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Abstract: Counterfactual explanations are viewed as an effective way to explain machine learning
predictions. This interest is reflected by a relatively young literature with already dozens of algorithms
aiming to generate such explanations. These algorithms are focused on finding how features can be
modified to change the output classification. However, this rather general objective can be achieved
in different ways, which brings about the need for a methodology to test and benchmark these
algorithms. The contributions of this work are manifold: First, a large benchmarking study of 10
algorithmic approaches on 22 tabular datasets is performed, using nine relevant evaluation metrics;
second, the introduction of a novel, first of its kind, framework to test counterfactual generation
algorithms; third, a set of objective metrics to evaluate and compare counterfactual results; and, finally,
insight from the benchmarking results that indicate which approaches obtain the best performance on
what type of dataset. This benchmarking study and framework can help practitioners in determining
which technique and building blocks most suit their context, and can help researchers in the design
and evaluation of current and future counterfactual generation algorithms. Our findings show that,
overall, there’s no single best algorithm to generate counterfactual explanations as the performance
highly depends on properties related to the dataset, model, score, and factual point specificities.

Keywords: artificial explainable intelligence; counterfactual explanations; artificial neuronal net-
works; black box models; algorithm benchmarking

1. Introduction

Machine learning algorithms are becoming ever more common in our daily lives [1].
One of the reasons for this widespread application is the high prediction accuracy those
methods can achieve. However, this gain in predictive accuracy comes at a cost of increased
complexity of the prediction models and in a resulting lack of interpretability [2]. The
inability to explain why certain predictions are made can have a drastic impact on the
adoption of automated decision-making in society, as people are often reluctant to use
such complex models, even if they are known to improve the predictive performance [3–9].
Furthermore, these models may hide unfair biases that discriminate against sensitive
groups [10–13]. These problems can be even more critical when models are constantly
created and updated, as often observed in real-time applications [14].

To solve this deficiency, multiple strategies are proposed in a research domain com-
monly referred to as ‘eXplainable AI’ (XAI) [15], aimed at unveiling the high complexity
of the models obtained through machine learning methodologies as deep neural net-
works [16,17], ensemble methods [18,19], and support vector machines [20]. They also
have vast application in various fields, including finance [21,22], medicine [23,24], and
self-driving cars [25,26].

The XAI methodologies are diverse, and can roughly be categorized according to
the model that provides the explanation, the type of data, the scope of explanation, and
general objective [15]. First, in terms of model type, explainability can be derived from
intrinsically comprehensible models [27,28], and common examples are decision trees and
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linear regression. However, complex models ironically require additional post-hoc method-
ologies to obtain explanations. These can be designed for specific types of models [18,29]
or be model agnostic [27,30]. In terms of data type, explanations naturally vary across
different variations of data. For example, images often use a group of pixels to identify
image patterns or features [31], while the explanations for tabular data decisions are mostly
described in feature value combinations [32]. Analyzing the scope of the explanations [15]:
these can be global, trying to explain how the model works over the complete dataset, or
local, where a single point prediction is explained. Finally, the explanation objectives can
be diverse [33], depending on the objective of the application (model improvement, bias
detection, decision justification, and others) and role of the user receiving the explanation
(manager, data scientist, end user) [34]. One particular explanation methodology of inter-
est is the counterfactual explanation [34,35], which generates local explanations, but has
diverse implementation settings as they can be model specific, model agnostic, work with
different types of data, and serve several objectives.

Counterfactual explanations have a long history, even beyond that of XAI, with
roots in both psychology and philosophy [35–37]. According to Lipton [38] counterfactual
explanations answer the question “Why P rather than Q?”. The outcomes P and Q are termed
fact and foil, respectively, where the former is the event that occurred (in this article referred
to as factual), and the foil is the alternate case that did not occur (called counterfactual
here). Several studies indicate the advantages of counterfactual explanations [13,39], as
they can make algorithmic decisions more understandable for humans [35]. Additionally,
the recent legal requirements for the use of machine learning in decision-making process,
such as those asked in GDPR, can also be fulfilled with counterfactual explanations [40].
Counterfactual explanations additionally have key advantages over feature importance
methodologies (like LIME [41] or SHAP [2]): although the weight of each feature may relate
to its importance in the model’s prediction score, it may not explain the model decision, as
those methodologies do not track the influence that features have on changing the output
class [42].

All these potential benefits caused the development of a continuously increasing num-
ber of counterfactual explanation generation methodologies over the last few years [43,44],
which seemingly started with the work of Martens and Provost in 2014 [34]. In recent
reviews of those methodologies [44,45], it was found that they have a wide variation in
implementation aspects, like optimization strategy, model and data access, and input data
compatibility. This variation, most of the time, is implemented as trade-offs for desired
objectives in the counterfactual generation.

The reviews found important patterns among all methodologies. For example, most of
the methods use heuristic rules and/or gradient optimization techniques as search strategy,
are designed to work with differentiable models (such as neural networks), and are focused
on tabular data. However, for the other aspects, we find less clear patterns, especially
because they try to focus on specific settings (for example, generating counterfactuals
without the need to access the model or data) or try to have different goals (for example,
generating diverse counterfactuals). This variation and complexity in the generation of
counterfactuals may be one reason why no benchmarking study with different algorithmic
approaches has been conducted in the literature yet [44]. However, such study is of
fundamental importance to explore which algorithmic implementations are preferred in
specific data settings and to indicate the research directions for improved counterfactual
learning.

The development of a benchmarking study relies primarily in the overall experimental
setup to run different counterfactual explanation generators and the test conditions. To
compare different counterfactual explanations, clear and well-defined metrics are also
to be provided. Some works [33] give an overall framework to systematically analyze
explainable approaches; however, these evaluations are mostly “high level”, without an
experimental comparison, and do not provide means to effectively compare the outputs of
counterfactual explanation generators.
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This article aims to address this research gap and contributes in several ways in the
design and implementation of benchmarks of counterfactual explanations’ algorithms:

1. A benchmarking study of 10 counterfactual generation algorithms, on 22 datasets,
assessing the algorithmic and explanation quality on nine relevant metrics.

2. Analysis and discussion on which algorithmic approach performs well for what
dataset type. This insight can guide practitioners in choosing a suitable method.

3. A benchmark framework implementation to test different counterfactual genera-
tion algorithms. The framework is open-source, allows for easily adding new algo-
rithms, and is intended to be a gold standard to evaluate and compare counterfactual
generating algorithms.

All the points described above represent a novel approach to test and evaluate coun-
terfactual generation algorithms. The outcome of this paper is not just a comparative
analysis of the tested algorithms, but the benchmark framework can also integrate new
approaches and help in their development. Additionally, the theoretical definition and
scores detailed in this paper may help with establishing procedures to evaluate the quality
of counterfactual explanations.

2. Benchmark Components
2.1. Counterfactual Explanation Generation Methods

Our choice of counterfactual generating algorithms is motivated by the following
prerequisites: an open-source implementation, the use of novel theoretical and algorithmic
strategies, and compatibility (in the code implementation) with artificial neural network
models and tabular data. This resulted in 10 different algorithmic approaches to generate
counterfactual explanations. The techniques can be categorized according to (1) the search
strategy, (2) required access to the training data and (3) model internals, (4) whether the
method is agnostic to a prediction model or only works for a specific model, (5) whether it
implements additional optimization terms, and (6) whether it allows for additional custom
terms, such as enforcing one-hot encoding, as summarized in Table 1.

Each technique follows a certain search strategy. The two most common approaches
are the use of convex optimization methodologies or custom heuristic rules. Convex opti-
mization routines will include calculation of gradients, and hence require a differentiable
scoring function. For a neural network, this requires having access to the weights [46–49]
or using numerical estimation of gradients [47]. In the case of heuristic rules, different
procedures have been proposed that usually do not require accessing model inner settings
and, therefore, have better model compatibility. Note that, as the method ALIBIC has two
different implementations, both are included in this study. One uses the internal neural
network weights to calculate gradients (we call this implementation ALIBIC), while the
other will estimate the gradients without using the internal weights, which we refer to
as ALIBICNOGRAD.

Some algorithms require having access to the training data and/or the model in-
ternals. The training data requirement is generally aimed at improving counterfactual
explanation quality, since the data can serve as supporting evidence in the counterfactual
generation process. Such usage is implemented by ALIBIC, DiCE, GrowingSpheres, LORE,
MACE, SEDC, and SynAS. Similarly, algorithms like ALIBIC (although it is not manda-
tory), CADEX, DiCE, MACE, ML-Explain, and SynAS require access to the inner model
settings, such as the already cited neural network weights, to allow the use of specific
optimization techniques.

Several algorithms take advantage of additional optimization terms to improve some
aspects of the counterfactual explanation quality. When convex optimization techniques
are used, additional loss terms can include functions that measure sparsity (the number of
changes needed to generate a counterfactual), proximity (how close the counterfactual is
from the factual case), feasibility (statistical similarity of the counterfactual point to the data
manifold), and diversity (generate several different counterfactual explanations); these
terms are discussed in more detail in Section 3.2.
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For sparsity and improvement of the distance from the counterfactual to the factual
point, ALIBIC and ML-Explain use L1 and L2 norms to calculate an elastic net loss term.
In addition, to improve both the proximity to the factual point and feasibility of changes,
ALIBIC and DiCE use distance metrics, such Euclidean distance, with some modifications
and/or additional terms, where ALIBIC uses autoencoders trained with factual data and
DiCE by using a distance metric that considers each feature variation. Finally, diversity is
enhanced in DiCE by a function that considers the distance between each counterfactual
explanation generated.

Notwithstanding, these additional optimization terms are also used in algorithms
that do not use convex optimization. For example, GrowingSpheres adds terms to control
both sparsity (L0 norm) and proximity (L2 norm) of the solution, LORE adds a distance
function (L2 norm) to control proximity and uses a genetic algorithm to improve feasibility,
MACE adds additional terms to control proximity, sparsity, and diversity in the form
of requirements of the satisfiability solver (SS) and uses feature values and ranges (as
observed in the dataset) to enhance feasibility, while SEDC improves the feasibility of its
results by calculating (and using) the mean of each feature.

Finally, some algorithms allow for including additional custom constraints to control
feature changes. The constraints intend to avoid unwanted counterfactuals. One-hot
encoding (OHE) is a very common example of a constraint that is included in several
algorithms (ALIBIC, DiCE, MACE, SynAS, and LORE). This constraint requires that only
one of the dummy variables corresponding to a single nominal variable be assigned the
numerical value of one. For example, a blood type categorical feature does not allow
for being both O type and A type at the same time. Another common constraint to
counterfactual results is the inclusion of weights that penalize changes in specified features
( CADEX, DiCE, MACE, and SynAS), and ranges (ALIBIC, DiCE, MACE, and SynAS) that
can constrain features to vary between specific chosen values.

Table 1. Overall counterfactual explanation generation algorithm characteristics. Black filled circles indicate the feature
is present, while white filled circles represent that the feature is not present. CO: Convex Optimization. HE: Heuristic.
SS: Satisfiability Solver. REQ.: Required. NRE.: Not Required. OPT: Optional. Spar.: Sparsity. Prox.: Proximity. Feas.:
Feasibility. Diver.: Diversity. W: Weights. R: Range. OHE: One-Hot Encoding.

Algorithm
General Characteristics Additional Optimization Terms Custom Constraints

Find
Method

Data
Access

Model
Access

Model
Comp. Spar. Prox. Feas. Diver. W R OHE

ALIBIC [47] CO REQ. OPT. Agnostic
CADEX [50] CO NRE. REQ. Specific

DiCE [46] CO OPT. REQ. Specific
Growing

Spheres [51] HE OPT. 1 NRE. Agnostic

LORE [52] HE REQ. NRE. Agnostic
MACE [53] SS REQ. REQ. Specific

ML-Explain [48] CO NRE. REQ. Specific
SEDC [42] HE REQ. 2 NRE. Agnostic
SynAS [49] CO REQ. REQ. Specific

1 In the original paper, it theoretically has a step to generate points, hence not depending on data; however, in the implementation example,
it uses the training and test data. In our benchmarking study, we provide training data. 2 The SEDC implementation does not ask, directly,
for the dataset access; however, it requires the mean for each feature.

2.2. Datasets

The datasets are chosen from the public and well-known data repository (UCI Ma-
chine Learning Repository). Although all datasets are used to generate counterfactuals for
all algorithms, some dataset characteristics may lead to a preference of one counterfactual
explanation generation algorithm rather than another. For example, a dataset with only
categorical features may not lead to good results by an algorithm that assumes all features
are continuous. Similarly, a dataset with a large number of rows may give advantage to
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algorithms that use the data points as evidence to generate counterfactuals. Therefore,
datasets of various data types (both categorical, numerical, and mixed variables), applica-
tion domain, number of features, ratio of feature types, class balance, and kinds of data
constraints are selected (see Table 2). Several of these datasets are widely used in coun-
terfactual explanation studies like Adult [46,52–58], Statlog-German Credit [46,49,50,52],
Breast Cancer Wisconsin (BCW) [47,55,56,59,60], and Wine [60–62]. Note that the number
of datasets included in the papers where these algorithms have been proposed range from
1 to only 4 [46], which further motivates the need for a large-scale benchmarking study.

2.3. Models

The artificial neural network models are built using TensorFlow [63] and the Keras
package (Official website: https://keras.io/, accessed on 9 July 2021) in Python. The
model architecture is chosen to optimize (validation) model performance. A single layer
neural network is used as the model to be explained, with a variable size of neurons in
the hidden layer. As the literature shows that there is no single best rule of thumb to
follow to determine the optimal number of hidden neurons [64,65], we use a grid-search
methodology to define it, looking for values up to twice the number of input vector size
plus one [66,67]. The grid also includes 4/5, 3/5, 2/5, and 1/5 of the maximum value.
Other hyperparameters, such as the learning rate and the number of epochs, are also
chosen using a grid-search. All other hyperparameters are set to the default values from
the TensorFlow/Keras package. The model with the best AUC on the validation set was
selected for each dataset. The full model specifications can be found in the supplementary
material (Appendix A).

Table 2. Dataset Characteristics-Table with summarized information about each dataset used in the benchmarking study.
Black filled circles indicate that the feature is present, while white filled circles represent that the feature is not present.

Dataset Information Feature Information Realistic Constraints

Dataset Data Type Area N. Rows CAT. NUM. CLAS. Univariate Multivariate

Soybean (small) [68] COMP. CAT. 47 35 0 4
Lymphography [68,69] COMP. CAT. 148 18 0 4

Hayes–Roth [68] SOCI. CAT. 160 5 0 3
Balance Scale [68] SOCI. CAT. 625 4 0 3
Tic-Tac-Toe 1 [68] COMP. CAT. 958 9 0 2

Car Evaulation [68] N/A CAT. 1728 6 0 4
Chess 2 [68] GAME CAT. 3196 36 0 2
Nursery [68] COMP. CAT. 12,960 8 0 5

Iris [68] LIFE NUM. 150 0 4 3
Wine [68] PHYS. NUM. 178 0 13 3
Ecoli [68] LIFE NUM. 336 0 7 8

CMSC 3 [68,70] PHYS. NUM. 540 0 18 2
BCW 4 [68] LIFE NUM. 569 0 10 2
PBC 5 [68] COMP. NUM. 5473 0 10 5

ISOLET [68] COMP. NUM. 7797 0 617 26
MAGIC GT 6 [68] PHYS. NUM. 19,020 0 10 2

SDD 7 [68] COMP. NUM. 58,509 0 49 11
Statlog-GC [68] BUSI. MIX. 511 19 19 2

Student Perf. [68,71] SOCI. MIX. 649 27 3 2
Internet Adv. [68] COMP. MIX. 690 9 6 2

Default of CCC [68,72] BUSI. MIX. 30,000 9 14 2
Adult [68] SOCI. MIX. 48,842 9 5 2

1 Tic-Tac-Toe Endgame. 2 Chess (King–Rook vs. King). 3 Climate Model Simulation Crashes. 4 Breast Cancer Wisconsin. 5 Page Blocks
Classification. 6 MAGIC Gamma Telescope. 7 Sensorless Drive Diagnosis.

https://keras.io/
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2.4. Realistic Counterfactuals

If the counterfactual generation is left unconstrained, solutions might depict situations
that will simply be deemed unacceptable to the end user. We briefly touch upon this
problem by defining a subspace called realistic space.

Firstly, it is important to highlight the difference between valid and realistic coun-
terfactuals. Let us start with what a valid counterfactual means. In this article, valid
counterfactuals are those that flipped the original factual prediction category. For example,
consider the situation where someone is denied a credit card. A valid counterfactual would
simply be an alternate situation which changes the classification result, from not approved
to approved, while an invalid counterfactual is also an alternate situation returned by the
counterfactual generator (with some feature changes), but that was not able to flip the
original factual prediction. One could also argue that an invalid counterfactual is simply
not a counterfactual. On the other hand, realistic counterfactuals are defined by how
realistic the counterfactual is in the input space, and is detailed below.

Counterfactuals correspond to datapoints while the difference (changes) between the
factual and counterfactual is the explanation. It is, however, possible that these datapoints
are simply unrealistic, as some features may have been modified to values that are im-
possible in reality (Figure 1 illustrates this situation). One simple example is the one-hot
key encoded feature: categorical/nominal features that are typically transformed into
several binary features. This transformation implies some rules: the dummy variables must
only have one “active” variable, and they all must be binary. Re-iterating the previously
mentioned example: one cannot have both type O and type A blood type, or be old and
young, or married and divorced. Although the prediction model can easily provide an
output for a datapoint where both dummy features are set to one (potentially even leading
to a counterfactual), it is not a realistic result, without a genuine representation of what
this feature means to represent.

Figure 1. (Left) representation of the realistic space, where the white squares are the realistic states
for a dataset and the red crossed squares are the unrealistic entries. (Middle) representation of
model’s output for all values, as models are just mathematical formulations, any input will lead to an
output (even the unrealistic dataset points), the green and blue squares represent two different model
output classifications. (Right) superposition of the two first, where it shows the realistic values to a
classification.

The same issue occurs with other kinds of features. In the case of numeric features,
there might be an unrealistic set or range of feature values. Age, for example, must be larger
than zero, as negative ages are not realistic entries. This shows that, although the model
can accept a wide variation of numerical inputs, only a subset of them may correspond to a
realistic point.

The generation of new points that follow the inner rules that define a realistic datapoint
is a challenge in itself, having its own methodologies that aim to achieve it [73]. This
constraint has deep implications in the generation of counterfactual explanations, as, if
left unchecked, the counterfactual generation can lead to such unrealistic data points. It is
important to remember that this problem is distinct from the task of generating actionable
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counterfactuals [44], which is much more complex [74]. While previously we required
that the counterfactual point needs to be realistic, the actionability constraint requires that
the difference between the initial data instance and the counterfactual is achievable. For
example, if the change implies age decreasing 5 years, the explanation is not actionable, as
the change is impossible to perform; however, it can be realistic if the targeted age is larger
than zero.

The requirement to generate points that are realistic highlights the need to define a
particular input space where each of the features (and their combination) are conceptually
genuine in relation. We call this subspace the realistic space, and will formalize this next.

Consider a set of m features {a1, a2, ..., am} . The realistic space (R) is defined as a
subspace R ⊆ Rm, which represents all realistic features’ combinations. A dataset (D) is (or
should be, depending on potential data quality issues such as a negative age) a subset of
the realistic space (D ⊆ R). If we get a point (x) in the dataset (x ∈ D) with class y, and a
model M which transforms the point into a specific class (ŷ), we can define a counterfactual
as a close-boundary point (c) where the model outputs a different class: M(c) = ŷ, y 6= ŷ.
The realistic space can span the entire real space (R = Rm) when there are no constraints
and the features are free to vary. In most real world application settings, however, some
constraints will be imposed to keep the counterfactuals realistic.

We, therefore, argue that, for real-life applications, especially when involving end-
users requiring explanations that make sense, a counterfactual point should belong to the
realistic space (c ∈ R). This preference is additionally implied by the already mentioned
fact that an unrealistic counterfactual is not supported by any data observation (as all
training points are, expectedly, inside the realistic space).

To have a better understanding of how the realistic space can be defined by constraints,
we can categorize these into two types of constraints: univariate and multivariate. Uni-
variate constraints define the requirements a single feature must follow (for example, age
larger than zero), while multivariate constraints describe how a set of variables, dependent
on each other, must change (for example, the one-hot encoding rule).

This categorization is additionally motivated by the fact that many algorithms treat
these requirements differently. For example, ALIBIC, DiCE, MACE, and SynAS can man-
ually restrict the range of certain features, while ALIBIC and DiCE also use, respectively,
autoencoders and statistical approaches to generate counterfactuals that are more consis-
tent with the data manifold (thereby, hopefully, respecting both univariate and multivariate
constraints). It is also worth noting that, in some situations, we can have both kinds of
constraints, like with one-hot encoding: to ensure binary values (univariate) and single
activation (multivariate).

3. Experiments
3.1. Experimental Design

The experimental design is summarized in Figure 2, starting with the raw data pro-
cessing, normalization by using the mean (µa) and variance (σ2

a ) of each continuous feature
(anorm = (a− µa)/σ2

a ) and one-hot encoding of categorical features. Some counterfactual
generating algorithms are not tailored towards multiclass datasets—as they, for example,
do not explicitly allow for say: why class1 and not class2? However, rather: why class1 and
not other than class1? Therefore,the target variable is made binary for multiclass datasets,
considering the majority class versus all others. A training/validation/test split is made
(60/20/20), followed by model training with definitions discussed in Section 2.3, factual
data selection (the data instances to explain) and, finally, the counterfactual generation.
The same models and data are used for all counterfactual explanation generation algo-
rithms. This is an important configuration as different data processing or models can cause
unreliable comparison results. Even simple modifications as scaling can lead to different
distances between points which can lead to misleading results. The same can happen
when working with different models, where different classification boundaries can lead to
misleading results when comparing distinct counterfactual generators. The factual data
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consist of up to 100 random points for each dataset and class. The selection primarily
relies on data from the test set; however, as the test set of some small datasets has less than
100 instances, additional data are obtained from the validation (and potentially even the
training set). For the counterfactual generation, we produce one counterfactual for each
factual row. Although some algorithms allow for generating multiple counterfactuals for a
single point, we always select the first generated counterfactual and consider it as being
the best counterfactual explanation the algorithm can produce. All steps can be verified
in the provided repository. Moreover, this benchmarking framework can accept other
algorithms as it is intended to be an open benchmarking tool for counterfactual explanation
algorithms.

Figure 2. Flowchart detailing the benchmarking process from taking the raw dataset to the counterfactual generation.
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3.2. Metrics

A crucial component of this benchmarking study is defining the metrics to evaluate
the explanations and the generating process.

Coverage is simple, but arguably one of the most important metrics, which verifies
if the provided solution actually flipped the factual class, so, in other words, whether a
counterfactual explanation has been found.

Sparsity is a common metric used in counterfactual explanation studies as it’s desirable
to have short explanations, i.e., counterfactuals that differ in as few features as possible [75].
L2 is the Euclidean distance from the factual point to the counterfactual point; it is a largely
used metric for counterfactuals as, by definition, a counterfactual should be as close as
possible to the factual point.

Two additional distance metrics, MADD and MD, help to understand how the algo-
rithms generate results with respect to the dataset. The MADD distance (MADD) uses the
L1 distance between the factual and counterfactual, divided by the Median Absolute Devi-
ation (MAD). This metric is reported [40,46] as being a valuable metric since it can work
with different ranges across features, as it considers the variation of each changed feature.
The Mahalanobis Distance (MD) [76], commonly used to find multivariate outliers, can take
the correlation between features into account [62,77]. Together, these three distance metrics
measure different aspects of the solutions that might be important for specific user defined
requirements. For example, if the user is only concerned about having counterfactuals that
lie as close as possible to the factual instance, with only continuous features, the Euclidean
distance is an important metric to evaluate. However, if the distance is important, but
different types and ranges of features are to be considered (such as those found in mixed
datasets), the MADD score can be more suited. Finally, if the counterfactual should follow
correlations between features found in data, the MD distance can be of special importance.

Stability is a score that verifies how reliable an algorithm is in generating consistent
results across different runs using the same model and input data. This is calculated by
comparing the results from two runs using the same parameters. A high stability means
the algorithm, given the same input data and model, generates identical counterfactual
results, which is of course a desirable characteristic for explainable approaches [33].
Randomization components in the search strategy can have a detrimental effect on this
metric.

Realistic scores (univariate and multivariate) are metrics that tell if the algorithm
generated a counterfactual respecting the constraints defined by the dataset (consequently
showing if the counterfactual is inside the realistic space). This means that, if it equals one,
it fulfills all constraints as defined by the dataset problem. The next subsection reports on
how these constraints are defined.

Finally, the last metric is the time consumed to generate a counterfactual, measured
in seconds, using the hardware and software setup described in the support resource
(Appendix B). A full review of all metrics can be found in Table 3, where the formula for
each individual calculation is given.

This benchmarking study does not evaluate actionability, which is a characteristic
that allows a counterfactual to provide guidance on how a factual point can change the
classification result by taking feasible steps. This is justified by our main focus, evaluating
counterfactual explanations, which does not need to be actionable. Furthermore, we
consider realistic counterfactuals more fundamental than actionable counterfactuals since
the former is a prerequisite for the latter. Moreover, defining such constraints is considered
a complex property [74] because it includes time and effort considerations, while most
tabular datasets provide just a static picture of feature states. Therefore, it is not possible to
infer (only having the static data) how each feature can vary over time. One solution for
this problem is to design custom rules (see Table 1) that constrain how each feature can
vary. However, such modeling requires laborious efforts and can be error-prone, which
may discourage the use for real world applications. Finally, imposing the actionability
constraints itself is then again arguably a ‘simple’ boolean requirement: does the algorithm
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allow for imposing actionability constraints or not, for example: age can only increase
(which hence relates to our realistic constraints). This further motivates why we excluded
this aspect from the benchmarking study.

Table 3. Metrics used in the study with their respective descriptions.

Metric Formula Description

Coverage H(M(x), M(c)), H =

{
0, i f y = ŷ
1, i f y 6= ŷ

Verify if the counterfactual class (ŷ) has, indeed, a different class
from the factual point class (y) using the same model (M)

Sparsity 1
m

m
∑

p=1
I(xp, cp), I =

{
1, i f xp = cp
0, i f xp 6= cp

Share of features in the counterfactual array (cp) that are the same
as the features in the factual array (xp) for all m features.

Stability

I(c1, c2), I =
1, i f

m
∑

p=1
(cp,1 − cp,2) = 0

0, i f
m
∑

p=1
(cp,1 − cp,2) 6= 0

Returns 1 if the same counterfactual is returned in two different
runs (c1 and c2) with same model and input data, returns

0 otherwise.

L2
√

m
∑

p=1
(xp − cp)2

Euclidean (L2) distance between the factual point and the
counterfactual point.

RUC
{

1, i f cp ∈ R
0, i f cp /∈ R

Univariate Constraint (RUC), score is 1 if features are in the
realistic space (R), 0 if not.

RMC
{

1, i f {c1, c2, ..., cm} ∈ R
0, i f {c1, c2, . . . , cm} /∈ R

Multivariate Constraint (RMC), score is 1 if set of features are in
realistic space, 0 if not.

MADD


1

mnum

mnum

∑
p=1

|xp−cp |
MADp

, i f xp is numerical

1
mcat

mcat

∑
p=1

(I(xp, cp)), i f xp is categorical

MAD Distance (MADD), L1 distance between the factual point
and the counterfactual point divided by the feature’s MAD,

which is the Mean Absolute Deviation for the feature.

MD
√
(x− u) ·C−1 · (x− u)

Mahalanobis Distance (MD) of the counterfactual point and the
problem’s dataset. Where u is the vector with the mean values of
features and C−1 is the inverse covariance matrix of the feature.

CT t f inal − tinit
Counterfactual generation Time (CT), time to generate a

counterfactual in seconds.

3.3. Dataset Realistic Constraints

For each dataset, one or more realistic constraints are defined to evaluate how the
counterfactual explanation generation algorithms behave.

For categorical features with more than two possible values, the one-hot key encoding
constraint is present, which imposes two rules: The values must be 0.0 or 1.0 (univariate
constraint) and it must have just one “activated” entry (multivariate constraint). Categorical
features that only have two values (binary features) only have the univariate constraint to
check if values are realistic. For numerical features, we apply a naive univariate constraint
which checks if the counterfactual feature is inside the minimum and maximum values of
the feature. Therefore, values outside this range are considered unrealistic in our analysis,
since those higher (or lower) values do not have supporting evidence in the dataset. The
one-hot encoding features are applied for all categorical-only and mixed datasets, while the
continuous feature range constraints are used for all numerical-only and mixed datasets.

Additionally, we impose three extra sets of general constraints mentioned before (all
multivariate constraints) that relate to specific feature associations found in datasets. The
first set is a custom constraint related to the Internet Adv. dataset, which has three features
that correspond to height, width and ratio (width/height); therefore, the constraint verifies
if the relationship between features (ratio = width/height) is maintained. The second
set of custom constraints was created for the PBC dataset, which checks the integrity of
five features (area, eccen, p_black, p_and, mean_tr) that are derived from nonlinear associ-
ation of five features (height, length, area, blackpix, wb_trans). The last set of constraints
refers to the BCW dataset, which verifies that one feature (area) relates to another feature
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(radius), following the equation area = π(radius)2. A table with all information about the
constraints can be found in the supplementary material (Appendix A).

3.4. Algorithm Comparison

The benchmarking framework performance ranking follows a similar statistical analy-
sis as proposed by Demsar [78] to compare the performance of different models in multiple
datasets. For each factual point and metric evaluated, we calculate the ranking of every
algorithm as rj

i , where j is the jth algorithm tested, and i is the ith factual row tested. Thus,
the best algorithm will receive ranking, one, the second best ranking, two, and so on.
When different algorithms have the same performance, an average ranking is assigned

r̄j1,jL
i = 1

L

jL
∑

j=j1
ri

j to the L algorithms that obtained the same result. The average ranking

(R̄j) of algorithm j over all (Q) factuals is then obtained per dataset: R̄j =
1
Q

Q
∑

i=1
rj

i . The

non-parametric Friedman test [79,80] is used to evaluate the hypothesis that all datasets
perform the same. If the null hypothesis (all tests perform the same) is rejected, we proceed
with a posthoc Nemenyi test [81] to check which model(s) performed better than others.

4. Results

The score ranking results of each algorithm in different dataset groupings (total,
numerical, categorical, mixed) are presented in Tables 4 and 5. The ranking analysis shows
some discrepancies with numerical results; for example, an algorithm can have a better
ranking in sparsity while not having the best numerical mean sparsity. The reason for
this apparent paradox is the difference in methodology to calculate the rankings and the
numerical results. When calculating the algorithm’s numerical results, for counterfactuals
that do not need to be realistic, we only consider points that are valid results, while
for realistic counterfactuals we only select points that, besides being valid points, are
inside the realistic space. On the other hand, for the ranking calculation, we consider all
results, including invalid and non realistic results (which are classified as being the worst
ranking possible). This difference in calculation leads to a situation that is illustrated in
Figure 3, where a better ranking algorithm can have a worse average result if compared to
another algorithm.

In Table 4, we evaluate all counterfactual results, regardless of whether they are
realistic or not. Considering all datasets, we find that CADEX (CA) achieves the best
coverage, finding counterfactuals for 3549 of the 3925 (90%) tested factual instances, which
is statistically significantly better than all other algorithms. Analyzing sparsity, we have a
statistical tie between two algorithms, SYNAS (SY) and SEDC (SE), where the latter has
a slightly better ranking with an average sparsity of 0.93 while the former has a sparsity
of 0.87. This means that, for SYNAS, on average, it must change 7% of features, while,
for SEDC, it must change 13% of features. For distance metrics, GrowingSpheres (GS)
presents statistically better results for all rankings: for the L2 metric, it has as mean distance
0.75, which is about 5.7 times shorter than the second best ranking (CA with a mean L2 of
4.3). For MADD, a similar situation happens, where GS is about 2.7 times shorter than the
second best ranking result, ALIBICNOGRAD (ALN). MD distance follows the two other
distances trend, where GS has a mean distance value of 0.67, while CA (the second best
ranking) has 4.35 (about 6.5 times larger).

We find different rankings if we consider specific data subsets: for categorical datasets,
for instance, we do not have CA as being statistically best in coverage anymore, as it is
able to find 1309 counterfactuals for a total of 1327 factual instances (about 98.6%) while
the best coverage is achieved by GS, which finds counterfactuals for 1322 of them (about
99.6%). However, the better numerical result for GS is not sufficient to lead to a significant
difference as compared to CA, as both are statistically tied. We also have differences in
sparsity, where there is a statistical draw between three algorithms: LORE (LO), GS, and
SY. The numerically best in sparsity (LO) has a mean sparsity of 0.9, while GS and SY
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obtain values 0.59 and 0.92, respectively. The reader may notice that SY has actually the
best numerical result in sparsity, a discrepancy that was already explained earlier in this
section and relates to the share of realistic counterfactuals generated. For distance metrics,
GS remains the statistically best for two metrics: L2, which is the best having an L2 mean
of 0.48, while the second best (LO) has 1.51 (about 3 times larger), and MD with a mean
equal to 0.22, which is almost 3.5 times better than the second best (LO).

For numerical datasets, CA is statistically the best in coverage, producing 1443 coun-
terfactuals for a total of 1598 factual instances tested (about 90.3%), which is significantly
more than the second best algorithm (GS) that found 201 less (coverage of about 77.7%).
For sparsity, SE is the solo statistical best algorithm with an average of 0.77; however, the
second place (SY) has a best numerical average (0.88), but it finds 272 less counterfactual
results than SE (hence explaining the lower ranking). For distance metrics, we have a less
clear advantage for GS, which is among the best of two metrics, L2 and MD, but it is not
the best for MAD. For L2, the two best algorithms are CA, with a mean L2 of 2.17, and GS,
whose average is 1.15. In this case, CA has a slightly better ranking and worse numerical
mean result for two reasons—first due to the higher number of realistic counterfactuals
and second due to the larger variation in results. Regarding the CA variation in L2, we see
this by the larger standard deviation (equal to 2.62), while GS is much more stable (0.93).
When evaluating MAD, now we see ALIBIC (AL) and ALN as being the statistically best
performing algorithms, where the latter (mean MADD equal to 5.7 × 105 is slightly better
than the former (mean MADD, which is 5.9 × 105. For MD, we have the same situation
that happens to L2, with CA having a slightly better ranking and statistically tied with GS,
but CA has a worse mean MD (5.49) if compared to GS (1.37).

Table 4. Average rankings for dataset groupings. White bold ranking numbers highlight the best
numerical result for each score and the gray cells show the algorithms that, statistically, can be
considered the best. The results are rounded to one decimal place; then, in some cases, the best ranking
can have the same numerical results as other, worse, scores. AL: ALIBIC, ALN: ALIBICNOGRAD,
CA: CADEX, DI: DiCE, GS: Growing Spheres, LO: LORE, MA: MACE, ML: ML-Explain, SE: SEDC,
SY: SynAS.

AL ALN CA DI GS LO MA ML SE SY

coverage 4.6 4.6 3.8 5.2 4.5 7 6.6 8 4.9 5.8
sparsity 4.3 4.3 5.6 6.4 4.7 6.5 7.1 8.2 3.6 4.3

L2 3.8 3.7 2.9 6.5 2.9 7.7 7.5 8 5.8 6.3
MADD 3.9 3.8 4.6 6.2 4.4 7.5 6.9 8 4.5 5.3N

U
M

.

MD 3.8 3.8 2.8 6.5 3.1 7.6 7.6 8.1 5.8 6.1

coverage 6.8 6.4 3.3 6.9 3.3 5 5.5 6.1 6.4 5.3
sparsity 6.6 6 4.3 6.8 4.3 4 6 7.3 5.4 4.3

L2 7 6.5 5.3 7.2 1 5 6.7 5.4 5.7 5.3
MADD 6.8 6.2 3.8 6.9 3.6 4.1 5.5 7.1 6.2 4.7C

A
T.

MD 7 6.4 5.2 7.1 1 5 6.7 5.3 5.8 5.3

coverage 6.6 4.3 4.3 3.8 4.2 8.2 8.3 7.1 3.9 4.4
sparsity 6.5 3.6 5.9 4.5 5.3 8.2 8.3 7.5 2.6 2.6

L2 6.6 3.9 6.1 4.6 2.2 8.2 8.3 6.8 3.5 4.7
MADD 7.2 3.8 5.8 3.9 3.6 8 8 7.4 3.1 4.1M

IX
.

MD 6.6 3.9 6.1 4.4 2.2 8.2 8.3 6.8 3.6 5

coverage 5.9 5.1 3.8 5.4 4 6.6 6.6 7.1 5.2 5.3
sparsity 5.6 4.7 5.3 6.1 4.7 6.1 7 7.7 4 3.9

L2 5.6 4.7 4.5 6.2 2.1 6.9 7.4 6.8 5.2 5.5
MADD 5.7 4.6 4.6 5.8 3.9 6.5 6.7 7.6 4.7 4.8T

O
TA

L

MD 5.6 4.7 4.4 6.2 2.2 6.9 7.5 6.8 5.2 5.5
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Table 5. Average rankings for dataset groupings, but only considering results that respect the realistic
constraint rules. AL: ALIBIC, ALN: ALIBICNOGRAD, CA: CADEX, DI: DiCE, GS: Growing Spheres,
LO: LORE, MA: MACE, ML: ML-Explain, SE: SEDC, SY: SynAS.

AL ALN CA DI GS LO MA ML SE SY

coverage 4.9 4.9 5.2 4.8 4.9 6.7 6.2 7.2 4.2 6
sparsity 4.8 4.8 6.1 5.5 5 6.5 6.5 7.2 3.3 5.3

L2 4.3 4.3 5 5.6 4.2 7 6.6 7.2 4.7 6.2
MAD 4.4 4.3 5.7 5.6 4.8 6.9 6.4 7.1 4.1 5.8N

U
M

.

MD 4.4 4.4 4.9 5.6 4.3 6.9 6.6 7.2 4.7 6.1

coverage 5.8 6 2.3 6.2 7.2 4 4.8 7.2 7.2 4.3
sparsity 5.7 5.9 3.3 6.1 7.2 3.4 5.3 7.2 7.2 3.7

L2 5.7 5.9 3.3 6.1 7.2 3.4 5.3 7.2 7.2 3.7
MAD 6 6.2 2.9 6.3 7 3.6 5 7 7 4.2C

A
T.

MD 5.7 5.9 3.2 6.1 7.2 3.4 5.4 7.2 7.2 3.7

coverage 5.9 5.5 3 5.6 6 6 6 6 5.5 5.5
sparsity 5.9 5.5 3.2 5.6 6 5.9 6 6 5.4 5.4

L2 5.9 5.4 3.2 5.6 6 5.9 6 6 5.4 5.5
MAD 6 5.4 3.2 5.5 6 6 6 6 5.4 5.5M

IX
.

MD 5.9 5.4 3.1 5.6 6 5.9 6 6 5.4 5.5

coverage 5.5 5.4 3.7 5.5 6 5.6 5.7 6.9 5.6 5.3
sparsity 5.4 5.3 4.4 5.7 6 5.3 6 6.9 5.2 4.8

L2 5.2 5.1 3.9 5.8 5.7 5.5 6 6.9 5.7 5.2
MAD 5.3 5.2 4.1 5.8 5.8 5.6 5.8 6.8 5.4 5.2T

O
TA

L

MD 5.2 5.2 3.9 5.8 5.7 5.5 6 6.9 5.7 5.1

Figure 3. Example of how numeric and ranking results can have discrepancies. When calculating numerical statistical
properties from results, like mean sparsity, we only consider valid (or valid and realistic) results. In the figure, this means
the gray cells’ (invalid results) values are not considered in the calculation of numerical scores. Thus, analyzing algorithm 1
(left), we have a mean value of 0.9 which is better, since we are considering sparsity, than algorithm 2 (on the right), which
has a mean of 0.6. On the other hand, to calculate rankings, we consider all results, where invalid results are considered
the worst situation possible. Then, for the algorithm 1, we only have four cells classified as first and 14 as second best and
two ties—while algorithm 2 has 14 cells considered as first, 4 as second best, and two ties. Therefore, the mean ranking for
algorithm 1 is 1.75, which is worse than algorithm 2 (1.25), even though the left side has a better numeric mean.
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In the case of mixed datasets, CA is no longer among the best algorithms, where we
verify a statistical tie between DiCE (DI) and SE. Evaluating DI, it is able to generate 896
counterfactuals from a total of 1000 (89.6%), while SE generates 863 (86.3%). For sparsity, a
similar situation that occurs when evaluating all datasets happens, where SE and SYNAS
are considered statistically the best, but, in this case, SE has a slightly better ranking score.
In numeric terms, SE has a mean sparsity of 0.95, which is slightly worse than SY (0.98), but
SEDC’s improved coverage (89.6% versus 76.7%) compensates this difference in ranking
numbers. For distance metrics, GS performs best for L2 and MD, while SE has best results
for MAD. Then, evaluating L2, we see that GS has a mean distance of 0.59, which is
more than three times lower than the second best performing algorithm, SE, which has an
average L2 of 1.85. The same happens to MD, where GS has a mean value of 0.30 while SE
(the second best) is about 4.8 times longer (average of 1.43). However, for MADD, we have
very different results from what we verified previously with other dataset types, where SE
is the statistically best performing algorithm, being superior to the second best performing
algorithm (GS) 44.5% of times, inferior in 26.8% cases, and performing the same in 28.7%
of factual instances.

The previous results referred to a situation where counterfactuals are simply those
that could flip the classification value (valid), no matter if the counterfactual is realistic or
not. Then, in Table 5, we add this additional requirement, where a counterfactual is only
considered if it follows all realistic constraints the dataset has, i.e., it is valid and realistic.

Analyzing the overall results for all datasets, we already see major changes as com-
pared to the situation where realistic counterfactuals are not required. The only similarity
is that CA still performs best in terms of coverage. However, the generated number of
counterfactuals dropped significantly as it only is able to produce these for 2576 of the 3925
factual instances (65% of total), 27% lower than before. The impact in coverage is even
larger for the other algorithms, where, for GS, it generated 77% fewer counterfactuals, SE
56%, ALN 52%, SY 45%, DI 48%, AL 39%, MACE (MA) 23%, and LO 17%. This has a direct
impact on other scores as discrepancies between the mean numerical values and ranking
scores are more salient. Evaluating sparsity, for instance, the best ranking is now obtained
by CA where the mean sparsity is 0.44, but, if we compare to the second best ranking
result (ALN), we have a mean sparsity equal to 0.65. This situation continues for distance
metrics, where, for all distances, CA has the best ranking, for L2, its mean distance is 4.54,
while the second best (ALN) achieved 1.5, a value about three times better. Comparing
MAD, CA has a mean distance of 4.8 × 106 and the second best (SY) has a much better
score of 2.1 × 104. For MD distance, the average distance for CA is 2.89 while the second
best, SY, is 0.92. Therefore, it is clear that, although CA has the best overall rankings for all
metrics, this is mostly because of its superior capacity of generating counterfactuals inside
the realistic space.

Considering the categorical datasets, CA remains the best or among the best. For
coverage, it has a high performance, generating 1309 counterfactuals from a total of 1327;
this is the same value it obtained in the analysis not considering realistic constraints. For
sparsity, we have a statistical tie between CA and LO, where the former has a slightly better
ranking and mean sparsity of 0.6 and the latter has a mean sparsity of 0.9. In distance
metrics, CA is the solo best for MADD, where it has a mean of 0.40 while the second best
(LO) achieves a value of 0.10, which is four times better. For L2, we have a statistical draw
between CA that is slightly better in ranking and has the L2 mean equal to 3.25, and LO,
which has a lower mean of 1.51. Similarly, for MD, we have a statistical tie between CA
and LO, where the first has a slightly lower ranking and a mean MD of 1.7 while LO has
0.78, which is also a lower value. Therefore, evaluating all metrics, except coverage, we
still see the impact of CA’s superior capability to generate counterfactuals in obtaining a
better ranking despite inferior numerical results.

Interestingly, analyzing numerical datasets, we see a major shift in ranking results
as compared to the overall results. Now, CA is not among the best for any score, even
for coverage. For this dataset type, coverage was superior for SE, where it produced 981
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counterfactuals for a total of 1598 factual instances (61%). SE also is the best performing
algorithm for sparsity, with a mean sparsity of 0.76, which is the third best numerical
value, just behind SY (0.89) and LO (0.86). For distance metrics, there is no single best
algorithm, in L2 distance for example, GS, ALN, and AL perform statistically the same
with mean L2 distances of 1.14, 1.27, and 1.26, respectively. For MADD score, SE, ALN,
and AL are the statistically best performing in the ranking analysis where their respective
mean MADD are 3.6 × 105, 1.6 × 105, and 2.2 × 105. AL and ALN are still among the best
in MD distance together with GS, where their mean MD distances are 1.2, 1.27, and 1.14,
respectively. Therefore, for distance analysis, it is worth observing that AL and ALN were
always among the best performing algorithms.

Finally, for mixed datasets, we see a trend similar to that of the overall analysis. CA
performs statistically best for all scores. In coverage, for instance, it obtains the best result
by far, generating counterfactual results for 597 factual cases (59.7% of total). In comparison,
the second best performing algorithm (SE) could only generate 114 counterfactuals (11.4%
of total). Similar to what happened in previous cases, such difference in coverage will lead
to discrepancies in the ranking and numerical result values. For sparsity, CA is statistically
the best with a mean sparsity of 0.57, and the second best (SE) has a much better mean
sparsity of 0.97. In distance metrics, CA performs as statistically best, where, in L2, it has a
mean distance of 11.25, but the second best, SE, has a lower mean of 2.19, which is about
five times better. For MADD, CA has a mean distance of 1.9 × 107, which is much higher
than the second best performing algorithm (ALN) that has 2.6 × 106 as a mean MADD
score. For MD distance, a similar scenario happens where CA, the best in ranking, has a
mean of 7.23 while the second best, SE, has a lower mean of 2.24.

Figure 4 shows how long each algorithm takes to generate a counterfactual depending
on the number of features in numerical and categorical datasets. We find that, for numerical
datasets, the algorithms ALN, GS, MA, and SY tend to take more time to generate results
for datasets with a higher number of features. However, LO seems to have a more unstable
behavior so it might depend on other factors as the used data generation methodology
(genetic algorithms) and/or factors depending on the algorithmic implementation. Re-
garding the stability in time to generate counterfactuals, ML-Explain (ML) has the best
standard deviation of just 0.74, closely followed by CA (1.19), AL (1.99), SY (2.74), SE
(4.36), DI (4.76), GS (8.66), ALN (13.10), MA (150.69), and LO (227.89). Therefore, especially
for algorithms like LO and MA, the counterfactual generation does not only depend on
general dataset characteristics but also on the specific factual point to be explained. We
find, for instance, that class imbalance can be an important characteristic that defines the
counterfactual generation time, as can be seen when applying the LO algorithm to the
SDD dataset (where the majority class has nine times more data than the minority): the
generation of a counterfactual from majority to minority (mean 66 seconds) is 4.5 times
lower than generating from minority to majority (mean 298 seconds).

Figure 4. Heatmap with time (depending the number of columns) used by each algorithm to generate a counterfactual in
datasets with only numerical features (left) and only categorical features (right). Color scale indicates the counterfactual
generation time in seconds.
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In categorical datasets, AL and ALN are among the most sensitive to the number
of features (see Figure 4, right chart). Although MA has higher generation times for an
increased number of features, it has unexpectedly low values for the dataset with a large
number of categorical features (Soybean small). As reported previously, this variation can
have roots in the algorithmic implementation and specific characteristics of the dataset
and each factual instance. This claim is supported by the fact that MA had the highest
standard deviation for this kind of dataset, where ML has again the lowest value (0.49),
followed by SE (0.51), SY (0.66), CA (0.66), LO (2.30), DI (3.71), GS (6.63), ALN (15.08), AL
(15.18), and MA (215.55). It is worth observing that the generation time variation for LO
is much lower for categorical features (about 99 times lower), hence being more evidence
that data characteristics can highly influence the counterfactual generation time in specific
algorithmic implementations.

This benchmarking study also evaluates the algorithm stability (Figure 5), which is
the generation of the same results by giving the same feature inputs over different runs.
We observe that, for most algorithms—namely CA, DI, LO, ML, SE, and SY—maximum
stability was achieved, meaning it always returns the same counterfactual for a given input.
However, algorithms MA, GS, AL, and ALN have problems with returning the same results.
For MA, it has full stability for all mixed and categorical datasets, and it also has maximum
stability for all numerical datasets except for BCW, where MA could not return the same
result for just one factual example. Since the instability for MA is just for one factual case
over all others, it still can be considered a high stability algorithm. However, the situation
is different for other algorithms. GS, for example, returns the same result for all numerical
and categorical datasets, yet provided 32 different results for mixed datasets, making the
overall stability of the algorithm be equal to 99%. The most unstable algorithms are AL
and ALN, where the former could generate the same results for only 52% of categorical,
92% of numerical, and 24% of mixed datasets. ALN has very low reproducible results for
numerical datasets, where only 18% could be generated in different runs, and it also gets
low (but better than AL) stability for categorical (68%) and mixed (30%) datasets. For this
analysis, it is important to highlight that AL, ALN, GS, and MA do not have the option to
generate reproducible results such as random seeds.

Figure 5. Mean stability of each algorithm for all datasets. The gray lines show the minimum and maximum value reached analyzing
it for each dataset type (numerical, categorical, mixed). The algorithms CA, DI, LO, ML, SE, and SY have maximum stability for all
datasets. While AL has minimum stability for mixed datasets and maximum stability for numerical, ALN has minimum stability
for numerical datasets and maximum stability for categorical datasets, GS has minimum stability for mixed datasets and maximum
stability for numerical and categorical datasets, and MA has minimum stability for numerical datasets and maximum stability for
categorical and mixed datasets.

5. Discussion

One of the biggest challenges faced by most algorithms is to generate a counterfactual
for every factual case. CA is the best overall performing algorithm in coverage; still, it could
not generate counterfactuals for all factual instances. Although the algorithms’ theoretical
background may explain such low performance, we cannot exclude issues regarding the
algorithmic implementation and fine-tuning of available parameters (since we always use
default settings). As discussed earlier, this has a direct impact on the ranking analysis
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because not generating a counterfactual is considered the worst scenario case. Therefore,
several algorithms actually have better scores (in sparsity and distance metrics), but they
obtain a low ranking because of their low coverage. Having a higher coverage, then,
could rearrange this ranking and, most importantly, gives more trust in the algorithm,
since very low coverage like we observe for ML can discourage users from adopting such
implementations.

We can see in Figure 6 that the coverage also depends on the dataset type, as some
algorithms can perform better for a specific kind of data but not for others. This reinforces
the idea that each algorithm can have preferred data characteristics that make it more
efficient as compared to another algorithm. This becomes even more complex if we
consider other scores, where the ranking analysis also shows that algorithms can have a
better performance for some scores in specific data settings. For example, if we consider
counterfactuals that are not realistic, GS is among the best algorithms for MADD in
categorical datasets, but the same does not happen if we consider numerical or mixed
datasets. However, this does not happen with L2 or MD distance, where GS is always
among the best.

The situation becomes even more critical if we consider the percentage of results that
followed realistic constraints. Figure 7 shows most algorithms are far from following such
constraints, where the overall best is CA, which could generate counterfactuals for 66%
of factual instances, while no other algorithm could achieve more than 33%. This low
performance is particularly worse for mixed datasets, where only CA could generate a
fair number of counterfactuals (60%), while others did not achieve more than 11%. The
direct impact of these results is that most algorithms (excluding CA for categorical datasets)
struggle with the generation of counterfactuals inside the realistic space, and practitioners
may be careful when using them for this purpose.

Figure 6. Proportion of factual examples that generates counterfactual explanations. Each chart represents a dataset type;
the bottom left chart analyzes all datasets used in the study.
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Figure 7. Coverage of algorithms that follows all realistic constraints. Each chart represents a data type, while the bottom
left chart analyzes all datasets used in the study.

When analyzing the coverage drop for numerical datasets, SE stands out as the best
algorithm, which has a small reduction in performance (about 8% less) as compared to
the non-constrained case. This happens because this algorithm highly relies on dataset
characteristics, where using the mean to replace feature values takes advantage of the
nature of such kind of feature where a normal distribution is frequent.

It is also important to note the impact of a very common constraint found in tabular
data, the one-hot encoding process, where algorithms that do not implement any theoretical
and/or algorithmic approach to handle it (GS, ML , SE) perform poorly in categorical and
mixed dataset types, where such a constraint is present. This is especially noticeable
for GS where it has the best ranking scores (for distance metrics) and good coverage for
counterfactuals without realistic constraints, but it has a high performance drop when such
constraints are applied. This can be explained by the fact that GS (and also SE and ML)
treats all feature variables as numerical continuous (then, possibly breaking the univariate
constraint of being binary), and they do not keep track of the set of features each one-hot
encoded category has, breaking the multivariate constraint of having just one encoded
feature activated (equal to 1).

Additionally, in the realistic counterfactual generation, if we analyze the results for
numerical datasets, we can see a slightly better performance of algorithms that used the
dataset in their generation process (SE, DI, GS, AL, ALN), although this is not a clear
trend as some algorithms that also used the dataset (LO, MA and SY) performed worse
than CA, which does not require the dataset in its generation process. In this case, it is
understandable that counterfactual characteristics may be more compatible with inner
dataset constraints when using features as supporting evidence, although there are real
world application cases where providing the dataset is not an option (i.e., the dataset is
private or not accessible). In those cases, algorithms like CA have a clear advantage.

As previously mentioned, algorithms have different performances for different scores
in distinct input data characteristics. Such high complexity means that, for specific data
settings, some algorithms can outperform others that are considered the overall best. For
example, CA is considered to have the best overall coverage in realistic counterfactuals,
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but, for a specific subset (numerical datasets), SE is actually the best in coverage and,
additionally, although SE is the best in coverage for numerical datasets, it is not for L2
and MD distances. Therefore, with the objective to improve our insights on which specific
situations an algorithm performs better in than the others, we use all counterfactual results
to generate decision trees that highlight the best counterfactual generating approaches.
These decision trees use as input features several characteristics of the model, dataset, and
factual point, and it has as a target variable the best performing algorithm grouped in
relevant labels such as type of search methodology, dataset access, and model internal
access.The decision tree in Figure 8 is one example of such analysis where the referred
input features were used to classify which algorithm’s search strategy best performed in
L2 distance for categorical data. Additional details about the decision tree settings can be
found in the supplementary material (Appendix C).

Figure 8. Decision tree to decide which algorithm implementation pattern performs best in realistic
counterfactual generation using categorical data. In this case, this decision tree evaluates the best
performing in L2 distance. On top of each node, the splitting condition is shown, which includes
the following information: Rows (train)—number of rows in the training set, fact_pred-factual
instance prediction score, Neurons—the number of neurons of the NN model, factual_share-the
datset percentage of the factual point class. In second on the node, there is the Gini coefficient and,
below it, the number of total samples analyzed. As the penultimate, we see the values for each of
the three classes: first, it is CO, which represents convex optimization based methods (AL, ALN,
CA, DI, ML, SY), in second, there is HE, which represents the heuristic based methods (GS, LO, SE)
and, finally, the SS based method (MA). Last in the node, there is an indication of which class is the
majority, hence which type performs best.

In this analysis, we find some interesting patterns, confirming that selecting the
best algorithmic approach can depend on several parameters that includes characteristics
from the model (like number of neurons, AUC score), dataset (number of categorical or
numerical columns), and/or the factual point (prediction score, balance share of factual
point class).

Considering the counterfactual explanations that do not need to be realistic, we find
for categorical datasets that, although GS, LO, and SY are the best ranked, if we consider a
large number of categorical columns (more or equal to 45) and models that have a large
number of neurons (bigger than 10.5), SE is actually the best algorithm by far (in sparsity)
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if the factual point class is highly unbalanced (share of the factual class larger than 0.8). It is
important to notice that this observation involved characteristics from the dataset (number
of categorical columns), model (number of neurons) and factual point (factual point class
share). This highlights that, although there are overall best algorithms, specific settings can
achieve better performance with other implementations.

Bearing that in mind, it is proposed that such decision trees can be used to suggest to
end-users which algorithm they should use for their specific problem. Such implementation
can output results like the one of Figure 9, where a certain performance value for each
algorithm in every metric is provided. The user can then select the one that best suits
their requirements. Notwithstanding, the decision tree suggestions do not reduce the
importance of the overall ranking, which may be better suited both to end-users that are
not sure of which particular setting they will work with and to research that wants to
compare the performance of their algorithms.

Figure 9. Proposed user interface to the suggestion system which tells the best performing algorithms for a specific
dataset setting. The scores are calculated by using decision trees and reflect how well (compared to the others) the
algorithm performed.

This kind of analysis using decision trees can be expanded to evaluate how imple-
mentation choices, such as search strategy, model access, and data usage affect scores in
different types of datasets. For example, evaluating realistic counterfactuals and categorical
datasets, we obtain the decision tree presented in Figure 8, where the first split node is
related to the number of instances the dataset has, and it totally separates heuristic rules
from convex optimization methods (and, to a minor extent, SS). This can be related to
how the heuristic rules work, where the dataset usage is not just to enhance loss term
parameters like in convex optimization, but they actively rely on evidence from the dataset
to generate counterfactuals. Therefore, not having many instances can lead to substandard
performance. Although Figure 8 just shows the decision tree for L2 score, the same behavior
is observed for MAD, MD, sparsity, and coverage scores.

Another important observation obtained from the higher performance achieved by
CA, especially on realistic counterfactuals, is the fact it does not have any additional loss
term applied (as we only used the default settings) and no access to the dataset. We envision
that there is room for improvements in generating counterfactuals for all kinds of data
and those that follow realistic constraints, and the already mentioned theoretical and/or
algorithmic implementation may be further improved to achieve such performance. We
also highlight that the characteristic of being a realistic counterfactual is highly desirable
since results lacking this property only provide a mathematical justification rather than
a logical reasoning for the factual instance classification. Therefore, as most algorithms
underperform on this condition, this should be a goal to pursue.



Appl. Sci. 2021, 11, 7274 21 of 28

Two additional properties were evaluated by this study, stability and time, in order to
generate the counterfactual. Although they are not directly associated with the counter-
factual quality, they may be important for real-world applications where such properties
can have an important weight. For stability, in some circumstances, it might be a required
characteristic [33], as the user may not want to receive different results in different runs (for
the same input). Although it can be argued that such instability brings more diversity to ex-
planations, this should not be done in an uncontrolled way, hence the use of strategies like
providing a random seed setting could be used to circumvent this. This is notably critical
for AL and ALN, which presented very low stability as compared to other algorithms.

In terms of time requirements, some users may have limited time to give an answer
(real-time applications) or it can also have resource limitations, where large processing
times may lead to an incompatibility with large scale applications. Additionally, it must be
noted that we did not use very large datasets, which are becoming common in real-world
scenarios. Therefore, the time to generate a counterfactual must be a common concern, and
those algorithms that had poor performance (like AL, ALN, MA, LO, GS and SY) may face
challenges in adoption for those specific cases.

Taking all the previous observations into account, we conclude, today, that there is no
single ‘silver bullet’ for counterfactual generation. End-users may evaluate their specific
requirements based on metrics like the ones we presented in this article to select which
algorithmic implementation will mostly correspond to their expectation. To help in this
task, Table 6 provides general guidance on when different algorithms seem to be best
suited. We want to reiterate that these are overall findings, and more specific settings in
data, model, and factual point may actually find other optimal algorithms.

We propose also that researchers may use this benchmarking study to compare novel
approaches and test modifications of existing ones. Aiming to unveil the intrinsic complex-
ity of several parameters and scores, the use of decision trees to suggest algorithms can
also be considered a solution to the current heterogeneity in performance.

Finally, it is worth remembering again that these results represent the theories and
(most importantly) algorithmic implementations in a specific time; then, both theory and
algorithms can be updated, leading to different results that we presented here. However,
our intention is also to give a starting point for the counterfactual explanation generators
benchmarking, proposing a process pipeline, required theoretical foundations, scoring
metrics, and possible questions that will lead to the refinement of the area and possible
broader adoption.

Table 6. General properties, and context in which each counterfactual generation algorithm seems to be the most suited.
This table includes general instructions and, as explained in the text, may vary depending on the model, dataset, and factual
point properties.

Algorithm Properties

ALIBIC • Model specific: Differentiable and using TensorFlow/Keras
• Low distance metrics (L2, MADD and MD) for realistic numerical counterfactuals

ALIBICNOGRAD • Model agnostic
• Similar performance as ALIBIC

CADEX

• Model specific: Differentiable and using TensorFlow/Keras
• High coverage for realistic and non-realistic counterfactuals
• Low counterfactual generation time
• Low variation in counterfactual generation time for different datasets
• High stability

DiCE

• Model specific: Differentiable and using TensorFlow/Keras or
Pytorch (newest version includes model agnostic methodologies)
• High coverage for mixed features datasets in non-realistic settings
• High stability
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Table 6. Cont.

Algorithm Properties

GROWINGSPHERES

• Model agnostic
• High coverage when non-realistic counterfactuals are needed
• Medium coverage for numerical datasets that need to be realistic
• Low distance metrics (L2, MADD and MD) for non-realistic counterfactuals
• Low distance metrics (L2, MADD and MD) for realistic counterfactuals in numerical datasets
• High stability

LORE

• Model agnostic
• Good coverage for categorical datasets in realistic settings
• Low distance metrics (L2, MADD and MD) for categorical datasets that need to be realistic
• High sparsity for categorical datasets in realistic and not-realistic settings
• High stability

MACE
• Model specific: Must be a Decision Tree, Multilayer Perceptron, Random Forest
or Logistic Regression
• High stability

MLEXPLAIN
• Model specific: Differentiable and using PyTorch
• Low counterfactual generation time
• High stability

SEDC

• Model agnostic
• High sparsity for non-realistic counterfactuals
• High coverage for realistic numerical datasets
• High sparsity for realistic numerical datasets
• Low MADD distance score for numerical datasets
• Low counterfactual generation time
• High stability

SYNAS

• Model specific: Differentiable and using TensorFlow/Keras
• High sparsity for non-realistic counterfactuals
• Low counterfactual generation time
• High stability

6. Conclusions

Benchmarking studies have fundamental value in scientific research, for example, in
the case of image classification, the ImageNet Challenge [82] allowed us to test and compare
novel methodologies that lead to advancements in the area. In the case of Counterfactual
Explanations, a very recent field in XAI, our benchmarking framework aims to be beneficial
in several forms. First, it allows those who are building new theoretical and/or algorithmic
approaches to test their implementations more quickly and correct possible bugs or flaws
in theory. Second, it provides a common ground to make an extensive analysis towards
other implementations, removing any possible difference on data treatment, model de-
sign, and scoring metric that might benefit one implementation over another. Third, the
benchmarking study can reveal which algorithms perform best in specific conditions and,
ultimately, can lead to finding which specific implementation strategies work for each
case. Furthermore, as a side effect of how the benchmarking framework was built, the
standardization of the counterfactual algorithm implementation, in terms of required vari-
ables and operation steps, can also benefit both researchers and end-users since this often
has a wide variation among the algorithms, making their understanding and application
more difficult. Similarly, the use of objective scores presented in this work can also create
a pattern both in nomenclature and evaluation that are often diverse in this area. From a
future perspective, besides the obvious addition of new algorithmic implementations, the
refinement of constraints definition made by domain experts will have a positive impact on
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the results of this benchmarking study as it will enhance the value of realistic constraints
(RUC, RMC).In addition, the consideration of multiple counterfactuals and how to evaluate
them can contribute to specific cases where variation of explanations are needed. In the
same way, despite the importance of artificial neural networks, the focus of this benchmark,
the addition of new model types (in particular, black box models) will give a broader
compatibility to algorithms and reveal new insights on them.
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Appendix A. Model Specification

A general overview of models is presented in Section 2.3. Below, the full details for
each dataset are presented. Parameters that are not explicitly indicated must be considered
the default for the package. For all models, the following configuration is always the same:

• Number of hidden layers: 1
• Number of output classes: 2
• Activation function (hidden layer): ReLU
• Activation function (output layer): Softmax
• Optimizer: RMSprop
• Loss function: Categorical Crossentropy

https://github.com/ADMAntwerp/CounterfactualBenchmark
https://github.com/ADMAntwerp/CounterfactualBenchmark
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Table A1. Overall data for each dataset and model. fac0 and fac1 are the factual datasets with original class 0 and 1,
respectively. The % Maj. is the share of rows of the majority class. Col is the number of columns, Neu is the selected model
number of neurons in the single hidden layer, Epc is the number of epochs used in training, and LR is the learning rate.

Rows AUC Accuracy

Dataset Total Fac0 Fac1 % Maj. Col Neu Ep LR Train Valid Test Train Valid Test Fac0 Fac1

Adult 32,561 100 100 0.76 107 215 50 0.0001 0.92 0.91 0.91 0.87 0.86 0.85 0.72 0.87
BCW 198 41 100 0.76 32 65 100 0.001 1 0.85 0.77 0.99 0.88 0.74 0.88 0.9

BalanceScale 625 100 100 0.54 20 16 50 0.01 1 1 1 1 0.99 0.98 0.98 0.99
CMSC 540 37 100 0.91 18 22 100 0.001 1 0.98 0.79 1 0.95 0.94 0.97 0.95

CarEvaluation 1728 100 100 0.70 21 17 50 0.01 1 1 1 1 1 0.99 0.98 1
Chess 28,056 100 100 0.90 40 64 500 0.01 1 1 1 1 1 1 1 1

DefaultOfCCC 30,000 100 100 0.78 90 72 50 0.0001 0.79 0.77 0.79 0.83 0.82 0.83 0.68 0.84
Ecoli 336 100 100 0.57 7 15 50 0.001 0.99 1 1 0.98 0.94 0.97 0.95 0.96

HayesRoth 132 96 36 0.61 15 31 500 0.0001 0.95 0.96 0.94 0.87 0.86 0.88 0.83 0.97
ISOLET 7797 100 100 0.96 617 247 500 0.001 1 1 1 1 1 1 1 1

InternetAdv 2359 100 100 0.84 1558 1246 50 0.0001 1 0.98 0.99 0.99 0.97 0.97 0.96 0.96
Iris 150 97 53 0.67 4 3 50 0.01 1 1 1 1 0.93 0.97 1 0.94

Lymphography 148 69 79 0.55 50 40 100 0.001 1 0.92 0.94 1 0.81 0.86 0.91 0.95
MagicGT 19,020 100 100 0.65 10 12 500 0.001 0.94 0.92 0.93 0.88 0.86 0.87 0.88 0.89
Nursery 12,960 100 100 0.67 26 10 50 0.01 1 1 1 1 1 1 1 1

PBC 5473 100 100 0.90 10 12 100 0.01 1 0.99 0.99 0.98 0.97 0.98 0.91 0.99
SDD 58,509 100 100 0.91 48 19 500 0.001 1 1 1 1 1 1 1 1

SoybeanSmall 47 30 17 0.64 59 23 50 0.01 1 1 1 1 1 1 1 1
StatlogGC 1000 100 100 0.70 59 119 100 0.0001 0.91 0.83 0.79 0.85 0.75 0.76 0.63 0.85

StudentPerf 649 100 100 0.54 43 17 100 0.0001 0.82 0.88 0.71 0.75 0.76 0.66 0.74 0.66
TicTacToe 958 100 100 0.65 27 11 500 0.01 1 1 1 1 0.98 0.99 0.98 1

Wine 178 100 70 0.60 13 5 50 0.01 1 1 1 1 0.97 1 0.99 1

Table A2. Description of constraint types for each dataset. For univariate constraints, Feature Range
sets a continuous range where a variable can be changed, Feature Binary allows some features to
assume only 0.0 or 1.0. For multivariate constraints, the Second Order describe one or more features
that have a second order degree relationship between them, and OHE describes the activation rule of
one-hot encoding.

Dataset Univariate Constraint Multivariate Constraint

Balance Scale Feature Binary OHE
Car Evaluation Feature Binary OHE

Hayes–Roth Feature Binary OHE
Chess Feature Binary OHE

Lymphography Feature Binary OHE
Nursery Feature Binary OHE

Soybean (small) Feature Binary OHE
Tic-Tac-Toe Feature Binary OHE

BCW Feature Range Second Order
Ecoli Feature Range
Iris Feature Range

ISOLET Feature Range
SDD Feature Range
PBC Feature Range Second Order

CMSC Feature Range
MAGIC GT Feature Range

Wine Feature Range
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Table A2. Cont.

Dataset Univariate Constraint Multivariate Constraint

Default of CCC Feature Range, Feature Binary OHE
Student Perf. Feature Range, Feature Binary OHE

Adult Feature Range, Feature Binary OHE
Internet Adv. Feature Range, Feature Binary OHE, Second Order
Statlog–GC Feature Range, Feature Binary OHE

Appendix B. Hardware Used for Experiments

For the experiments, we were granted resources by Google to use their cloud comput-
ing environment. We used (for all datasets, except InternetAdv) N1 machine type, with
52 cores in a CPU platform based on Intel Skylake or later, with 195 GB of memory, 400 GB
of SSD storage, and OS Ubuntu 18.04. For InternetAdv, N2D machine type was used, with
48 cores of AMD Rome or later CPUs, with 384 GB of memory, 400 GB of SSD storage, and
OS Ubuntu 18.04.

Appendix C. Decision Tree Analysis

The decisions trees were produced using the Python package Scikit-learn [83] using
a fixed random state equal to 0 and maximum depth of 3; all other parameters were set
as default. The used data has eight features that are related to model, dataset, and factual
point characteristics:

• Model features:
(1) neurons—Number of neurons the model has
(2) auc_test—AUC score of the model in the test set

• Dataset features:
(3) rows_train—Number of rows in the train dataset.
(4) column_numerical—Number of numerical columns in the dataset
(5) columns_categorical—Number of categorical columns in the dataset

• Factual Point features:
(6) misclassified—Tells if the original factual class was misclassified (1 if yes, 0 if

not) by the model.
(7) factual_prediction—Prediction probability for the factual class, ranging from

(0.5 to 1.0).
(8) factual_share—Percentage of rows of the factual class in the dataset.

As target feature, we selected the best performing algorithm for the specific factual
data point. In the case where more than one algorithm tie as best, we created addi-
tional rows having the same input features but with different targets representing the
best algorithms.

For this analysis, we do not focus on getting highy accurate decision trees, we focus
on the Gini coefficient which low values (close to 0) showing a preference for a specific
algorithm, while numbers close to 1 show that there is no preferable algorithm for the split
conditions.

As there are several (more than 200) decision trees generated by this benchmark, you
can find all of them in the official CF benchmark repository link.
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