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Abstract: Predictive maintenance has lately proved to be a useful tool for optimizing costs, perfor-
mance and systems availability. Furthermore, the greater and more complex the system, the higher
the benefit but also the less applied: Architectural, computational and complexity limitations have
historically ballasted the adoption of predictive maintenance on the biggest systems. This has been
especially true in military systems where the security and criticality of the operations do not accept
uncertainty. This paper describes the work conducted in addressing these challenges, aiming to
evaluate its applicability in a real scenario: It presents a specific design and development for an actual
big and diverse ecosystem of equipment, proposing an semi-unsupervised predictive maintenance
system. In addition, it depicts the solution deployment, test and technological adoption of real-world
military operative environments and validates the applicability.

Keywords: predictive maintenance; behavioural anomaly detection; machine learning; deep learning;
warships

1. Introduction

Depending on the field, forecasting capabilities can be translated into different advan-
tages such as economic benefits in stock markets or business development; the incremental
increase in the capabilities of saving a life or improving the quality of life in medicine;
operational superiority in defense and security. In maintenance, prediction implies all the
above.

On the one hand, scheduled maintenance costs represent a significant part of total
operating costs in industrial environments. In the metallurgical industry, for example, the
storage, provisioning and reparation costs can imply 15–60% of total production costs [1].
Moreover, one-third of this money invested in maintenance management is wasted as a
result of unnecessary or incorrect activities. Furthermore, unexpected maintenance has a
direct translation on the availability of services or capabilities, which may have an impact
over the security, brand image, third parties confidence, etc.

One of the most common maintenance strategies is preventive maintenance, which is
based on regular inspections of the machines in a planned, programmed and controlled
manner, in order to anticipate functional failures. It consists of preventing the deterioration
suffered in an equipment due to different variables, such as normal use, the weather or
failures of an accessory that do not affect the main function, while the activities are carried
out in anticipating that the equipment presents major failures. Predictive maintenance
(PdM) is one of the most widespread strategies worldwide and is based on the periodic
measurement of the variables that determine the condition of the equipment while it is

Appl. Sci. 2021, 11, 7322. https://doi.org/10.3390/app11167322 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3601-3052
https://orcid.org/0000-0003-4203-8720
https://orcid.org/0000-0002-9434-1484
https://orcid.org/0000-0002-9151-3324
https://orcid.org/0000-0002-7024-0427
https://orcid.org/0000-0003-4793-169X
https://doi.org/10.3390/app11167322
https://doi.org/10.3390/app11167322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167322
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167322?type=check_update&version=1


Appl. Sci. 2021, 11, 7322 2 of 18

operating. Specialized techniques and tools are used for its execution, which prematurely
detect failures and develop actions to correct them. Predictive maintenance uses data
analysis techniques that allow forecasting possible errors or defects in the machinery at its
initial stages in order to avoid these failures becoming more serious and so that its parts
can be replaced in advance. As benefits of predictive versus preventive maintenance, the
following can be highlighted: reduction in the number of interventions on the equipment,
reduction in downtime to perform maintenance tasks and costs minimization in mainte-
nance tasks. In this sense, the main advantage of predictive maintenance is its ability to
anticipate the future state of the monitored system and, therefore, extend the useful life of
its assets, as demonstrated in various industrial applications such as electrical equipment
maintenance [2,3].

The impossibility to efficiently deal with large and continuous flows of data in the
past made actual predictive maintenance impossible in the industry. Techniques based
on statistical trends (e.g., mean time between failures) had to be used to improve the
maintenance procedures. However, today’s current computing capacity and advanced
Machine Learning (ML) techniques render it possible to perform real-time monitoring of
the system’s mechanical condition to predict when components will fail [1,4]. In this sense,
predictive maintenance is currently understood as preventive maintenance [5] conditioned
to the current state of the system and to the predictions of the future state made from
operation history.

Significant results have been obtained on the PdM area in the recent years. However,
most of the developments come from equipment that is either not quite complex (i.e.,
IoT, smart sensors, etc.) [6] or quite specific and invariant (i.e., wind or gas turbines)[7,8].
The application of PdM techniques over real, productive, big and complex systems with
changing conditions with multitudes of options and configurations are still a challenge.
Furthermore, although some industries have already dealt with it—even including tentative
PdM processes in some of their value chains [9]—predictive maintenance has been rarely
been considered in the defense industry or the military: The robustness, reliability and
security requirements are very strict and defiant and a reduced number of works have
been carried out (publicly) [10].

This research work addresses both challenges: It presents the design and implementa-
tion of predictive maintenance distributed architecture for big, complex and heterogeneous
pieces of military equipment. Furthermore, the concept has been validated over warships’
systems, where some traditional maintenance work have been performed [11], but, to
author’s knowledge, no predictive capabilities have been applied.

In order to present all this information coherently, the paper is structured as follows:
Section 2 presents the goals, challenges and context of the research work performed in the
SOPRENE project. Then, Section 3 analyzes the main works performed in the predictive
maintenance field and, subsequently, aligns with PdM works. Section 4 describes the
unified architecture designed to deal with big, scalable and heterogeneous systems, while
the results obtained from its validation are described in Section 5. Finally, the conclusions
are outlined in Section 6.

2. Problem Statement

Aligned with the PM challenges and goals stated in Section 1, the Spanish navy (also
called Spanish Armada, SA) together with the General Directorate of Armament and
Material (DGAM) of the Spanish Ministry of Defense planned the SOPRENE R&D program
in 2017.

The main objective of SOPRENE was to provide both short and long term predictive
capabilities for the SN equipment [12]. The solution should deliver the forthcoming failures,
breaking them down according to their class and probability of occurrence and overcoming
robustness, efficiency and versatility challenges associated with military PdM development.
Moreover, the solution should be integrated into the logistical and operational decision
processes of the navy.
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According to this, the project started in 2018 and has successfully concluded in the
beginning of 2021. It has been leaded by Indra in collaboration with several Spanish
universities that have delivered a scalable, accurate and fully functional demonstrator to
the Spanish Armada.

This demonstrator has been developed according to the following.

2.1. Equipment Selection and Scalability

One of the SOPRENE’s main goals is to guarantee the applicability of the solution for
the diverse naval platform equipment and assets of the Spanish Navy. Thus, the scalability
of the solution—both vertical and horizontal—was a hard requirement to be proven by the
demonstrator. In this sense, different systems of different ships of different classes were
selected for the validation: Four BAM class vessels (Maritime Action Vessels) and five
F-100 class frigates were chosen by selecting the diesel propellants and power generation
equipment for them, respectively [13].

Likewise, the solution should be able to detect and diagnose failures never experienced
by any ship of the Spanish fleet. In order for this to be possible, the discretization of the
possible failure modes should rely on theoretical working information covered by a failure
mode, effects and criticality analysis (FMECA). The information provided by the FMECA
should be aligned with the data provided from sensors and alarms and adapted to the
application of ML-based prediction algorithms (i.e., numerical, boolean or categorical
registers).

2.2. Data Availability and Management

The management of SN data, which includes tens of thousands variables of several
dozens of systems, is carried out by the Centre for Data Supervision and Analysis of the
Spanish Armada (CESADAR). It collects and stores the operational information of each
of their vessels and pieces of equipment, aligning their different acquisition frequencies
and data type. This information is available from 2011 onward and includes data from the
equipment control and operation sensors (IPMS Navantia system); specific information
of vibrations collected by the condition-based maintenance software (CBM); and data
from fluid analysis laboratory (PAESA system). Unfortunately, the information related to
maintenance and failures, although available, had a different sift and could not provide a
proper labeling.

This information is stored and structured within the CESADAR datalake. The SO-
PRENE program shall use a full functional big data platform to access the data, process
it and transfer the results. Data from 2011 to 2016 would be used to train the system and
evaluate the normality. This temporal range assures the availability of all the operational
modes and weather conditions. Finally, data from the years from 2016 to 2019 would be
used to evaluate the performance and suitability of the solution.

3. State of the Art

This section provides a brief review of the main approaches that have been recently
used for PdM.

Ran et al. [14] provided a categorization based on the optimization criteria. In this
direction, He et al. [15] presented an approach that minimizes the cost of the Remaining
Useful Life (RUL) of the system, although they showed that it is also possible to define an
ad hoc cost model. Other multi-objective optimization works seek to optimize multiple
metrics simultaneously in order to achieve a better balance between objectives. In addition
to the aforementioned, they employ metrics such as risk, security or viability. Generally,
it is impossible to obtain optimal values for all objectives at the same time, which is why
a wide variety of multi-objective models have been developed [16–18]. Other research
define metrics to maximize the reliability and availability of the system. For example,
Song et al. defined the probability of a system to be in a normal operating state in a given
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time interval [19] while Gravette and Barker [20] defined the probability that the system is
operational.

Other works focus on the type of approach used to solve the problem. Some use expert
knowledge and deductive reasoning processes. For example, there are works based on
ontologies [21], on rules [22] or on models that try to link the physical processes of a system
with mathematical models, such as Gaussian models [23], linear systems models [24] or
Markov models [25].

In the arena of ML techniques, Artificial Neuronal Networks (ANN) [26] and decision
trees [27] (including the Random Forest algorithm [28]) have been used, as well as Support
Vector Machines (SVM) in terms of both supervised [29] and unsupervised [30] learning.
Finally, the k-Nearest Neighbor Technique (k-NN) is one of the most common for fault
classification [31], for prediction of useful life time (RUL) [32] and early detection [33]. One
of the most used Deep Learning (DL) techniques is the Autoencoder Neural Networks, for
which its output layer seeks to reproduce the data presented in its input layer after having
gone through a dimensional compression phase, allowing the creation of robust models
against noise [34]. Recurrent Neural Networks (RNN) [35], based on Long Short Term
Memory Networks (LSTM) cells [36], have also been used, which can learn longer-term
dependencies. These types of networks are very powerful for sequence analysis.

In the specific case of engines, a few works have comprehensively addressed this
task. Engines in industrial environments are usually monitored by a large number of
sensors that measure physical aspects of their components such as vibrations, temperatures
or pressures. By analyzing the values collected by these sensors, PdM techniques allow
predicting the appearance of failures in their components. Due to the great differences that
exist between engines (design, behavior and objective), there is no universal solution that
solves the problem of PdM for any engine. The particularities of each engine may or may
not permit the use of certain techniques in each case.

In the approach presented by Simões et al. [37], an innovative approach for diesel
engines is applied based on ecological variables by using Hidden Markov Models. These
variables are managed by taking into account the environment and, because of this, they
are called ecological variables.

Later, Nixon et al. [38] developed a complete framework to predict the level of com-
ponent degradation in diesel engines by using supervised learning. By using LDA-Naïve
Bayes classifiers, the system is able to classify a state as normal or failed and determine
which failure mode it corresponds to.

Recently, Hong et al. [39] applied DL techniques to prognose the remaining useful life
of a turbofan engine. The proposed model consists of a network with a one-dimensional
convolutional neural network (CNN), LSTM and bidirectional LSTM. The system addresses
the problem of high dimensionality by employing dimensionality reduction techniques.
In addition, in order to identify the problematic component of the turbofan engine and to
obtain explainability in the DL model, the proposal uses the Shapley additive explanation
(SHAP).

If we focus on the PdM of ships, the number of works reduce drastically considering
that they are an asset of capital importance in the global transport of goods with more than
80% of global transport share [40] and require novel methods that optimize their operation
due to their maintenance costs of around 10% of the operating cost [41–43].

In the state of the art different PdM techniques using LSTM after an autoencoder to
predict malfunctioning components or assets have been implemented on data from tem-
perature sensors, flowmeters, pressure and speed sensors in industrial machinery [44–48]
and based on data vibration [49]. However, it is necessary to highlight, at this point, the
efforts of the academy to advance in the knowledge with respect to the application of
unsupervised techniques on naval machinery as propulsion devices [50–52]. Some of the
available ML-based studies focus on optimizing the energy consumption of propulsion
plants [53,54]. It is also noteworthy that some studies develop the effect of missing data on
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their predictions due to data collection on this type of platform [55–57]. One class of SVM
models [58,59] is of special relevance and application in naval assets PdM.

4. Unified Architecture

As defined in Section 2, a common approach was required in order to guarantee the
scalability of the solution in terms of equipment and ship class. This approach had to deal
with a variant number of features (from a few hundreds to thousands of inputs), acquisition
frequencies (from mHz to Hz), algorithmic solutions and prediction horizons.

According to that, a modular architecture was designed where each one of the blocks
could be modified (or even substituted) according to the necessities without altering the
flow. As illustrated in Figure 1, this design differentiates three main parts: on the left
side, the data processing modules are meant to be adequate for the input data to deal
with it in the following steps. It includes the preprocessing (PrePro Data module) tasks
required to structure the data into tabular information and the actual processing (Process
Data). This second task involves cleaning, imputation, resampling and operational filtering.
All of these subprocesses make use of the historical information previously cleaned and
consolidated. The storage for both the raw data and the cleansed ones is performed in
HDFS and recovered by using Hive queries. The combination of both make it possible to
guarantee the robustness of the system and the availability of the information.

Figure 1. Architectural design. SOPRENE is composed by three big subsystems: processing, training and operation.
Processing subsystem is common to training and operation.

This information flows to the rest of the systemic parts (Training and Operation)
through the subsequent Hive queries. These ones—depicted in the Filter Data module—
retrieve and provide the required dataset (in terms of variables and time periods) for each
one of the parts and blocks. The training and operation blocks are internally divided into
three tasks, predicting the future state of the engine, detecting anomalies in that future state
and diagnosing faults. The training block will train the models that carry out these tasks,
while the operation block will apply these models to carry out predictive maintenance. In
this sense, training modules require the longest historical possibilities for the equipment to
be trained. This dataset is transformed, normalized and prepared (temporal aggregation
and data split) so it can be ready for the prediction and anomaly detection algorithms
(see Sections 4.1 and 4.2, respectively). This grouping has been defined according to the
operational requirements, which determines a triple scope s (days, weeks and months),
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providing then a triple time frame input to these modules. Finally, as stated in Section 2,
there is a lack of supervised data required to postprocess the historical data: Synthetic data
are generated using the dataset as the baseline and simulating malfunctions according to
the FMECA parameters and conditions. As presented in Section 4.3, this modified dataset
is the one used to train the diagnose algorithmic.

On the other hand, the operational block implements the predictive diagnosis. To this
end, it repeats the data preparation and makes use of the training results—normalization,
prediction, anomaly detection and diagnosing trained models—over the prepared incoming
new data. In this sense, the system understands that any unconsolidated information
segment is required to be processed. Thus, the operational modules are triggered either
by batch processing (current data arrives periodically) or by the inclusion of relevant
information from the past. In both cases, the resulting information is stored according to
its time indexing.

Table 1 shows an example of FMECA entry as used in SOPRENE. It identifies the
failure mode with a number that only serves as a label (31 in the example); for each failure
mode, it provides a collection of variables along with their nominal values, threshold and
tendency. This table contains implicit expert knowledge and identifies the signals that will
be predicted, as explained in the next section.

Table 1. Example of failure mode identified by the failure mode, effects and criticality analysis
(FMECA). This failure mode has an Id 31 and comprises three signals. Values shown do not corre-
spond to any real failure mode.

Id Signal Nominal Threshold Tendency
Value Value

31
Variable 1 1.3 2 ↑
Variable 2 5.4 5 ↓
Variable 3 55 60 ↑

4.1. Behavioural Prediction

The main objective is to estimate the state of a piece of equipment (such as the engine
or the propeller) in a future instant of time. In this manner, in order to carry out a prediction
from an instant of time ts

i for a future instant that is distant from horizon units of time
relative to the use of the engine (ts

i+horizon), the system will use the information collected
by the sensors during the previous window units of time to ts

i − (ts
i−window). The user can

customize the window size and prediction horizon, although by default, the horizon is
used twice as the window size.

Both the horizon and the window are relative to the time scope s selected (and, therefore,
to the data aggregation performed). In this sense, despite the large data pools available
during the preprocessing stage, the datasets resulting after the aggregation process are
proportionally reduced. Thus, several predictions techniques have been considered for
properly dealing with the precision requirements and the data load: on the one hand,
regularized linear regression methods such as L1 (lasso) and L2 (ridge) have been used
to deal with the slow degradative failures and the smaller dataset after the aggregation.
Both techniques use the Spark MLlib library to provide distributed training and execution.
On the other hand, Long Short-Term Memory (LSTM) based networks [36] have also been
developed to make use of the massive data to forecast sudden and close-in-time events,
although its the execution is not distributed.

The architecture keeps several aspects of predictive modeling open to maintain its
flexibility. The final user is free to use the regression model, amount of training data,
prediction and historic window length, among others, of his choice. This is performed in
this manner because different equipment require different approaches. For example, using
a LSTM network to model a collection of signals with data grouped by month and historic
data along a couple of years will most likely overfit and, in that case, a lineal regression
model will probably perform better.
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4.2. Anomaly Detection

Once the prediction of the engine status has been made, it is necessary to determine
whether this status corresponds to a normal value or a possible failure (anomaly). Since
no labeled anomalies are available, the anomaly detection process is carried out in an
unsupervised manner by using the autoencoder neural network. For the distributed
implementation of this method, the Sparkling Water library was used.

By using the reconstruction error provided by the autoencoder model, we can discern
between normal data (low reconstruction error) and anomalous data (high reconstruction
error). This value can be presented as the mean square error of all the input variables (a
single value) or its decomposition, that is, the error of each of the input variables or nodes
of the network. The goal of this stage is to determine which ones are abnormal and which
variables cause those abnormalities. The process is divided into three sequential phases:

1. Detect anomalies: To determine which datum is normal or anomalous, a first filter is
carried out by using the mean square error. Based on a precalculated threshold error,
the data that exceed this error are classified as anomalous and the rest as normal. The
user can choose whether the calculation of this threshold error is carried out using
the interquartile range technique [60] (a statistical dispersion measure that allows the
threshold to be calculated automatically) or by establishing a percentage of anomalous
data in the set of data.

2. Independent contributions: To determine which specific variables have caused the
appearance of the anomaly in the data classified in the previous phase as anomalous,
the decomposition of the reconstruction error is used (see Figure 2). Taking into
account that the data are now normalized, this allows us to order the variables by
their reconstruction error. To determine which variables have contributed the most
to the formation of the anomaly, the system uses a method that automatically selects
the most anomalous variables. The method is called the Elbow Method [61] and
allows starting from a set of variables and their reconstruction errors by automatically
selecting those that deviate the most.
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Figure 2. Autoencoder output (red) versus the original value to be reconstructed (blue) and the
associated reconstruction error (green) for three attributes of the diesel engine for propulsion. X-axis
represents normalized data coming from a BAM-class (Maritime Action Vessels) ship; y-axis contains
an ordered index. Reconstruction error rises when the autoencoder is unable to reproduce the signals.

3. Build anomaly mask: From the selection of the previous phase, a matrix or output
mask of dimensions m× n is built and m is the number of rows or records and n is
the number of columns or variables, where the anomalous variables are marked with
a one and the normal variables with a zero. This information will be used by the
subsequent diagnostic module.

4.3. Failure Diagnose

The diagnostic block is responsible for determining the failure mode by using the
prediction data and the evaluation of the anomaly detection block when it occurs and the
probability of each failure mode. In order to establish the probability, a set of Multilayer
Perceptron [62] classifiers is used, which ranges from one to two hidden layers. In all the
approaches, the number of neurons of the first hidden layer’s neurons triples the number
of variables and decreases linearly until the output layer. In addition, RELU activation
functions were used in all the hidden neurons, while sigmoid activations were used in the
output layer to obtain the probabilities of the failures. Since labeled datasets corresponding
to all possible failure modes are not available to train the perceptron, the decision was
made with respect to implementing an artificial data generator in order to produce them.
By studying the theoretical characteristics of the failure modes included in the FMECA
document of the engine (variables involved, nominal values, range top values, etc.), the
generator allows the creation of normal and anomalous datasets.

The system employs a perceptron to classify each failure mode. Each perceptron is
trained with one failure mode asociated data; thus, when new data arrives, it issues the
probability of occurrence of this failure mode. In this manner, each perceptron receives in
its input layer the state of an engine (as many neurons as sensors) and emits in its output
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layer the probability of occurrence of the failure mode for which it has been trained (one
neuron).

This classifier is used in combination with the mask generated by the anomalies
detection block to perform the engine diagnostics. The utility of the failure mask is to
narrow down the number of possible failure modes. Given a data record of an instant
of time, for which the anomaly mask contains m variables marked as anomalous and
n marked as normal, only the failure modes in which any of the m take part in will be
considered as possible anomalous variables. In this manner, the failure modes in which
all the variables involved have been considered normal by the anomaly detector will be
omitted.

4.3.1. Artificial Failure Mode Generator

The FMECA document collects the nominal thresholds and range caps of the variables
that make up each failure mode. By automatically analyzing this document, the system
is able to obtain this information. The nominal value of a variable for a given failure
mode is the usual value over which it oscillates without the failure mode occurring. The
upper range values, however, are those minimum and maximum thresholds from which
a sensor is in an abnormal state, which can result in the failure mode in question. The
ranges of operating values of each variable, therefore, depend on the rest of the variables at
each moment.

Since there are no labeled real data of each failure mode to train the models, based
on the values described in the FMECA, the system is capable of generating artificial data
associated with each failure mode. The variables that do not intervene in the failure mode
will present values that oscillate above their corresponding nominal values, while the
values of the variables that intervene in the failure mode will deviate beyond the upper
range values associated with that failure mode. In order to avoid generating datasets that
are too homogeneous, the system uses different kinds of distributions to introduce some
variability in the sensors. For example, given an artificially generated dataset, the values
taken by a variable that do not intervene in the generated failure mode will follow a normal
distribution centered on the nominal value without reaching the upper range values.

4.3.2. Classification Model

The objective of the perceptrons is to determine if the status of a motor corresponds to
any of the failure modes described in the FMECA document. Due to the use of a distributed
version of the implementation, the system employs a model to classify each failure mode.
In this manner, each perceptron receives in its input layer the state of a engine (as many
neurons as sensors) and emits in its output layer the probability of occurrence of the failure
mode for which it has been trained (one neuron). This output layer uses a softmax function
to output a probability in the interval [0, 1].

The appearance of the system output is shown in Figure 3. Each row shows the
identifier of the failure mode in the FMECA and the probability associated with each mode.
For each column, the expected date on which the failure mode occurs is shown. The figure
represents five failure modes labeled as 125, 44, 78, 18 and 82; the color represents the
failure probability, with 0.5 marked as a white dot.
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Figure 3. Example of system output for five failure modes (named 125, 44, 78, 18 and 82) sorted
temporally. Each row depicts the evolution of the probability of failure along the time. The points
where the failure probability reaches its peak are marked with white dots.

5. Results

The unified architecture has been implemented for two different scenarios, specifically
for two types of engines: Diesel engines for propulsion of BAM Maritime Action Vessels
and diesel engines for power generation in F-100 frigates. Although the architecture is
common, the particularities of each scenario render some methods more appropriate than
others and so there are low-level differences in implementation. In this section we describe
the results obtained in the two case studies developed during the project.

5.1. Diesel Engine for Propulsion

The development has been subject to a mostly qualitative evaluation of the develop-
ers themselves and the organization involved. Some of these ideas are collected in this
subsection:

• Prediction: Despite the large data pools available, the RPM filtering rules out a
significant piece of data when the engine was off. Due to this, when a large grouping
is carried out (for example, 1 data/week or 1 data/month), very few data results. As
stated in Section 4.1, it disables the correct convergence of certain models, making each
one of them suitable for a specific scenario. Table 2 compares the different techniques
and methods, collecting the mean squared errors by using different grouping modes
and horizons.
As it is possible to observe in the table, LSTM-based methods provide better per-
formances with the lower degree of aggregation. Figure 4 depicts an example of
prediction by using a recurrent neural network, where both sudden events and ten-
dencies are correctly predicted. Please note that Figure 4 contains a prediction, while
Figure 2 represents the reconstruction error in an autoencoder. On the other hand,
Table 2 also illustrates that long-term behaviors are better estimated by simpler regres-
sion methods.
The prediction system is very sensitive to both the grouping of the data and the sizes
of the window and horizon. Furthermore, it has been found that, in general, there is a
strong correlation between the variables that pass the selection process. A window
size of approximately twice the forecast horizon has been found to be sufficient to
achieve good results in most scenarios.
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Table 2. Mean squared errors (MSE) obtained by the algorithms using different data grouping modes:
1 data/day (D), 1 data/week (W) and 1 data/month (M). The prediction horizons used were 5 and
10 units.

Horizon = 5 Horizon = 10

Algorithm D W M H D W

Linear
Regression 0.65 0.36 0.22 0.64 0.35 0.27

L1 0.62 0.36 0.22 0.61 0.32 0.25
L2 0.60 0.33 0.20 0.64 0.31 0.24

Elastic Net 0.56 0.32 0.15 0.57 0.33 0.06
LSTM 0.41 0.28 0.16 0.40 0.27 0.16

Figure 4. Long-Short Term Memory Networks (LSTM) prediction output (red) versus the real value
to be predicted (blue) for three attributes of the diesel engine for propulsion. X-axis represents
normalized data coming from the BAM ship; y-axis contains an ordered index. Shadowed area
represents prediction error.

• Anomaly detection: For this stage, two metrics have been used to qualitatively mea-
sure the performance of the model during an interval of four years: on the one hand,
the anomalies detected by the model have been correlated with the warship’s engine
alarm system. Although, this system does not collect malfunctions but operative
conditions, it is possible to observe an indirect relation between them (see Figure 5).
On the other hand, the results have been analyzed by maintenance experts which
focused on specific known events. The unsupervised trained autoencoder model has
been tested and the results have been satisfactory. The model was able to detect most
of these anomalies, as can be observed in Figure 6. The value of this graph is found in
the coincidences between signals along the x-axis.
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It should also be noted that this process is very sensitive to parameterization and can be
configured to allow the passage of more or less anomalies through the reconstruction
threshold and, within these, select a greater or lesser number of variables involved by
using the Elbow Method parameters.

Figure 5. Confusion matrix of the failures detected by the BAM’s engine alarm system versus the
anomalies detected by the model.

Figure 6. Normalized comparison of the vessel alarms (in blue) with the autoencoder’s joint diagnos-
tics for all failure modes. Data comes from a BAM ship. Y-axis represents the confidence given by
the autoencoder. x-axis represents normalized data coming from the vessel.

• Failure diagnose: Using artificial datasets based on the engine’s design values (de-
scribed in the Failure mode effects and criticality analysis, FMECA) has allowed
us to build classification models that determine which failure modes are occurring.
However, this theoretical behavior of the engine does not have to always correspond
to reality, since its operation may vary with the use, replacement or repair of parts,
etc. The training of diagnostic models depends directly on this generator and so it is
necessary to build a sufficiently large and varied dataset.

5.2. Diesel Engine for Power Generation

The second case study involves the application of the SOPRENE architecture to the
diesel engine for power generation in the F-100 class frigate. Each vessel contains four
generators with six cylinders and the cylinders are in charge of generating the electrical
power required by the ship. Despite the fact that engines for propulsion and power
generation share a basic design, they pose interesting differences in order to validate the
generality of the SOPRENE architecture.

For the purpose of this demonstrator, the main difference between propellant and
power generation engines relies on the rotation velocity, which in the case of the power
generator is, in essence, binary (stopped and online, with a brief transition state). Mean-
while, the propulsion engine has a continuous range of velocities, which requires more
elaborate filtering techniques. A brief description of the main SOPRENE subsystems are as
follows:
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• Prediction: Similarly to the propulsion engine, data grouping has a large impact on
the amount of data available for training and validation of the diesel generator models.
This happens even though the availability of a large amount of data (five ships with
four engines each one) after aggregation and filtering the amount of available data
for training and validation is limited. The flexibility of the SOPRENE architecture
allowed the application of two types of models depending on the data aggregation:
Deep LSTM networks for data grouped by days and weeks and regularized (L1,
L2 and ElasticNet) lineal models for weeks and months. Linear models showed
a strong tendency to underfit data grouped by days, while there were insufficient
data to train LSTM networks with data grouped by months. Table 3 summarizes a
comparison of the MSE measured in validation for lineal models and LSTM-based
network for a 10 units prediction horizon; the best results are marked in bold. An
example of prediction with a LSTM network can be observed in Figure 7 that shows
three normalized variables corresponding to a certain FMECA failure mode.

Figure 7. LSTM forecasting output (red) versus the real value (blue) for three variables of the diesel
generator. Y-axis depicts the value of the variable. X-axis represents normalized data coming from
the vessel.
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Table 3. Mean squared errors (MSE) obtained by the algorithms by using different data grouping
modes for power-generation engine: 1 data/day (D), 1 data/week (W) and 1 data/month. The
prediction horizons used were 10 units.

Algorithm D W M

Linear Regression - 1.65 1.66
L1 - 0.79 0.49
L2 - 3.0 0.53

Elastic Net - 0.79 0.525
LSTM 0.31 0.59 -

• Anomaly detection: Given the lack of labeled data and the need to quantify the
contribution of each attribute to the overall reconstruction error, we implemented the
anomaly detection subsystem based on a deep LSTM autoencoder. The autoencoder
input is composed by the signals identified by FMECA for a certain failure mode and
the output is the reconstruction error of each one of this attributes. Figure 8 shows
an example of the real values of three attributes compared with the output given by
the autoconder. In this manner, the solution gains in interpretability while the overall
reconstruction error is easily computed. Figure 9 shows a confusion matrix comparing
the anomalies detected automatically with vessel alarms. Despite the unsupervised
nature of the anomaly detector, it is able to detect anomalies that actually correspond
to vessel alarms to a great extent . Figure 10 shows a different perspective of the
anomaly detector. It shows a timeline with the vessels detected by human experts
(blue) with the automatic anomaly detector (red). There is an evident difference in
the level of confidence given by each detection method, but it is easily adjusted by
a threshold.

Figure 8. LSTM autoencoder output (red) with the contribution of each attribute (green) and the
original value (blue) for the diesel generator.
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Figure 9. Confusion matrix comparing detected failures vs. vessel alarms for the power-generation
engine in the F-100 class frigate.

Figure 10. Normalized comparison of the vessel alarms (in blue) with the autoencoder’s joint
diagnostics for all failure modes. Data comes from a F-100 class frigate. Y-axis represents the
confidence given by the autoencoder. X-axis represents normalized data coming from the vessel.

• Failure diagnosis: The main challenge in training the diagnosis model is to obtain a
significant amount of data corresponding to the failure modes that are to be identified.
Even though the datasets involved four years and five vessels, the presence of failure
modes is limited in the extreme sense. A potential solution is to simulate the failure
modes with thermodynamic models, but this was not an option in this context. The
solution adopted was to synthesize data in each of the failure modes of interest by
using the domain knowledge contained in FMECA. Of course the resulting synthetic
dataset will not conserve all the complex behavior found in the engine, but the goal
is actually to capture the information contained in FMECA with some variability to
avoid overfitting. The system in charge of diagnosing the engine state for each failure
mode identified in the FMECA is a MLP for which its input is the engine state and its
output is a probability of occurrence of the given failure mode.

6. Conclusions

We have presented a scalable, robust and flexible predictive maintenance architecture
for big and complex systems. It follows a modular design based on three independent
blocks that can be modified, replaced or customized without altering the flow. It consists
of the following: (1) a data processing module, (2) a data training module and (3) an
operational module.

The virtues and limitations of this architecture have been verified and validated by
the status monitoring of diverse diesel engine equipment (diesel engines for propulsion
vessel’s propulsion and diesel generators) in two different ship classes of the Spanish
Armada. In this sense, the data prediction, the detection of anomalies and the diagnosis of
failure modes were carried out in two assets from a total of 28 tested in different vessels.

As shown along the paper, these predictions were correctly adjusted to what happened
in different time horizons’ predictions. In the same manner, correct diagnoses of the
probabilities of failure modes were carried out prior to the appearance of alarms on the
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monitored systems. In brief, the percentages of detectability were high enough to assume
that this technological demonstrator is a great advancement in supporting human decisions
of the human teams that are in charge of Spanish Armada’s units sustainment. Finally, the
solution developed is a comprehensive system that allows the three predictive maintenance
tasks (prognosis, anomaly detection and diagnosis) to be carried out in a reasonable time
due to its distributed implementation, which allows working on large data sets (Big Data
scenarios). In addition, it is valid for any ship in the fleet with similar characteristics and,
due to its modularity, it can be easily adapted to new environments. To the best of our
knowledge, this is the only complete predictive maintenance software for Big Data that has
been used successfully in the naval sector. After this research study, we have verified that
it is possible to define a general architecture that allows scalable predictive maintenance in
a fleet of ships.

Several lines of work remain open. Given the flexibility of SOPRENE’s and the Spanish
Armada’s needs, we plan to extend the platform to apply PdM to new equipment (fire
extinguishers, naval electric engines, axes, etc.) and ships and, in this manner, reduce the
maintenance cost of the fleet while increasing its operational capacity. One of the system
limitations is that it has not been designed to operate in real-time and depends on complex
offline processing in centralized data centers. To overcome this problem, we plan to extend
SOPRENE by embedding it into the Spanish Armada’s ships operating in real-time with
limited computational resources.
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