, 389–398. [CrossRef]
8. Ram, Z. Effectiveness of root canal irrigation. Oral Surgery Oral Med. Oral Pathol. 1977, 44, 306–312. [CrossRef]
9. Jiang, L.M.; Lak, B.; Eijsvogels, L.M.; Wesselink, P.; Van Der Sluis, L.W.M. Comparison of the cleaning efficacy of different final

irrigation techniques. J. Endod. 2012, 38, 838–841. [CrossRef]
10. Blank-Gonalves, L.M.; Nabeshima, C.K.; Martins, G.H.R.; MacHado, M.E.D.L. Qualitative analysis of the removal of the smear

layer in the apical third of curved roots: Conventional irrigation versus activation systems. J. Endod. 2011, 37, 1268–1271.
[CrossRef]

11. Haupt, F.; Meinel, M.; Gunawardana, A.; Hülsmann, M. Effectiveness of different activated irrigation techniques on debris and
smear layer removal from curved root canals: A SEM evaluation. Aust. Endod. J. 2020, 46, 40–46. [CrossRef]

12. Boutsioukis, C.; Lambrianidis, T.; Kastrinakis, E. Irrigant flow within a prepared root canal using various flow rates: A
Computational Fluid Dynamics study. Int. Endod. J. 2009, 42, 144–155. [CrossRef]

13. Dioguardi, M.; Crincoli, V.; Sovereto, D.; Caloro, G.A.; Aiuto, R.; Illuzzi, G.; Caponio, V.C.A.; Troiano, G.; De Lillo, A.; Ciavarella,
D.; et al. Effectiveness of Vapor Lock Effect Removal in Endo Training Blocks: Manual Dynamic Agitation versus Passive
Ultrasonic Irrigation. Appl. Sci. 2019, 9, 5411. [CrossRef]

14. Gu, L.S.; Kim, J.R.; Ling, J.; Choi, K.K.; Pashley, D.H.; Tay, F.R. Review of Contemporary Irrigant Agitation Techniques and
Devices. J. Endod. 2009, 35, 791–804. [CrossRef]

15. Jiang, L.M.; Verhaagen, B.; Versluis, M.; van der Sluis, L.W.M. Evaluation of a Sonic Device Designed to Activate Irrigant in the
Root Canal. J. Endod. 2010, 36, 143–146. [CrossRef] [PubMed]

16. Van Der Sluis, L.W.M.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the
literature. Int. Endod. J. 2007, 40, 415–426. [CrossRef] [PubMed]

17. Neuhaus, K.W.; Liebi, M.; Stauffacher, S.; Eick, S.; Lussi, A. Antibacterial Efficacy of a New Sonic Irrigation Device for Root Canal
Disinfection. J. Endod. 2016, 42, 1799–1803. [CrossRef]

18. De Gregorio, C.; Estevez, R.; Cisneros, R.; Heilborn, C.; Cohenca, N. Effect of EDTA, Sonic, and Ultrasonic Activation on the
Penetration of Sodium Hypochlorite into Simulated Lateral Canals: An In Vitro Study. J. Endod. 2009, 35, 891–895. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/app11167331/s1
https://www.mdpi.com/article/10.3390/app11167331/s1
http://doi.org/10.1016/j.joen.2009.04.026
http://doi.org/10.1038/sj.bdj.2014.204
http://doi.org/10.3390/ma14030678
http://www.ncbi.nlm.nih.gov/pubmed/33540551
http://doi.org/10.1046/j.1365-2591.2001.00373.x
http://www.ncbi.nlm.nih.gov/pubmed/12193268
http://doi.org/10.1016/j.joen.2014.06.023
http://doi.org/10.1111/iej.12753
http://doi.org/10.1016/j.joen.2005.09.014
http://doi.org/10.1016/0030-4220(77)90285-7
http://doi.org/10.1016/j.joen.2012.03.002
http://doi.org/10.1016/j.joen.2011.06.009
http://doi.org/10.1111/aej.12342
http://doi.org/10.1111/j.1365-2591.2008.01503.x
http://doi.org/10.3390/app9245411
http://doi.org/10.1016/j.joen.2009.03.010
http://doi.org/10.1016/j.joen.2009.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20003954
http://doi.org/10.1111/j.1365-2591.2007.01243.x
http://www.ncbi.nlm.nih.gov/pubmed/17442017
http://doi.org/10.1016/j.joen.2016.08.024
http://doi.org/10.1016/j.joen.2009.03.015
http://www.ncbi.nlm.nih.gov/pubmed/19482193


Appl. Sci. 2021, 11, 7331 12 of 14

19. Jensen, S.A.; Walker, T.L.; Hutter, J.W.; Nicoll, B.K. Comparison of the cleaning efficacy of passive sonic activation and passive
ultrasonic activation after hand instrumentation in molar root canals. J. Endod. 1999, 25, 735–738. [CrossRef]

20. Rödig, T.; Bozkurt, M.; Konietschke, F.; Hülsmann, M. Comparison of the vibringe system with syringe and passive ultrasonic
irrigation in removing debris from simulated root canal irregularities. J. Endod. 2010, 36, 1410–1413. [CrossRef]

21. Urban, K.; Donnermeyer, D.; Schäfer, E.; Bürklein, S. Canal cleanliness using different irrigation activation systems: A SEM
evaluation. Clin. Oral Investig. 2017, 21, 2681–2687. [CrossRef] [PubMed]

22. Verstraeten, J.; Jacquet, W.; De Moor, R.J.G.; Meire, M.A. Hard tissue debris removal from the mesial root canal system of
mandibular molars with ultrasonically and laser-activated irrigation: A micro-computed tomography study. Lasers Med. Sci.
2017, 32, 1965–1970. [CrossRef] [PubMed]

23. Walmsley, A.D.; Williams, A.R. Effects of constraint on the oscillatory pattern of endosonic files. J. Endod. 1989, 15, 189–194.
[CrossRef]

24. Roy, R.A.; Ahmad, M.; Crum, L.A. Physical mechanisms governing the hydrodynamic response of an oscillating ultrasonic file.
Int. Endod. J. 1994, 27, 197–207. [CrossRef]

25. Retsas, A.; Koursoumis, A.; Tzimpoulas, N.; Boutsioukis, C. Uncontrolled Removal of Dentin during In Vitro Ultrasonic Irrigant
Activation in Curved Root Canals. J. Endod. 2016, 42, 1545–1549. [CrossRef]

26. Lea, S.C.; Felver, B.; Landini, G.; Walmsley, A.D. Ultrasonic scaler oscillations and tooth-surface defects. J. Dent. Res. 2009, 88,
229–234. [CrossRef]

27. Peters, O.A.; Bardsley, S.; Fong, J.; Pandher, G.; Divito, E. Disinfection of root canals with photon-initiated photoacoustic streaming.
J. Endod. 2011, 37, 1008–1012. [CrossRef]

28. DiVito, E.; Peters, O.A.; Olivi, G. Effectiveness of the erbium: YAG laser and new design radial and stripped tips in removing the
smear layer after root canal instrumentation. Lasers Med. Sci. 2012, 27, 273–280. [CrossRef]

29. Lloyd, A.; Uhles, J.P.; Clement, D.J.; Garcia-Godoy, F. Elimination of intracanal tissue and debris through a novel laser-activated
system assessed using high-resolution micro-computed tomography: A pilot study. J. Endod. 2014, 40, 584–587. [CrossRef]
[PubMed]
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