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Abstract: Relation extraction (RE) is an essential task in natural language processing. Given a context,
RE aims to classify an entity-mention pair into a set of pre-defined relations. In the biomedical field,
building an efficient and accurate RE system is critical for the construction of a domain knowledge
base to support upper-level applications. Recent advances have witnessed a focus shift from sentence-
to document-level RE problems, which are more challenging due to the need for inter- and intra-
sentence semantic reasoning. This type of distant dependency is difficult to understand and capture
for a learning algorithm. To address the challenge, prior efforts either attempted to improve the cross-
sentence text representation or infuse domain or local knowledge into the model. Both strategies
demonstrated efficacy on various datasets. In this paper, a keyword-attentive knowledge infusion
strategy is proposed and integrated into BioBERT. A domain keyword collection mechanism is
developed to discover the most relation-suggestive word tokens for bio-entities in a given context.
By manipulating the attention masks, the model can be guided to focus on the semantic interaction
between bio-entities linked by the keywords. We validated the proposed method on the Biocreative
V Chemical Disease Relation dataset with an F1 of 75.6%, outperforming the state-of-the-art by 5.6%.

Keywords: relation extraction; chemical-induced disease; pretrained language models; keyword
attention; BERT; transformer

1. Introduction

Relation extraction (RE) is a primitive task in natural language processing (NLP). In
the context of supervised learning, RE refers to the classification of an entity pair to a set of
known relations [1] in a given document or sentence. RE is widely used in biomedical text
mining and is usually performed after named entity recognition (NER), jointly discovering
and extracting patterns and knowledge from unstructured textual data. Powered by the
latest NER and RE algorithms, computers can quickly and accurately identify biomedical
entity mentions and the relations between them to build a domain-specific knowledge base
to support upper-level applications.

Traditional learning-based methods for RE can be divided into two categories, in-
cluding feature-based and kernel-based methods [1], which either rely on hand-crafted
features or elaborately-designed kernels to perform classification. These methods usually
incur error propagation through the learning pipeline, which largely limits the model
performance. The rise of deep learning-based models has accelerated the development of a
broad spectrum of learning tasks, and RE has also benefited from deep neural models.

One line of efforts takes advantage of the pretrained language models, such as Bidirec-
tional Encoder Representations from Transformers (BERT) [2], Embeddings from Language
Models (ELMo) [3], and XLNet [4], which can be fine-tuned for the RE task and present
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superior performance. On the other hand, graph neural networks (GNNs) [5–8] have
also been extensively investigated in RE due to their intuitive modeling and semantic
interpretation capability. In the biomedical field, human annotation is cost-ineffective
because of the inaccessible domain knowledge required for annotators. Distant supervised
learning [9] was, thus, developed to alleviate the problem and speed up annotation.

Recent RE advances have seen a shift from sentence-level RE to document-level RE.
The latter is more challenging due to the inter- and intra-sentence reasoning. In other
words, the relation of an entity pair could span multiple sentences, creating a long-range
semantic dependency that is hard to detect. Prior efforts attempted to tackle this challenge
in two ways: (1) encoding cross-sentence text representations to facilitate distant semantic
reasoning [5–7,10] and (2) the infusion of domain or local knowledge into the model to
guide training and inference [11–13]. Our study belongs to the latter category. The main
hypothesis of this study is that keyword-based domain knowledge can benefit the learning
task of document-level RE in the biomedical field.

Our goal is to investigate the role of keywords in RE and their function in performance
boosting. To verify this hypothesis, we propose a keyword-attentive knowledge infusion
strategy that can be integrated into the BERT neural architecture. The strategy is driven by
a custom process of domain keyword collection that aims to discover the most informative
tokens that are highly relation-suggestive for bio-entity pairs in a given context. Through
the keyword attention masks, the model is guided to focus on the semantic interaction
between the bio-entities linked by the keywords. We adopt BioBERT, which has been
pretrained on over a million PubMed articles. BioBERT is fine-tuned with the addition of a
keyword attention layer for relation classification. Thus, the proposed method is named
Kw-BioBERT. Our main contributions are as follows.

• We employ a BERT-based keyword attentive neural architecture, named Kw-BioBERT,
for document-level biomedical RE.

• A novel domain keyword collection mechanism is proposed to effectively capture
relation-suggestive keywords for knowledge infusion.

• The proposed method is validated on the Biocreative V Chemical Disease Relation
(CDR) dataset. The results show that the proposed method outperformed the SOTA
by 5.6% in F1 and, thus, can serve as a credible baseline for the CDR dataset.

The rest of this paper is structured as follows. Section 2 covers the prior efforts relevant
to this study. Section 3 describes the CDR dataset and the design details of the proposed
method. Section 4 provides the implementation details, experimental settings, and results.
Section 5 summarizes the work with the limitations and future directions.

2. Related Work

Recent advances in RE have witnessed a wide spectrum of methods and models. In
this section, A review of the closely relevant efforts is provided.

2.1. Knowledge Infusion in RE

Knowledge infusion is a common strategy [14,15] to handle low-resource learning
tasks with limited supervision. In RE, knowledge infusion has also been found effective.
Roy et al. [11] employed the Drug Abuse Ontology (DAO) [16] to determine entity men-
tions and relations. Similar efforts have appeared in Sousa et al. [12]. In addition to the
domain knowledge, local semantic knowledge can also be infused to guide the training.
Yu et al. [13] added a position-enhanced module to the BERT neural architecture to encode
relative locations between entities. Our proposed method infuses domain knowledge in
two ways through (1) biomedical knowledge infused by the pre-trained BioBERT language
model and (2) a keyword attentive layer that guides the training to focus on the entity
interaction via informative keywords, which, to our best knowledge, has not been seen in
prior studies.
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2.2. RE Based on Pretrained Language Models

Pretrained Language Models, such as BERT [2], ELMo [3], RoBERTa [17], XLNet [4],
T5 [18], and ERNIE [19], have gained explosive attention in numerous NLP tasks, including
question and answering [20], named entity recognition [21], summarization [22], text
generation [23], and knowledge graph construction [24] due to the strong capability to
capture contextual semantic information within text and its self-supervision nature. In
the area of RE, Pretrained Language Models have also been extensively utilized, mainly
in two ways: (1) to generate contextualized word embeddings [25] and (2) to fine-tune a
pretrained model to suit the downstream RE task [26].

We focus on reviewing the second line of work since it is more relevant to our study.
Shi et al. [27] proposed a strategy that directly utilizes BERT for RE by only changing the
input format to include a document and the entity mentions separately by a [sep] token. Su
and Vijay-Shanker [28] proposed a novel fine-tuning process that utilizes all of the outputs
from the last transformer layer in BERT, leading to a performance gain. In addition to
the base BERT, two of its variants, BioBERT [29], and SciBERT [30] have emerged with a
stronger embedding capability to work with scientific publications and gain popularity
in the RE task [31–34]. In this work, BioBERT was chosen since it has been pre-trained on
over a million PubMed articles, making it very competitive in biomedical NLP tasks.

2.3. Document-Level RE

Document-level RE has recently gained increasing interest in the NLP community
since documents provide richer semantic information than sentences. Several datasets that
focus on document-level RE have been developed, such as CDR [35,36], DocRED [37], and
GDA [38], which have driven the development of innovative models. One line of prior
efforts [5–7,10] explored ways to conduct inter- and intra-sentence reasoning [25,39], a
major challenge in document-level RE.

Gu et al. [10] employed a maximum entropy (ME) model and a CNN model for inter-
and intra-sentence RE, respectively. Bi-affine Relation Attention Network (BRAN) [40]
stacks a series of transformers [41] followed by head and tail MLPs and a bi-affine oper-
ation that encodes the pairwise token prediction in a 3D tensor. Graph neural networks
(GNN) [5–8] have also been a popular choice due to their intuitive modeling ability in RE,
where named entities and relations can be modeled as nodes and edges in a graph. Sahu
et al. [5] developed a GNN-based model to capture both local and non-local dependency
between entity mentions.

Similarly, Wang et al. [6] designed a GNN model, named GLRE, that encodes and
aggregates global and local entity and relation representation. Christopoulou et al. [7]
proposed an edge-oriented (EoG) GNN that leverages multi-instance learning to enhance
intra- and inter-sentence reasoning. Compared to the prior studies that focused on mod-
eling and reasoning, our work focuses on domain knowledge infusion, which has not
been extensively explored in the field of document-level RE. One relevant work is by
Sousa et al. [12], which injected domain ontology knowledge into the model, resulting in
performance gains. On the other hand, our work investigates the role of keywords, which
is a novel method of knowledge infusion.

3. Materials and Methods
3.1. Datasets

The CDR dataset [35,36] was adopted in this work to evaluate the proposed model.
The CDR dataset models the chemical–disease relations, namely chemical-induced disease
(CID) relations, and is created at the abstract level with entity-linked mention annotations,
which are featured by long-range and cross-sentence relations. Specifically, A CID relation
marked in the dataset could be either a putative mechanistic relation or a biomarker relation.
The former means that the chemical is a potential etiology of the disease (e.g., cancer x is
caused by exposure to chemical y); the latter, on the other hand, indicates a correlation
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between the chemical and the disease (e.g., an increased abundance of chemical X in the
brain correlates with disease Y).

The two relation sub-types are treated as a unified CID relation, creating a binary
classification problem, i.e., CID/non-CID relation. According to [35], the development
of the dataset involved four annotators with medical training background. A double-
annotation strategy was adopted; namely, each abstract was independently labeled by two
annotators. The dispute was resolved by a third and senior annotator. All annotations were
performed using PubTator [42].

Table 1 shows the statistical information of the CDR dataset, where 1500 abstracts are
equally divided into training, development, and test sets. The mentions of diseases and
chemicals are about equally distributed into the three sets of data. The size of positive
samples, namely the chemical–disease (CD) pairs that present a CID relation, is 3116,
which is about one-fourth of the size of negative samples, i.e., the CD pairs without a
CID relation. The imbalanced distribution of classes brings difficulty to both training and
evaluation. In addition to the original training set shown in Table 1, the task contains an
additional training set [43] of 15,448 weakly labeled PubMed abstracts with 26,657 positive
CID relations and 146,057 negative ones. This extra data is used as a secondary source
for training.

Table 1. Stats for the CDR dataset.

Data Split Abstracts Diseases Chemicals Pos. Neg.

Training 500 4182 5203 1038 4280
Dev. 500 4244 5347 1012 4136
Test 500 4424 5385 1066 4270

Total 1500 12,850 15,935 3116 12,686

Table 2 displays an abstract sample with annotations in the CDR dataset. The first two
sections are the original article title and abstract. The third section lists the entity mentions,
where each row follows a format of “PMID offset length mention_text entity entity_ID”,
which describes an entity mention with an exact location. The last section lists the CID
relations that follow a format of “PMID relation_type head_entity tail_entity”.

Table 2. A sample with annotation in the CDR dataset.

Title 20633755|t|Suxamethonium induced prolonged apnea in a patient receiving
electroconvulsive therapy.

Abstract

20633755|a|Suxamethonium caused prolonged apnea in patients in whom
pseudocholinesterase enzyme gets deactivated by organophosphorus (OP)
poisons. Here, we present a similar incident in a severely depressed patient
who received electroconvulsive therapy (ECT). Prolonged apnea, in our case,
ensued because the information about a suicidal attempt by OP compound
was concealed from the treating team.

Entity Mentions

20633755 0 13 Suxamethonium Chemical D013390
20633755 32 37 apnea Disease D001049
20633755 88 101 Suxamethonium Chemical D013390
20633755 119 124 apnea Disease D001049
20633755 193 222 organophosphorus (OP) poisons Chemical D009943
20633755 274 283 depressed Disease D003866
20633755 348 353 apnea Disease D001049
20633755 423 434 OP compound Chemical D009943

Relations 20633755 CID D009943 D001049
20633755 CID D013390 D001049
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3.2. Learning Problem

Given the CDR dataset, the learning task can be formulated as follows. Let Dtrain,
Ddev, and Dtest denote the training, development, and test set, respectively. Each instance
in the dataset can be defined as (xi, yi), where xi = (Ak, Cm, Dn), representing a CD pair
(Cm, Dn) that appears in an abstract Ak (i, k, m, and n are indices), and yi is a binary target;
where 1 indicates a CID relation of the CD pair, i.e., a positive instance, and 0 otherwise.
The learning problem is to develop a model that takes xi ∈ Dtest as input and makes a
prediction ŷi that should approximate the ground truth yi as much as possible. It is noted
that the problem belongs to document-level RE, where the head and tail entity mentions
could span across multiple sentences in the abstract.

3.3. System Framework

The system framework is given in Figure 1. First, the BioBERT base model is fine-tuned
using the training set. The tuned BioBERT model is used for keyword extraction, generating
a collection of seed keywords that are highly relation-suggestive. The seed keyword set is
then expanded to form the final domain-specific set of keywords. We modify the BioBERT
network by adding a keyword-attentive layer in parallel with the last transformer layer,
similar to [44]. The resulting Kw-BioBERT model is then fine-tuned on the training set,
with the keywords injected into the model as external domain knowledge. The tuned
Kw-BioBERT is evaluated on the test set to obtain the final result.

Dataset

Training
set

Test set

extension

Pretrained
BioBERT Fine tune

Tuned BioBERTPretrained 
Kw-BioBERT

Tuned 
Kw-BioBERT

Keyword
extraction

Seed keywordsKeyword
expansionFinal keyword set

Fine tune

Testing

Test result

Figure 1. System framework. BioBERT is fine-tuned on the CDR training set. Then, the keyword
extraction algorithm is applied to the tuned BioBERT model to generate a set of seed keywords,
expanded to form the final keyword set. The BioBERT is changed to Kw-BioBERT and further tuned
on the training set with the keyword attention mechanism enabled. Finally, the tuned Kw-BioBERT
is evaluated on the CDR test set.

3.4. Network Architecture

A network architecture (as shown in Figure 2) similar to [44] is adopted. However, our
version has two differences compared to the original design, including the input form and
keyword manipulation. The input is a sequence pair (seqA, seqB), where seqA starts with
a [cls] token, ends with a [sep] token, and has a tokenized full abstract A in the middle;
seqB specifies the head and tail entity mentions. For the CDR dataset, seqB consists of
a chemical entity mention C (the head) and a disease entity mention D (the tail), both
appearing in A. The model’s job is to understand the semantic relation between C and D,
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given A as a context. The neural architecture is modified from BioBERT (with the same
neural architecture with BERT), adding a keyword attentive layer side by side with the last
transformer encoder layer in BERT.
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Figure 2. Neural architecture of Kw-BioBERT. A keyword-attentive layer is added in parallel with
the last transformer encoder to represent the semantic interaction between the relation-suggestive
tokens and entity mentions.

The keyword attentive layer differs from a transformer encoder in two aspects. First,
the attention masks, in the transformer encoder, are used to mask the padding tokens so
that they do not participate attention; in the keyword attentive layer, however, the attention
masks are also manipulated to allow tokens in seqA to only attend the two entity mentions
in seqB and allow the two tokens in seqB to only attend the keywords in seqA. In other
words, for each token in seqA, we only care about its attention (or impact) on the two
entity mentions in seqB; also, for each token in seqB, we only consider its attention on the
keywords in seqA.

With the manipulation attention masks, the model learns how the entity mentions and
the keywords interact and jointly determine the relation. The output of the keyword atten-
tive layer is a vector of hidden states [hcls, hA1, hA2, ..., hB1, hB2, hsep], which has the same
size as the input. The hidden state vector can be divided to two sections corresponding to
seqA and seqB. Then, a pooling operation is applied to each section individually, produc-
ing hkw,A and hkw,B, which represent the aggregated and keyword-attentive embeddings
for seqA and seqB, respectively. Now, the semantic difference between hkw,A and hkw,B is
denoted as hdi f f , which is defined as

hdi f f = [hkw,A − hkw,B; hkw,B − hkw,A] (1)
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where [; ] is the concatenation operation. Next, the four pieces of information are concate-
nated, including the hcls from the last transformer encoder, hkw,A, hkw,B, and hdi f f , and
feed the resulting vector into the detection head, which consists of a dense layer and a
softmax function.

3.5. Keywords Collection

The mission keywords collection is to discover the word tokens that are relation-
suggestive. For instance, in “Suxamethonium induced prolonged apnea in a patient
receiving electroconvulsive therapy.”, the two entity mentions “Suxamethonium” and
“apnea” are linked via the verb “induced”, making it a keyword that suggests a CID
relation. In another example, “Myasthenia gravis presenting as weakness after magne-
sium administration.”, the dominate keyword is not apparent, and words “presenting”,
“after”, and “administration” jointly affect the CID relation between “magnesium” and
“Myasthenia gravis”.

The process of identifying the seed keywords is as follows. For each positive CD pair
in each abstract within the CDR training set, we do the following: the instance (A, C, D)
is fed into BERT that has been tuned on the training set and obtains a prediction. If the
prediction does not match the ground truth, we move on to the next CD pair; otherwise,
the abstract is scanned token by token; specifically, for each token that is not a (1) entity
mention, (2) punctuation, or (3) stop word, we mask it in the abstract and obtain Amasked;
then, (Amasked, C, D) is fed into BERT again and we record a change in the output confidence.

The top three tokens that cause the most confidence drop are kept and added into the
candidate keyword set. The rationale is that if a token, masked in the abstract, leads to a
significant confidence drop, it means that the token is highly relation-suggestive for the
CD pair, given the abstract as a context. This way, a set of candidate keywords is collected
and further manually selected to form a seed keyword set. Examples of these keywords
include “induced”, “statistically”, “maintenance”, “consumption”, and “idiopathic”, etc.
More keyword examples are provided in Section 4.2.

To enhance the keyword diversity, the synonyms of the seed keywords are added
into the keyword set. For instance, the word “induce” is semantically close to “produce”,
“cause”, “effect”, and “provoke”, and could be used interchangeably when describing a CID
relation. After adding the synonyms, the final keyword set is created and ready for use.

3.6. Keyword-Attentive Knowledge Infusion

We take advantage of the attention mask feature implemented in BERT. Figure 3a
shows a positive instance with a chemical entity mention (CEM) “Suxamethonium” and a
disease entity mention (DEM) “apnea”, linked by a keyword “induced”. To ensure that
each token in seqA only participates attention to the two tokens in seqB and that each token
in seqB only participates attention to the keyword tokens in seqA, we employ a binary
matrix, denoted by MAttMsk, of size l × l. Let lA and lB denote the length of seqA and seqB,
respectively.

We then have l = lA + lB. Generally, the ith row in MAttMsk specifies how token i of
the input attends other tokens. In particular, MAttMsk(i, j) = 1 indicates that token i attends
token j, giving a one at row i and column j in the matrix; also, MAttMsk(i, j) = 0 means that
token i does not attend token j, posting a zero at position (i, j) of the matrix. To fulfill our
needs, for all tokens in seqA, a common attention mask vector, with all zeros in the first lA
positions and two ones in the two positions corresponding to the entity mentions in seqB,
can serve the purpose. On the other hand, all tokens in seqB share an attention mast vector,
with all zeros in all positions except the ones where the keywords reside. Figure 3b shows
a complete example of MAttMsk, given the input in Figure 3a.
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Figure 3. Self-attention masks. (a) A sample with a CID relation. (b) The attention mask matrix
associated with the sample in (a). Each token i is assigned with a binary vector (i.e., row i in MAttMsk)
that specifies which tokens it attends to. If the jth element at row i is zero, token j is not attended by i;
otherwise, j is attended by i.

4. Evaluation
4.1. Training Setting

The proposed model and keyword collection procedure were implemented using
Python 3.6.10 and TensorFlow 1.13. Experiments were conducted on an Nvidia V100. On
the CDR training set, each epoch took about 14 min (for Kw-BioBERT); on the additional
training data, the running time per epoch was about 182 min. Two hyperparameters were
tuned, including the number of transformer layers and the training epochs, with a learning
rate of 3× 10−5. The results are reported in the following sections.

4.2. Keywords

As described in Section 3.5, for each positive instance, when masked and fed into the
BERT model, the top three tokens that caused the largest confidence drop were recorded and
considered as candidate keywords. The process was applied to the CDR training set, and
three token sets that store the top-three relation-suggestive tokens were obtained. Figure 4
selectively displays the seed keywords discovered in the process, sorted by frequency in a
decreasing order. Subfigures (a), (b), and (c) correspond to the tokens resulting in the most,
second-most, and third-most confidence drop. In our experiment, a total of 1736 candidate
keywords is identified. After a round of manual selection, 235 tokens remain to form the
seed keyword set, which is further expanded to a keyword set of 943 tokens, with the
synonyms (found through WordNet [45]) added.

4.3. Performance Metric

Due to the imbalanced class distribution, accuracy is not adequate, because it may
drive the learning algorithm to classify all instances to the major class. For our case, this
could yield numerous false negatives, meaning that the positive CID relations are not
detected. Thus, F1 is adopted as the main performance metric for model evaluation since
F1 is superior to accuracy in the case of imbalanced class distribution. We also report
precision (Pre), which reflects the number of false alarms, and recall (Rec), which implies
the number of missed CID relations. Intuitively, the higher the precision, the fewer the false
alarms; also, the the higher the recall, the fewer the missed CID relations. In addition, the
Pre-Rec gap should be monitored: if the gap is too large, it means that the model focuses
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on the optimization of a single metric, rather than both, which should be avoided. With the
given true positives (TP), true negatives (TN), and false positives (FP), the definitions of
Pre, Rec, and F1 can be given below.

Pre =
TP

TP + FP
× 100% (2)

Rec =
TP

TP + FN
× 100% (3)

F1 = 2× Pre× Rec
Pre + Rec

× 100% (4)

Figure 4. Keyword frequency. Subfigures (a–c) correspond to the tokens resulting in the most,
second-most, and third-most confidence drop.

4.4. Benchmark

We selected the following models that were evaluated on the CDR test set. The
performance results of these models are quoted from the original papers.

• Gu et al. [10] adopted a maximum entropy (ME) model and a CNN model for inter-
and intra-sentence RE, respectively.

• Bi-affine Relation Attention Network (BRAN) [40] consists of a stack of modified
transformers, a head and tail MLP, and a bi-affine operation to output a 3D tensor that
models pairwise token relations.

• Sahu et al. [5] employed a GCNN to model entities and their relations in a document
and demonstrated that GCNN can capture both local and non-local dependency,
which helps to boost performance.

• Christopoulou et al. [7] proposed an edge-oriented graph (EoG) neural model to learn
intra- and inter-sentence via multi-instance learning.

• Nan et al. [39] developed a latent structure refinement strategy that allows reasoning
across sentences and automated latent graph construction.
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• Sousa et al. [12] proposed to utilize external domain-specific ontologies to enhance the
performance of biomedical RE. The proposed system, named BiOnt, injects additional
knowledge into the model, leading to performance gain.

• Wang et al. [6] developed a graph-based neural model named GLRE that encodes and
aggregates global and local entity and relation representation for document-level RE.

• Zeng et al. [25] designed a neural architecture named SIRE that can represent intra-
and inter-sentential relations. In addition, SIRE is featured with a novel logical
reasoning module that covers more reasoning chains compared to the prior efforts.
SIRE posts the highest F1 on the CDR dataset among all of the investigated studies;
thus, SIRE represents the SOTA.

4.5. Key Design Choices

Two hyperparameters are tuned.

• For the number of transformer layers, 2, 4, 6, 8, 10, and 12 layers were tested. Each
experiment ran for five epochs. As shown in Table 3, the performance of Kw-BioBERT
with twelve transformer layers was the best, with an F1 of 75.8%.

• For the training epochs, we reported training and test performance with 1, 2, through
5 epochs. Since BioBERT has been pre-trained, the effort of fine-tuning a medium
sized dataset can be greatly reduced. In our experiments, the test F1 started to stabilize
after the first epoch and reached a peak at the third epoch, with an F1 of 76.4%, as
shown in Table 4. It is also noted that performance gap between training and test F1,
indicating overfitting, which can usually be addressed by an increase of training data.

Table 3. Number of transformer layers vs. performance. The highest value of each metric is marked
in bold.

# transformers Pre Rec F1

Kw-BioBERT-2 55.3 58.2 56.7
Kw-BioBERT-4 68.3 69.3 68.8
Kw-BioBERT-6 73.4 75.7 74.5
Kw-BioBERT-8 74.5 75.2 74.9

Kw-BioBERT-10 74.3 75.2 74.7
Kw-BioBERT-12 74.6 77.0 75.8

Table 4. Training epochs vs. performance. The highest value of each metric is marked in bold.

# epochs 1 2 3 4 5

Training
Pre 87.6 94.4 97.4 98.5 98.8
Rec 89.1 94.2 97.2 98.5 99.0
F1 88.3 94.3 97.3 98.5 98.9

Test
Pre 72.2 75.6 75.5 75.1 74.6
Rec 75.6 76.6 77.5 77.5 77.0
F1 73.6 76.1 76.4 76.2 75.8

4.6. Ablation Study

Table 5 shows the result of an ablation study, in which four models are evaluated,
including BERT, Kw-BERT, BioBERT, and Kw-BioBERT. There are two primary observations.
First, adding a keyword attention layer to the base models brought a performance gain of
about two points, with a 2.1-point gain (in F1) on BERT and a 1.9-point gain on BioBERT.
Second, switching BERT to BioBERT brought a gain of around eight points, by looking at
BERT vs. BioBERT, and Kw-BERT vs. Kw-BioBERT. This gain is surprising but explainable
since BioBERT is pretrained on corpora in the biomedical domain at a large scale; thus,
BioBERT can better encode and represent the semantic meaning of PubMed abstracts.
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This experiment also validates the efficacy of the proposed method of keyword-
attentive knowledge infusion, which nicely complements the pretrained language models.
Essentially, the utilization of BioBERT and keywords can be both regarded as knowledge
infusion, but at two levels. BioBERT receives domain knowledge by pretraining, which
is self-supervised; the keyword-attentive layer, on the other hand, injects task-specific
knowledge (i.e., relation-suggestive tokens and semantic interaction between bio-entities)
during training, which is supervised.

Table 5. Ablation study. The highest value of each metric is marked in bold.

Pre Rec F1

BERT 65.4 67.9 66.3
Kw-BERT 68 68.9 68.4
BioBERT 73.6 75.6 74.5

Kw-BioBERT 75.5 77.5 76.4

4.7. Comparison with the Benchmarks

We present the performance of the benchmarks and the proposed Kw-BioBERT in
Table 6 on the CDR test set. We observed that Kw-BioBERT outperformed the SOTA,
namely SIRE, by 5.6% in F1. When trained on additional data (denoted by model + data in
the last two rows of the table), our method posted an F1 of 80.8%, outperforming Bran by
14.6%. The latter has been used as a credible baseline in many prior studies. In addition, the
Pre-Rec gap of our model is only two points, which is smaller than that of other benchmarks
listed in the table, e.g., GLRE (7.1%), EoG(3.1%), and Bran (15.2%), further demonstrating
the superiority of our model that seeks for optimizing both Pre and Rec.

Table 6. The performance of the benchmarks and our method on the CDR test set. The highest value
of each metric is marked in bold.

Model Year Pre Rec F1

ME+CNN [10] 2017 55.7 68.1 61.3
Bran [40] 2018 55.6 70.8 62.1

GCNN [5] 2019 52.8 66 58.6
EoG [7] 2019 62.1 65.2 63.6

LSR w/o MDP Nodes [39] 2020 - - 64.8
BiOnt [12] 2020 57.7 71.7 64
GLRE [6] 2020 65.1 72.2 68.5

SIRE [25] (SOTA) 2021 - - 70.8
Kw-BioBERT (ours) 2021 75.5 77.5 76.4

Bran + data 2018 64.0 69.2 66.2
Kw-BioBERT + data 2021 82.9 79.2 80.8

4.8. Overhead of the Keyword Attention Mechanism

Table 7 reports an overhead comparison between Kw-BioBERT and BioBERT in terms
of the training and inference speed, both in examples per second (ex/s). BioBERT posted
an average speed of 11 ex/s during training, and Kw-BioBERT was almost two times faster,
with a speed of 20.5 ex/s. During inference, the speeds of BioBERT and Kw-BioBERT were
66.5 and 72.6 ex/s, respectively. The increase of speed brought by Kw-BioBERT is mainly
due to the attention layer added into BERT and replacing the Nth standard transformer
encoder. In other words, the original design of self-attention performs pair-wise attention
between every pair of tokens, and the proposed keyword masked self-attention only
concerns the attention (1) from tokens in seqA to the two entity mentions in seqB and
(2) from the two mentions in seqB to the keywords in seqA, greatly reducing the attention
calculations.
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Table 7. Overhead comparison between Kw-BioBERT and BioBERT.

Training Speed (ex/s) Inference Speed (ex/s)

BioBERT 11 66.5
Kw-BioBERT 20.5 72.6

5. Conclusions

Document-level RE has been given increased research attention recently. A broad
spectrum of deep models has been explored, including CNN, GNN, and transformer-based
models. To address the challenge of distant dependency reasoning, there are two lines of
efforts. The first category focuses on improving cross-sentence representation, and GNNs
become an intuitive modeling choice due to their straightforward way of representing
entities and relations as nodes and edges, facilitating long-range reasoning. The second
line of studies, on the other hand, explores the utilization of external knowledge. Our work
in this study belongs to the second category.

To verify the hypothesis that domain keywords can improve the model performance
for the document-level RE task, a keyword-attentive knowledge infusion strategy was
proposed. We developed a custom process of domain keyword collection to identify and
store the highly relation-suggestive tokens in a given document. By manipulating the
attention masks, these keywords were injected into BERT to guide the learning algorithm
to focus on the semantic interaction between the bio-entities linked by the keywords.

In addition, we adopt BioBERT, a BERT variant pretrained on over a million PubMed
articles, for fine-tuning. These joint efforts brought together created a model with superior
performance, outperforming the SOTA by 5.6%, on the CDR dataset. Thus, we concluded
that the hypothesis of this study can be accepted, and the goal was achieved. The new-high
F1 score indicates that the proposed Kw-BioBERT can serve as a credible benchmark of the
CDR dataset for future research.

This study has the following limitations, which will be addressed in future work. First,
the imbalanced sample distribution issue brought difficulties in training an accurate model,
which is a common issue for most RE datasets. We plan to adopt positive instance sampling
or augmentation techniques to rebalance the samples in different classes. Second, it will
be of interest to evaluate the proposed Kw-BioBERT to other document-level RE datasets,
with more types of bio-entities and relations. In an ongoing study, a novel biomedical
RE dataset is being developed, with five types of entities and six types of relations. The
proposed Kw-BioBERT will be evaluated on this new dataset. Lastly, we studied neither
the impact of keywords quality on the model performance nor the alternatives of domain
knowledge infusion, which are worthy of further investigation.

Author Contributions: Conceptualization and methodology, X.Z., L.Z., J.D. and Z.X.; software,
validation, and original draft preparation, X.Z., L.Z. and J.D.; review and editing, X.Z. and Z.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset supporting the conclusions of this article is available
at https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/ (accessed on 2
June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, S. A survey of deep learning methods for relation extraction. arXiv 2017, arXiv:1705.03645.
2. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/


Appl. Sci. 2021, 11, 7318 13 of 14

3. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
arXiv 2018, arXiv:1802.05365.

4. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language
understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 5753–5763.

5. Sahu, S.K.; Christopoulou, F.; Miwa, M.; Ananiadou, S. Inter-sentence relation extraction with document-level graph convolutional
neural network. arXiv 2019, arXiv:1906.04684.

6. Wang, D.; Hu, W.; Cao, E.; Sun, W. Global-to-local neural networks for document-level relation extraction. arXiv 2020,
arXiv:2009.10359.

7. Christopoulou, F.; Miwa, M.; Ananiadou, S. Connecting the dots: Document-level neural relation extraction with edge-oriented
graphs. arXiv 2019, arXiv:1909.00228.

8. Wang, J.; Chen, X.; Zhang, Y.; Zhang, Y.; Wen, J.; Lin, H.; Yang, Z.; Wang, X. Document-level biomedical relation extraction
using graph convolutional network and multihead attention: Algorithm development and validation. JMIR Med. Inform. 2020,
8, e17638. [CrossRef]

9. Feng, X.; Guo, J.; Qin, B.; Liu, T.; Liu, Y. Effective Deep Memory Networks for Distant Supervised Relation Extraction. In
Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017; Volume 17.

10. Gu, J.; Sun, F.; Qian, L.; Zhou, G. Chemical-induced disease relation extraction via convolutional neural network. Database 2017,
2017, bax024. [CrossRef]

11. Roy, K.; Lokala, U.; Khandelwal, V.; Sheth, A. “Is depression related to cannabis?”: A knowledge-infused model for Entity and
Relation Extraction with Limited Supervision. arXiv 2021, arXiv:2102.01222.

12. Sousa, D.; Couto, F.M. BiOnt: Deep learning using multiple biomedical ontologies for relation extraction. Adv. Inf. Retr. 2020,
12036, 367.

13. Yu, H.; Cao, Y.; Cheng, G.; Xie, P.; Yang, Y.; Yu, P. Relation extraction with BERT-based pre-trained model. In Proceedings of
the IEEE 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020;
pp. 1382–1387.

14. Peng, H.; Ning, Q.; Roth, D. Knowsemlm: A knowledge infused semantic language model. In Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL), Hong Kong, China, 3–4 November 2019; pp. 550–562.

15. He, Y.; Zhu, Z.; Zhang, Y.; Chen, Q.; Caverlee, J. Infusing disease knowledge into BERT for health question answering, medical
inference and disease name recognition. arXiv 2020, arXiv:2010.03746.

16. Cameron, D.; Smith, G.A.; Daniulaityte, R.; Sheth, A.P.; Dave, D.; Chen, L.; Anand, G.; Carlson, R.; Watkins, K.Z.; Falck, R.
PREDOSE: A semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 2013, 46, 985–997.
[CrossRef] [PubMed]

17. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

18. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv 2019, arXiv:1910.10683.

19. Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; Liu, Q. ERNIE: Enhanced language representation with informative entities. arXiv
2019, arXiv:1905.07129.

20. Wang, Z.; Ng, P.; Ma, X.; Nallapati, R.; Xiang, B. Multi-passage bert: A globally normalized bert model for open-domain question
answering. arXiv 2019, arXiv:1908.08167.

21. Liang, C.; Yu, Y.; Jiang, H.; Er, S.; Wang, R.; Zhao, T.; Zhang, C. Bond: Bert-assisted open-domain named entity recognition with
distant supervision. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Virtual Event, CA, USA, 23–27 August 2020; pp. 1054–1064.

22. Liu, Y. Fine-tune BERT for extractive summarization. arXiv 2019, arXiv:1903.10318.
23. Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. Bertscore: Evaluating text generation with bert. arXiv 2019,

arXiv:1904.09675.
24. Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-bert: Enabling language representation with knowledge

graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 2901–2908.

25. Zeng, S.; Wu, Y.; Chang, B. Sire: Separate intra-and inter-sentential reasoning for document-level relation extraction. arXiv 2021,
arXiv:2106.01709.

26. Lin, C.; Miller, T.; Dligach, D.; Bethard, S.; Savova, G. A BERT-based universal model for both within-and cross-sentence clinical
temporal relation extraction. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA,
7 June 2019; pp. 65–71.

27. Shi, P.; Lin, J. Simple bert models for relation extraction and semantic role labeling. arXiv 2019, arXiv:1904.05255.
28. Su, P.; Vijay-Shanker, K. Investigation of bert model on biomedical relation extraction based on revised fine-tuning mechanism. In

Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea, 16–19 December
2020; pp. 2522–2529.

29. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef]

http://doi.org/10.2196/17638
http://dx.doi.org/10.1093/database/bax024
http://dx.doi.org/10.1016/j.jbi.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23892295
http://dx.doi.org/10.1093/bioinformatics/btz682


Appl. Sci. 2021, 11, 7318 14 of 14

30. Beltagy, I.; Lo, K.; Cohan, A. Scibert: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676.
31. Alimova, I.; Tutubalina, E. Multiple features for clinical relation extraction: A machine learning approach. J. Biomed. Inform. 2020,

103, 103382. [CrossRef] [PubMed]
32. Li, D.; Ji, H. Syntax-aware multi-task graph convolutional networks for biomedical relation extraction. In Proceedings of the

Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019), Hong Kong, China, 3 November
2019; pp. 28–33.

33. Giles, O.; Karlsson, A.; Masiala, S.; White, S.; Cesareni, G.; Perfetto, L.; Mullen, J.; Hughes, M.; Harland, L.; Malone, J. Optimising
biomedical relationship extraction with biobert: Best practices for data creation. bioRxiv 2020. [CrossRef]

34. Wei, Q.; Ji, Z.; Si, Y.; Du, J.; Wang, J.; Tiryaki, F.; Wu, S.; Tao, C.; Roberts, K.; Xu, H. Relation extraction from clinical narratives
using pre-trained language models. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 16–20
November 2019; American Medical Informatics Association: Bethesda, MD, USA, 2019; Volume 2019, p. 1236.

35. Li, J.; Sun, Y.; Johnson, R.J.; Sciaky, D.; Wei, C.H.; Leaman, R.; Davis, A.P.; Mattingly, C.J.; Wiegers, T.C.; Lu, Z. BioCreative V CDR
task corpus: A resource for chemical disease relation extraction. Database 2016, 2016, baw068. [CrossRef]

36. Wei, C.H.; Peng, Y.; Leaman, R.; Davis, A.P.; Mattingly, C.J.; Li, J.; Wiegers, T.C.; Lu, Z. Assessing the state of the art in biomedical
relation extraction: Overview of the BioCreative V chemical–disease relation (CDR) task. Database 2016, 2016, baw032. [CrossRef]
[PubMed]

37. Yao, Y.; Ye, D.; Li, P.; Han, X.; Lin, Y.; Liu, Z.; Liu, Z.; Huang, L.; Zhou, J.; Sun, M. DocRED: A large-scale document-level relation
extraction dataset. arXiv 2019, arXiv:1906.06127.

38. Wu, Y.; Luo, R.; Leung, H.C.; Ting, H.F.; Lam, T.W. Renet: A deep learning approach for extracting gene-disease associations from
literature. In Proceedings of the International Conference on Research in Computational Molecular Biology, Washington, DC,
USA, 5–8 May 2019; Springer: Cham, Switzerland, 2019; pp. 272–284.
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