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Abstract: Technological advancement, in addition to the pandemic, has given rise to an explosive
increase in the consumption and creation of multimedia content worldwide. This has motivated
people to enrich and publish their content in a way that enhances the experience of the user. In this
paper, we propose a context-based structure mining pipeline that not only attempts to enrich the
content, but also simultaneously splits it into shots and logical story units (LSU). Subsequently, this
paper extends the structure mining pipeline to re-ID objects in broadcast videos such as SOAPs. We
hypothesise the object re-ID problem of SOAP-type content to be equivalent to the identification of
reoccurring contexts, since these contexts normally have a unique spatio-temporal similarity within
the content structure. By implementing pre-trained models for object and place detection, the pipeline
was evaluated using metrics for shot and scene detection on benchmark datasets, such as RAI. The
object re-ID methodology was also evaluated on 20 randomly selected episodes from broadcast SOAP
shows New Girl and Friends. We demonstrate, quantitatively, that the pipeline outperforms existing
state-of-the-art methods for shot boundary detection, scene detection, and re-identification tasks.

Keywords: object detection; logical story unit detection (LSU); object re-ID

1. Introduction

Due to advances in storage and digital media technology, videos have become the
main source of visual information. The recording and accumulation of a large number of
videos has also become very easy, and many popular websites, including YouTube, Yahoo
Video, Facebook, Flickr, and Instagram, allow users to share and upload video content
globally. Today, we have arrived at the point where the volume of video that arrives on
the internet increases exponentially on a daily basis. Apart from this, there are very many
broadcast channels with enormous amounts of video content—shot and stored every sec-
ond. With such large collections of videos, it is very difficult to locate the appropriate video
files and extract information from them effectively. Moreover, with such a vast quantity of
data, even the suggestion list expands tremendously; thus, it is even more difficult to make
an efficient and informed decision. Large file sizes, the temporal nature of the content, and
the lack of proper indexing methods to leverage non-textual features, creates difficulty
in cataloguing and retrieving videos efficiently [1]. To address these challenges, efforts
are being made—in every direction—to bridge the gap between low-level binary video
representations and high-level text-based video descriptions (e.g., video categories, types or
genre) [2–7]. Due to the absence of structured intermediate representations, powerful video
processing methodologies which can utilise scene, object, person, or event information do
not yet exist. In this paper, we address this problem by proposing a framework involving
an improved semantic content mining approach, which obtains frame-level location and
object information across the video. The proposed architecture extracts semantic tags such
as objects, actions and locations from the videos, using them not only to obtain scene/shot
boundaries, but also to re-ID objects from the video.
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Since this paper deals with several video features/aspects, it is important to clearly
state the definitions for the various structures and components of a video as used in this
paper. Any video can essentially be broken down into several units. First, a video is a
collection of successive images; specific frames shown at a particular speed. Each frame
is one of the many still images that make up the video. Next, a group of uninterrupted
and coherent frames constitute a shot. Every frame belongs to a shot, which lasts for
a minimum of 1 s and is based on the frame rate of the broadcast video (which can be
anywhere between 20 to 60 frames per second). Enriching every frame of a video would be
computationally expensive and practically inefficient. Thus, we find it logical to consider a
shot as the fundamental unit of the video. Based upon these shots, the entire video can be
iteratively enriched with data, such as scene types, actions and events.

Humans, on the other hand, tend to remember specific events or scenarios from a
video that they view during a video-retrieval process. Such an event could be a dialogue, an
action scene, or any series of shots unified by location or a dramatic incident [8]. Therefore,
it is events themselves which should be treated as an elementary retrieval unit in future
advanced video retrieval systems. Various terms denoting temporal video segments on a
level above shots, but below sequences, appear in the literature [9]. These include scenes,
logical units, logical story units, and topic units. The flow diagram on Figure 1 shows how
this space could be well-defined [10]. A logical story unit (LSU) could thus be a scene or
a topic unit, depending on the type of content. Our proposed pipeline can automatically
segment videos into logical story units.

Figure 1. Pictorial representation of the structure of video, detailing the position and definition of a
logical story unit (LSU). As shown in the flow diagram, an LSU can either be a scene or a topic unit.
This paper predominately focuses on normal scene- and topic-unit-type videos.

Researchers often address semantic mining and structure mining problems separately,
because they were historically applied to different domains. However, during the last
decade, image recognition algorithms have improved exponentially, and deep learning
models, together with GPU/TPU computational hardware, allow very accurate real-time
detectors to be trained and served. This has paved the way to complex pipelines that can
be defined and reused across multiple domains. We have made use of these technological
advancements in defining a versatile semantic extraction pipeline that proves to address
multiple video analytic problems simultaneously. In summary, the main contributions of
this paper can be listed as follows:

1. We propose a flexible pipeline that can derive high-level features from detection
algorithms and semantically enrich a video by performing automatic video struc-
ture mining. This pipeline consolidates the frame-level place and object tags using
time-efficient deep neural networks in such a way that it could be used for further
enrichment tasks, such as re-ID.

2. Within the pipeline, we have implemented a novel boundary-detection algorithm to
cluster the temporally coherent, semantically closer segments into shots and LSUs.

3. We also propose a novel multi-object re-ID algorithm-based on context similarity in
SOAP and broadcast content to generate object timelines.
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The remainder of this paper is organised as follows. Section 2 reviews related work.
Subsequently, Section 3 presents our methodology, which explains, in detail, the algorithms
used for semantic extraction, boundary prediction and object re-ID. The experimental set
up and model selection are presented in Section 4. Section 5 discusses the results, while
Section 6 concludes this paper and discusses the future work.

2. Related Work

This work elaborates the role of semantics in video analysis tasks such as video
structure mining and re-ID. Spatial semantics includes the objects and persons in, as well as
the location of, a frame. Temporal semantics includes actions, events, and their interactions
across the video. For a system to understand a video, therefore, the system requires the
ability to automatically comprehend such spatio-temporal relationships. In the following
subsections, we discuss various approaches for semantic extraction, LSU/shot boundary
detection and re-ID methodologies.

2.1. Semantic Extraction
2.1.1. Image Classification and Localization

Image classification and object recognition tasks have been investigated for a long time.
Yet, for much of this period, there were no suitable general solutions available. This was
mainly attributed to the quality of training data and accessible computational hardware.
Moreover, the classification accuracy when using a smaller, rather than a larger, number
of classes was observed to be greater [11]. However, performance in image-classification
tasks has been exponentially improved in open competitions, such as the Large Scale Visual
Recognition Challenge (ILSVRC) and MIT-Places-365. These competitions encouraged the
development of region proposal network (RPN)-based deep neural networks, including
AlexNet, GoogleNet and Vision Geometry Group (VGG). These networks have revolu-
tionised image classification and have opened doors, in all directions, for classification
and annotation. We use the VGG-16 network trained on MIT-Places-365 for obtaining
the place/location of a frame, because it is very generalised and the architecture could be
reused for further tasks, including the Dense Captioning of a frame that also has VGG-16
as its base architecture.

In addition to classification tasks, the success of the above-mentioned challenges has
also fuelled research on localisation and detection tasks. Speed and accuracy have been
the major areas of focus and, based on these, there are two major types of object detection
models: (1) region-based convolution models, such as R-CNN and Faster RCNN, that split
the image into a number of sub-images, and (2) convolution models, such as Single Shot
Detector (SSD) and You Only Look Once (YOLO), that detect objects in a single run [12].
Even though the Faster RCNN have slightly higher accuracy, the latest version of YOLO
(YOLOv3 [12]) detects objects up to 20 times faster while retaining similar/acceptable
accuracy. Thus, our pipeline has a pre-trained YOLOv3 model that has been used for
detecting objects and persons in a frame.

2.1.2. Video Annotation

There has also been research pertaining to video annotation. [13] proposed an event-
based approach to create text annotations, which infers high-level textual descriptions of
events. This method does not take into account the temporal flow or correlations between
different events in the same video. Thus, the approach does not have the ability to interact
or fuse multiple events into scenes or activities. As explained in the previous section, it is
important to search for and retrieve continuous blocks of video, often referred to as scenes
or story units.

Stanislav Protasov et al. [14] proposed a pipeline with keyframe-based annotation of
scene descriptions, while [15] proposed a sentence-generation pipeline which provides de-
scriptions for keyframes based on the semantic information. Even though the techniques
produced acceptable results, the annotations still lacked information and faced information
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losses. Torralba et al. [16], on the other hand, proposed a solution for semantic video anno-
tation that consists of per-frame annotations of scene tags. The per-frame annotations are
computationally expensive and often redundant. Therefore, we incorporated a pipeline that
takes into account the drawbacks of these previous methodologies. The pipeline obtains all
possible spatial information, ranging from the location to objects and persons, in the form
of textual descriptions for every nth frame of the video. This n depends on the frame rate
of the video and is adjusted so that textual descriptions are obtained for a minimum of
4 frames per second.

2.2. Boundary Detection

Shot and scene detection is one of the long-studied problems in video structure mining.
There have been a lot of different approaches based on the different features used and the
different clustering methods available. In this subsection we discuss the latest approaches
for shot and LSU detection.

In the existing works for shot boundary detection, there a prevailing and striking pattern
of similarities. We have come to the conclusion that boundary detection is performed by calcu-
lating or learning the deviation of features over adjacent frames. Widely used features include
RGB, HSV, or LUV colour histograms [17], background similarity [4], motion features [18], edge
ratio change and SIFT [19], and spectral features. Ref. [17] uses a spectral clustering algorithm
to cluster shots, while [18] proposes a new adaptive scene-segmentation algorithm that uses
the adaptive weighting of colour and motion similarity to distinguish between two shots. They
also propose an improved overlapping-links scheme to reduce shot grouping time. Recently,
deep features, extracted using CNN, were employed to obtain significant state-of-the-art re-
sults [20]. This team used an end-to-end trainable CNN model that was trained using a cross
entropy loss to detect shot transitions. In this work, we employ frame-level object-, person- and
location-type semantic descriptions as features to estimate shot boundaries.

For scene detection, Stanislav Protasov et al. [14] proposed a pipeline that utilises
scene descriptions for keyframes of shots, while [15] proposed a pipeline that generates
sentences or captions based on objects in a keyframe. The former utilises a scene transition
graph to cluster similar shots to scenes, while the latter proposes to use Jaccard-similarity
for obtaining similarity between shots. As per survey [21], the LSU-detection task is
understood as a three-stage problem. In the first step, frames are grouped into shots. In the
second step, location, person and object descriptions are consolidated to obtain shot-level
descriptions. In the third stage, shot-level descriptions are used to cluster the shots into
story units, using a similarity metric and assumptions about the film structure. For shot
boundary detection, we have proposed and utilised the shot-detection algorithm defined
in our methodology.

3. Methodology

Based on the motivations explained in Section 1, we propose a pipeline that utilises
semantic descriptions and their co-occurrences across a video to address the fundamental
video processing challenges pertaining to structure mining and object re-ID tasks. The proposed
pipeline is shown in Figure 2. We follow a step-wise approach to explain the implementation
of the pipeline:

1. Semantic Extraction
2. Structure Mining
3. Similarity Estimation
4. Object Re-Identification

3.1. Semantic Extraction: Recognizing Objects, Places and Their Relations

In order to work with the high-level semantic features, it is important to have thorough
information regarding the composition of each frame (e.g., objects, persons, and places in
the frame). Since broadcast videos do not carry that much frame-level semantic information,
it is necessary for our pipeline to have a good model that can predict, with high accuracy,
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the objects and places in a frame. As seen in Figure 2, frame-level semantic extraction is a
common step for all the tasks dealt with in the paper—from shot/LSU boundary prediction
to object timeline generation.

Figure 2. Overview of the proposed pipeline. Given the input video, the framework extracts visual
features to obtain frame-level semantics. The enriched semantic information can then be used
for search and retrieval of video segments, predict shot and scene boundaries, and also to create
object timelines.

Feature Extraction

We make use of low-level and mid-level visual information for predicting the high-
level features that are necessary to determine the semantic composition of a logical story
unit. In our approach we use object, person and location tags as high-level features for
detecting the LSU boundaries. To obtain the object and person annotations, the latest
version of the YOLO object detector [12], pre-trained on the COCO dataset [22], is used.
COCO stands for Common Objects in Context. The dataset comprises of 1.5 million object
instances covering 80 object classes. Along with the object detector, the place or the location
of the scenes are predicted using the ResNet-50 CNN architecture, pretrained on the places-
365 dataset [11]. This dataset contains more than 10 million images in total, comprising
400+ unique scene categories [23].

3.2. Structure Mining: Shot Boundary Detection

Once we extract the visual features of the video frames, we utilise them to estimate the
similarity between frames. This, in turn, is used to predict the overall structure of the video
as shown in Figure 3. Broadcast videos generally have a frame rate of 24 fps. We process
every sixth frame of our video for computational advantage (4 frames/s). Furthermore, we
cluster temporally similar frames to form shot and story units.

Figure 3. Overview of the framework for Shot Detection. Shot is defined as a group of continuous
frames without a cut. To predict shot boundaries, the framework utilises only frame-level visual
features from the given input video.

Spatio-Temporal Visual Similarity Modelling

In contrast to other approaches that use clustering for boundary detection, we con-
struct a similarity matrix that jointly describes spatial similarity and temporal proxim-
ity. The generic element Sij defines the similarity between frames i and j, as shown in
Equation (1).

Sij = exp

(
−

d2
1(ψ(xi), ψ(xj)) + α · d2

2(xi, xj)

2σ2

)
(1)

where, ψ(xi) and ψ(xj) are the list of visual tags for the ith and jth frame, respectively. d2
1 is

the cosine distance between frame xi and xj, while d2
2 is the normalised temporal distance

between frame xi and frame xj. The parameter α tunes the relative importance of semantic



Appl. Sci. 2021, 11, 7266 6 of 17

similarity and temporal distance. The effect of alpha on the similarity matrix is shown in
Figure 4.

Figure 4. Effect of α (from left to right 0, 5, and 10) on similarity matrix Sij. Higher values of α enforce
temporal connections between nearby frames and increase the quality of the detected shots.

As shown in Figure 4, the effect of applying increasing values of α to the similarity
matrix is to raise the similarities of adjacent frames, thereby boosting the temporal correla-
tions of frames in the neighbourhood. At the same time, too high values of α would lead to
the boosting of the temporal correlation of very close neighbouring frames, thereby failing
to capture gradual shot changes. The final boundaries are created between frames that do
not belong to the same cluster. An experiment was conducted with the videos of the RAI
dataset, where values from 1 to 10 were provided for α, and its effect was studied. We found
that an α value of 5 performed well on average, for both gradual and sharp shot changes.
Therefore, we use an α value of 5 for our shot boundary detection experiments, since it
provides the right amount of local temporal similarity for the prediction of boundaries.

As seen in Equation (1), semantic composition-based frame-similarity estimation is
composed of the following two sub parts:

• Semantic similarity scoring scheme
• Temporal model analysis

3.2.1. Semantic Similarity Scoring Scheme

We use the cosine similarity principle to measure inter-frame similarity; that is, we
measure the cosine angle between the two frame vectors of interest. The cosine similarity
between the ith and the jth frame is calculated by taking the normalised dot product
as follows:

sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| (2)

where, ψ(xi) is the normalised vector based on the list of visual tags for frame xi. This
results in a spatial similarity matrix. The similarity measure is converted into a distance
measure based on the following Equation:

d2
1(ψ(xi), ψ(xj)) = 1− sim(xi, xj) (3)

An example of utilising the spatial similarity matrix to retrieve the top four similar
frames from a video is shown in Figure 5.

Figure 5. An example of utilising the spatial similarity matrix to retrieve top four similar frames from
a video. The video used is Season 5 Episode 21 of FRIENDS show.
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3.2.2. Temporal Model Analysis

As per Equation (1) the temporal proximity is modelled using d2
2, which is the nor-

malised temporal distance between frames xi and xj. The normalised temporal distance
can be defined by Equation (4)

d2
2(xi, xj) =

| fi − f j|
l

(4)

where fi and f j are the index of frame xi and xj, respectively, and l is the total number of
frames in the video.

3.2.3. Boundary Prediction

Based on Equation (1), the lower the value of Sij, the more dissimilar frames xi and
xj are. Thus, we calculate the shot boundary by thresholding Sij. In our experiments, 0.4
was used as the threshold value. The entire shot boundary detection algorithm is shown in
Algorithm 1.

Algorithm 1: Shot boundary detection
Input: List of frame-level objects and places tags
Output: Shot boundaries

1 shots = []
2 for i =1:n do
3 for j = 1:n do
4 place_sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| // ψ(xi) = normalised vector

of place tags for frame xi
5 obj_sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| // ψ(xi) = normalised vector of

object tags for frame xi

6 sim(xi, xj) =
w1(place_sim) + w2(obj_sim)

w1+w2

7 d2
1(ψ(xi), ψ(xj)) = 1− sim(xi, xj)

8 Sij = exp
(
− d2

1(ψ(xi),ψ(xj))+α . d2
2(xi ,xj)

2σ2

)
9 for i = 1:n do

10 if Si,i+1 < threshold then
11 shots.append(i)

3.3. Similarity Estimation: Context Based Logical Story Unit Detection

Based on our experiments, we have deduced that normal broadcast content, such as
a SOAP episode or the news, often make use of multiple angles pertaining to the same
story unit.In more than 90% of the cases, these angles recur multiple times throughout the
video. Therefore, as shown in Figure 6, the context-based similarity estimation begins with
shot detection. Progressing from these estimated shot boundaries, frame-level semantic
descriptions are merged as follows:

Lij =
w1(place_sim) + w2(obj_sim)

w1 + w2
(5)

where w1 and w2 are the weights for place and object descriptions. In our experiments,
we have given more importance to place descriptions than to object descriptions, mainly
because the state-of-the-art object detection models do not have the ability to predict all the
objects in a frame. Moreover, the pre-trained place-detection model has the ability to cap-
ture the overall context of the shot location, and therefore has been deemed more important.
Thus we have maintained w1 and w2 as 2 and 1, respectively, in all our experiments.
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The shot-level similarity measure is calculated based on the joint similarity estimated
using Equation (5). An example of the similarity matrix of a video from RAI is shown in
Figure 7. The final similarity matrix is used along with the re-identification algorithm to
generate object timelines.

Figure 6. Overview of the LSU-detection module. Given the input video, the framework extracts
audio–visual features to predict logical story unit boundaries based on semantic similarity between
temporally coherent shots. The final decision boundary is based on thresholding the distance between
consecutive shots.

Figure 7. Estimated shot similarity for RAI video 23353. The figure also shows key frames of a
selected LSU (red box).

3.4. Object Re-Identification

We propose an algorithm that formulates unique object IDs using LSUs and frame-
level object detections, such that re-occurring objects are provided with the same ID. The
algorithm we propose is based on the following hypothesis:

Hypothesis 1. If two shots Sa and Sb are similar, then the objects present in Sa and Sb are also similar.

3.4.1. Explanation

Multimedia broadcast content, such as SOAP, news, or talk shows, often reuse loca-
tions that conserve the objects that they contain. Then, based on the above hypothesis, the
objects are the same if they are present in the same location. For example, in Figure 8, Image
1 is frame 26070 of the video and image 2 is frame 27604. Although they are approximately
1500 frames apart, they both pertain to the same location, and thus the objects in them are
the same. An important point to note is that the hypothesis holds only for stationary/static
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objects; if there are dynamic objects present in the shots (e.g., persons) the hypothesis will
fail. Our approach focuses only on static object re-identification—thus, the current paper
will only address problems of this kind.

Figure 8. Example of multiple instance object class. This example is taken from the Season 4 Episode 16
of New Girl TV SOAP show. In the left side image (frame 26070) there are three different objects of the
class (vase) detected, while in the right image (frame 27604), there are two objects of this class detected.

Based on the number of occurrences of a same class object in the same frame, the re-ID
algorithm is composed of two sub-parts:

• Single instance
• Multiple instance

3.4.2. Single Instance

If there is just a single occurrence of the object in every frame it appears in throughout the
video, then by Hypothesis 1, the id for object O at frame n is given by Equation (6) as follows:

On
id =



id = 1, n = 0

Oa
id, Sn

a > threshold,

id + 1, Sn
a < threshold,

where (a = 1:n − 1)


(6)

where in On
id is the object id at frame n, and Sn

a is the context-similarity measure between
the frame a and n as calculated in Equation (5).

3.4.3. Multiple Instance

If there are multiple occurrences of the object, we propose a graph-based approach to
correctly localise the object in the frame. An example of this problem is shown in Figure 8.
In such cases, where multiple objects of the same class exist, it is not only important to know
whether shot/LSU of the frames are similar, but also to know the spatial position/location
of the object in the frame, so that the object can be re-IDed correctly.

Therefore, based on the bounding box co-ordinates of the detected objects, a location
graph is estimated using spatial distances between the objects, as shown in Figure 9. The idea
here is to generate and compare the graphs such that the IDs of the objects can be matched.

Spatial Distance Estimation

Although, the 2-D Euclidean distance measure works well between frames with similar
angles across similar LSUs, there are cases where the angle and zoom changes across
similar LSUs. The topological information contained within the frame is also lost, making
it impossible to obtain a realistic distance estimation. To compensate for the topological
information, we propose to use depth maps, in combination with the location graph, to
estimate a more realistic spatial distance between the objects in a frame. To obtain depth
information, we use Dense Depth [24], pre-trained on NYU Depth V2 dataset [25]. The
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estimated depth is used as a third dimension, and thereby the Euclidean measure is re-
calculated as shown in Figure 10.

Figure 9. Spatial location graph generated for a frame using the centre of the bounding box co-
ordinates and Euclidean distance between them.

Figure 10. Comparison of frame 26070 with its estimated depth. Using the depth and distance measures,
the actual distance between the two objects can be estimated.

Let x and y be the centre points of the objects Ox and Oy, respectively, in a frame. Then
the distance between them is given by:

distance = |x− y| (7)

The estimated depth has a range of values that are clipped between 10 and 1000,
where 10 is the closest and 1000 is the farthest. If the depth values at points x and y can be
represented as δ(x) and δ(y), the depth between the objects can be estimated by:

depth = |δ(x)− δ(y)| (8)

Finally, from Equations (7) and (8), the actual distance between the objects can be
calculated as follows:

Dy
x =

√
(distance)2 + (depth)2 (9)

Spatial Location Graph

For every frame with multiple instance objects, the spatial location graph is estimated
based upon the pairwise distance between the objects in the frame, using Equation (9). Let
Gi(O, D) and Gj(O, D) be the graphs with objects as nodes and their distances as edges for
two similar frames i and j. The objects in frame j are matched with the objects in i, based
on comparing the distances between the objects in j and i such that the difference between
the distances is always minimal. For instance, if frame i has 4 objects, Oi1, Oi2, Oi3, Oi4, of
which Oi1 and Oi2 belong to the same class, and D12

i , D13
i denotes the distance between

objects, then to re-identify objects O1 in frame j, the sub-graph distances of Gi[O
′
1] and

Gi[O
′
2] are compared with Gi[O

′
1]. Oj1 is deduced to be the same as the object in i for which

the difference between distances is minimal. The overall object re-ID algorithm is shown in
Algorithm 2 while the complete re-ID pipeline is shown in Figure 11.
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Algorithm 2: Multi-object re-ID.
Input: Objects_list per frame, shot boundary and LSU similarity
Output: Object IDs per frame

1 shots = []
2 for object = object_list[0]:object_list[len(object_list)] do
3 if count(objects) in all_frames <= 1 then
4 single_instance.append(object)

5 else
6 multi_instance.append(object)

7 for object = single_instance[0]:single_instance[len(single_instance)] do
8 id = 1
9 for i = 1:class do

10 for i = 1:n do
11 if i==0 then
12 objectid = id
13 id = id + 1

14 else
15 if similarity( f ramen, 1 : f ramen−1 > threshold, then
16 Let frame a be the frame most similar to frame n
17 objectid = Oa

id

18 else
19 objectid = id
20 id = id + 1

21 for object = multiple_instance[0]:multiple_instance[len(multiple_instance)] do
22 id = 1
23 for i = 1:class do
24 for i = 1:n do
25 if i==0 then
26 objectid = id
27 id = id + 1

28 else
29 if similarity( f ramen, 1 : f ramen−1 > threshold, then
30 Let frame a be the frame most similar to frame n
31 object_list = graph_compare(Gn[O

′
class], Ga[O

′
class])

32 for object_id in object_list do
33 objectid = object_id

34 else
35 objectid = id
36 id = id + 1
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Figure 11. Proposed pipeline for multi-object re-ID. Given the input video, we estimate LSU and
objects per frame for the video. Based on the number of occurrences of the object in a frame, the
objects are categorised as single- and multi-instance objects. Subsequently using the inter-frame
similarity and graph-based algorithms, object IDs are created and visualised.

4. Experiments

To provide a comprehensive overview of the strengths of the pipeline, it was separately
evaluated on benchmark task-specific datasets. All the experiments were performed on a
Linux Intel(R) Core(TM) i5-7440HQ CPU system with a RAM capacity of GB; the GPU was
an NVidia GeForce 980 with 4 GB memory; and the operating system was Ubuntu version
16.04. The entire pipeline was implemented in Python 3.6 with the Pytorch deep learning
library. The datasets and evaluation metrics used for evaluating our pipeline are explained
in the following sections.

4.1. Dataset

In this work, a thorough, objective, and accurate performance evaluation has been
carried out to evaluate the pipeline for shot boundary detection, LSU boundary detection
and object re-ID.

To evaluate the proposed approach for shot and LSU boundary detection, we tested
the pipeline on the benchmark RAI dataset. This dataset is a collection of ten challenging
broadcasting videos from the Rai Scuola video archive, ranging from documentaries to talk
shows constituted by both simple and complex transitions.

We evaluate our approach for object re-ID on randomly selected SOAP episodes. For
fair evaluation, we chose to validate our approach on two different sets of SOAP broadcast
content; namely, New Girl and Friends. We selected 10 episodes from Season 4 of New Girl
and 10 episodes from Season 3 of Friends as our final dataset for object re-ID.

4.2. Evaluation Metrics

We evaluated the pipeline based on three tasks: (1) accuracy of the shot boundary detection;
(2) accuracy of the LSU boundary detection; and (3) accuracy of the object re-ID algorithm.

For all the experiments, we use the precision, recall, and f1-score for the evaluation of
our results. Precision, recall, and f1-score are computed based on the matched shots/LSU
with the ground truth. Furthermore, the results were graphically visualised and analysed
to promote insight.

The precision measure refers to the fraction of rightly predicted boundaries from
total predictions, whereas recall measure denotes the fraction of boundaries rightly re-
trieved. If groundtruth refers to the list of ground-truth values and prediction refers to
the list of automatically predicted values, then precision and recall can be expressed as in
Equation (10).

precision =
|groundtruth ∩ prediction|

|prediction|

recall =
|groundtruth ∩ prediction|

|groundtruth|

(10)
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F-score, on the other hand, combines precision and recall measures; it is the harmonic
mean of the two. Traditional Fshot can be defined as follows:

Fshot = 2 · precision · recall
precision + recall

(11)

As mentioned in earlier sections, the precision, recall, and f1 measure would not
suffice to validate the accuracy of the LSU boundary detection algorithm. The reason
for this is that humans and algorithms employ different ways of perceiving story units.
Humans can relate changes in time and location to discontinuities in meaning, whereas an
algorithm solely depends on visual dissimilarity to identify discontinuities. This semantic
gap makes it impossible for algorithms to achieve fully correct detection results. Therefore,
as suggested in [9], we use coverage and overflow metrics to measure how well our LSU
boundary detection algorithm performs with respect to human labelled LSUs, using visual
features. That is, in addition to the precision, recall, and f1 measures, we propose to use
coverage and over f low measures to evaluate the number of frames that were correctly
clustered together.

Coverage C measures the quantity of frames belonging to the same scene correctly
grouped together, while Overflow O evaluates to what extent frames not belonging to the
same scene are erroneously grouped together. Formally, given the set of automatically
detected scenes s = [s1, s2, ..., sm], and the ground truth g = [s1, s2, ..., sn], where each element
of s and g is a set of shot indexes, the coverage of scene s is proportional to the longest
overlap between si and gt:

coverage =
maxi=1 ... n#(si ∩ gt)

#(gt)
(12)

over f low =
∑m

i=1 #(si/gt) · min(1, (si ∩ gt))

#(gt−1) + #(gt+1)
(13)

Fscene combines the coverage and overflow measures and is the harmonic mean of the
two. For coverage, values closer to 1 indicate better performance, and for overflow, values
closer to 0 indicate better; thus we use 1− over f low for calculating Fscene:

Fscene = 2 · coverage × (1− over f low)

coverage + (1− over f low)
(14)

For the experiments pertaining to object re-ID, we make use of Accuracy metrics.
Accuracy is the most intuitive performance measure; it is simply the ratio of correctly
predicted observations to total observations. In our scenario, the predicted observations are
labelled as True if they are correctly predicted, and False otherwise. Therefore, if the total
number True samples is denoted by True, and total number of False samples is denoted by
False, then Accuracy can be calculated as follows:

Accuracy =
True

True + False
(15)

5. Results and Discussion
5.1. Quantitative Results
5.1.1. Shot Boundary Detection

In this study, to evaluate shot boundary detection, we have compared our framework
with state-of-the-art CNN-based fast shot boundary detection[20]. We have used 10 random
Internet Archive videos from the RAI dataset. Table 1 compares the precision, recall, and F-
score of our pipeline with this state-of-the-art algorithm. These experimental results show that
the state-of-the-art model performs extremely well on normal transitions, while performing
comparatively poorly on complex transitions. Our approach, on the other hand, has obtained



Appl. Sci. 2021, 11, 7266 14 of 17

similar precision values for both complex and normal transitions. On average, our approach
has outperformed the state-of-the-art with an f1 measure of 0.92.

5.1.2. LSU Boundary Detection

In this study, we also evaluated LSU boundary detection by comparing the results
against two different algorithms for scene detection: [26], which uses a variety of visual and
audio features that are integrated in a Shot Transition Graph (STG); and [27], which uses a
spectral clustering algorithm and Deep Siamese network-based model to detect scenes. We
used the same 10 videos from the RAI dataset for validation. Table 2 tabulates the coverage
and overflow measures calculated based on the above methods. Our experimental results
indicate that the model in [26] has the highest coverage value of 0.8—but it also has a very
high overflow measure. Ref. [27] provides a comparatively better overflow result and overall
performance than [26]. Although our approach achieved a lower coverage measure, it has
obtained a very good overflow measure, which has resulted in a higher Fscore. Our approach,
with an average Fscore of 0.74, outperformed the other methods by more than 10%.

Table 1. Performance comparison for shot detection using boundary-level metrics.

Gygli et al. [20] Our Approach

Video Precision Recall Fshot Precision Recall Fshot

23353 0.95 0.99 0.96 0.877 0.99 0.945
23357 0.91 0.97 0.939 0.874 0.99 0.940
23358 0.92 0.99 0.954 0.775 0.99 0.873
25008 0.94 0.94 0.94 0.849 0.99 0.918
25009 0.97 0.96 0.965 0.726 0.98 0.841
25010 0.93 0.94 0.935 0.955 0.99 0.977
25011 0.62 0.9 0.734 0.863 0.99 0.927
25012 0.66 0.89 0.758 0.890 0.890 0.89

Average 0.853 0.948 0.899 0.861 0.986 0.912

Table 2. Performance comparison for LSU detection using frame-level metrics.

Lorenzo et al. [27] Sidiropoulos et al. [26] Our Approach

Video Coverage Overflow Fscene Coverage Overflow Fscene Coverage Overflow Fscene

23553 0.82 0.40 0.69 0.63 0.20 0.70 0.66 0.0083 0.79
23557 0.77 0.24 0.76 0.73 0.47 0.61 0.65 0.2016 0.72
23558 0.77 0.37 0.69 0.89 0.64 0.51 0.73 0.1346 0.80
25008 0.42 0.06 0.58 0.72 0.24 0.74 0.41 0.0100 0.58
25009 0.95 0.76 0.39 0.69 0.53 0.56 0.67 0.124 0.76
25010 0.66 0.40 0.63 0.89 0.92 0.15 0.66 0.012 0.79
25011 0.70 0.14 0.77 0.94 0.92 0.15 0.61 0.048 0.74
25012 0.53 0.15 0.65 0.93 0.94 0.11 0.63 0.0400 0.76

Average 0.70 0.30 0.66 0.8 0.63 0.43 0.63 0.074 0.74

5.1.3. Object re-ID

In this study, to evaluate object re-ID, we have applied the algorithm on 10 random
episodes from Season 4 of New Girl and 10 random episodes from Season 3 of Friends TV
shows. The dataset does not possess ground truth labels. Thus, the approach was manually
validated—if the object was re-IDed correctly it was marked True; else it was marked False.
The True and False values were consolidated per object class for all episodes of New Girl
and Friends separately, and the object classes that had a minimum of 20 occurrences in all
the episodes of SOAP put together were chosen to estimate the accuracy. The accuracy was
then calculated for each SOAP separately. Table 3 shows the accuracy results for the object
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re-ID applied on the two SOAP series. These experimental results show that our object
re-ID algorithm performs at an average accuracy of 0.87.

Table 3. Performance evaluation of object re-ID.

New Girl (10 episodes) Friends (10 episodes)

Class True False True False

bed 29 0 152 0
bottle 604 153 51 14

refrigerator 23 0 56 0
sofa 76 0 306 13

dining table 202 11 87 12
vase 43 8 143 45
bowl 59 0 78 39

tv - - 51 0
cup - - 69 20
car 74 13 - -

handbag 61 0 - -
potted plant 20 0 - -

Count 1212 187 993 143

Accuracy 0.866 0.874

5.2. Ablation Study

In order to evaluate the importance of depth information in spatial distance estimation,
tests were conducted by selecting random frames of different angles from similar LSUs,
and distance was estimated with and without depth information. For example, as shown
Figure 12, distance and depth were measured for two different frames. Depth-based distance
using Equation (9) and normal Euclidean distance between the person object and the vase
object were estimated. On comparing the depth-based distance and Euclidean distance
between the two frames, it was seen that the error of the depth-based distance metric is
much less than the error of the Euclidean distance metric. The experiment was repeated for
10 different scenarios from 10 different episodes; depth-based distance error was estimated
to be at least six times smaller than the Euclidean distance error, on average.

Figure 12. An example of ablation experiment to study the effect of depth in spatial distance estimation.
Depth-based distance is found to be more comparable and less erroneous.

6. Conclusions and Future Work

We have proposed and presented a flexible pipeline for the annotation, structure
mining, and re-ID of objects in broadcast videos by exploring the semantic composition
of this pipeline. The high-level features extracted from low- and mid-level visual features
provided useful information about various aspects of the analysed videos. A video-mining
approach was used to infer high-level semantic concepts from the low-level features
extracted from the videos. The results of this video data mining were further improved
by exploiting temporal correlations within the video and constructing new features from
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them. Boundary prediction algorithms were proposed, which clustered and segmented
each video based on its structure. Furthermore, object re-ID was explored and adapted to
re-ID static objects in the videos. This helped us to create object timelines, which could
be interesting for a variety of applications. Our experiments show that our approach is
general enough for all broadcast videos, including different genres and languages. Upon
inspecting the failure cases, it was found that the selection of similarity threshold played
a vital role in the overall accuracy of the pipeline. Therefore, for future work, we would
look into adapting the similarity threshold automatically, which would further improve the
efficiency of the pipeline. Moreover, multi-modal features and effective methods to fuse
multi-modal information will be investigated. In addition, we would also further optimise
the spatial location graph to include dynamic/moving objects. Finally, the framework must
be evaluated on a large scale and the models should be improved accordingly.
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