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Abstract: Developments in flexible electronics have adopted various approaches which have en-
hanced the applicability of human–machine interface fields. Recently, microstructural integration
and hybrid functional materials were designed for realizing human somatosensory. Nonetheless,
designing tactile sensors with smart structures using facile and low-cost fabrication processes remains
challenging. Furthermore, using the sensors for recognizing stimuli and feedback applications re-
mains poorly validated. In this study, a highly flexible piezoresistive tactile sensor was developed by
homogeneously dispersing carbon black (CB) in a microstructure porous sugar/PDMS-based sponge.
Owning to its high flexibility and softness, the sensor can be mounted on human or robotic systems
for different clinical applications. We validated the applicability of the proposed sensor by applying
it to recognizing grasp and release forces in an open setting and to classifying hand motions that
surgeons apply on the master interface of a robotic system during intravascular catheterization. For
this purpose, we implemented the long short-term memory (LSTM)-dense classification model and
five traditional machine learning methods, namely, support vector machine, multilayer perceptron,
decision tree, and k-nearest neighbor. The models were used to classify the different hand gestures
obtained in an open-setting experiment. Amongst all, the LSTM-dense method yielded the highest
overall recognition accuracy (87.38%). Nevertheless, the performance of the other models was in
a similar range, showing that our sensor structure can be applied in intelligence sensing or tactile
feedback systems. Secondly, the sensor prototype was applied to analyze the motions made while
manipulating an interventional robot. We analyzed the displacement and velocity of the master
interface during typical axial (push/pull) and radial operations with the robot. The results obtained
show that the sensor is capable of recording unique patterns during different operations. Thus, a
combination of the flexible wearable sensors and machine learning could yield a future generation of
flexible materials and artificial intelligence of things (AIoT) devices.

Keywords: tactile sensors; low-cost electronics; sensor applications; machine learning; human–
machine interface; surgical robotics

1. Introduction

The rapid development of artificial intelligence (AI) in the field of wearable elec-
tronics has received increased research attention due to their promising applications in
personal healthcare devices, electronic skin (e-skin), human–machine interface, and hap-
tic devices [1–4]. Flexible tactile sensors are still considered as key candidates toward
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achieving intelligent sensing systems; this can be attributed to the integration of higher
capabilities for processing information [5]. In recent years, great efforts have been made
to enhance the flexibility and sensitivity of wearable tactile sensors to meet the essential
requirements needed for intelligent devices [6]. In terms of functionality, piezoresistivity,
piezoelectricity, capacitance, and triboelectricity are the four main sensing mechanisms that
have been utilized [7–10]. Mainly, these sensing mechanisms involve converting external
forces and mechanical stimuli into electrical signals. Among them, piezoresistive-type
sensors are more favored owning to their cost-effectiveness, simple design and structure,
facile fabrication, and simple read-out signals; thus, they are widely adopted. In addition,
the flexibility, stability, and sensitivity of piezoresistive sensors are highly desired when
compared with sensors using other sensing mechanisms.

Usually, the conventional designs of high-performance flexible piezoresistive sensors
are based on polymer matrices (such as elastomers—Ecoflex rubber and polydimethyl-
siloxane (PDMS) [11,12]) and conductive filler networks including graphene, nanowires,
nanofibers, carbon black, and carbon nanomaterials [13–17]. However, a variety of mi-
crostructure materials, such as pyramids [18,19], nanofibers, and two-dimensional elec-
trodes, are widely used for developing flexible piezoresistive sensors which have shown
high sensitivity and reliable linear response. Despite the enormous research outputs de-
scribing sensitivity and stretchability, sensors built on these strategies still exhibit several
limitations related to the detectable pressure range, fabrication process, response time, and
biocompatibility. However, in some practical applications such as bionic robots [20–22],
cost-effective production, data processing, and smartness are also major concerns. Hence,
new fabrication techniques with intelligent data processing methods are required to de-
velop low-cost smart sensory systems [23,24].

Advances in AI techniques have leveraged the functionalities of flexible tactile sen-
sors [25]. For instance, machine learning algorithms can enable ways of analyzing modali-
ties of a desired output pattern from touching or grasping objects to gesture recognition in
developing human–machine interfaces [26,27]. Furthermore, the intelligent integration of
low-cost flexible materials with stimulus realization and quantification can help accomplish
the performance of tactile piezoresistive devices that operate in a similar working principle
to the somatosensory system in humans [28]. Recently, various approaches have been
reported on the basis of a combination of AI with low-cost materials used in small scales.
For instance, Liu et al. [29] developed a smart e-skin based on a capacitive sensing array,
and data were processed by applying long short-term memory (LSTM) and neural network.
Furthermore, Shon et al. [30] reported a smart sensory e-skin by employing a multiwalled
carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) composite film and a deep
neural network (DNN) to realize the applied pressure levels, as well as obtain position
data by processing changes in the electrical resistance. Therefore, developing fully or
semi-automated flexible sensory systems based on machine learning has become a research
hotspot in recent years [31].

In this study, an intelligent recognition system was developed by combining a piezore-
sistive facile and cost-effective tactile sensor with a machine learning model for human–
machine interfaces. A microporous PDMS-based sponge was integrated using cost-effective
and commercially available sugar cubes. Retrospective studies were analyzed to obtain
object manipulation data, and the data recorded by several sensor units were trained with
machine learning algorithms to recognize different tactile signals in the hand gestures. The
remainder of this paper is structured as follows: Section 2 presents the sensor fabrication
process and data measurement procedures; Section 3 includes details of the experimental
setup and an analysis of results; Section 4 includes the discussion and conclusion.
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2. System Design and Method
2.1. Sensor Manufacturing

The sensor fabrication and design processes followed the route proposed in our
previous study [32]. Following the sensor characterization results based on its chemical,
physical, mechanical, and electrical properties, it was realized that the sensor model
is strongly dependent on the material preparation and fabrication process conditions.
However, to turn the nanoparticles from highly resistive to highly conductive, we used
only carbon black instead of a hybrid synergetic network. Herein, the microporous sponge
skeleton was fabricated by immersing a commercially available sugar cube (15 × 15 × 10)
in PDMS solution prepared by mixing Ecoflex prepolymer with a base curing agent in a
weight ratio of 10:1. Then, the mixture was stored on a heating platform for 2 h at 80 ◦C to
solidify the prepolymer solution around and inside the cube’s structure. Next, the solid
cubes were cut into slices with a thickness of 400 µm and further soaked in a glass container
full of hot water. Subsequently, we put the solution in an oven at 60 ◦C for 1 h to dissolve
the sugar particles from the inner porous sponge. The flexible skeleton was prepared in
an inner 3D porous sponge and treated with plasma. At the same time, the conductive
CB–alcohol solution was prepared by homogeneously dispersing CB powder in alcohol
solvent with a mass ratio 1:9 g/L−1. The conductive solution was dispersed in the PDMS
sponge by ultrasonication (in 45 min at the rate 30%) to firmly obtain conductive fillers on
the inner holes of the sponge’s walls. Finally, the conductive sponge was dried in the oven
to evaporate the alcohol and extract the resulting tactile sensor.

2.2. Design and Measurements

The fabricated sensor was sandwiched within wire electrodes and fixed with a poly-
imide tape film which was employed as a soft surface. The distribution of the piezoresistive
tactile sensors was first characterized by demonstrating that it could record data from
human fingers when making different hand gestures. Hence, to obtain stable signals,
three sensors—made using the above-presented process—were fixed to the thumb, index,
and middle fingers of five subjects. The piezoresistive tactile sensor obtained is shown
in Figure 1a. The morphological characterization in Figure 1b shows the unique porous
microstructure filled with conducive nanoparticles. We evaluated the reflection of defor-
mation on the sensor performance by subjecting the central area of the sensor to different
loadings on an electrochemical workstation connected to a Mark-10 force gauge and multi-
meter converter. Pressure deformation loading was increased gradually from 10–100 kPa
at intervals of 10 kPa, i.e., the range of values that fit both human physiological signals and
robotics applications [33].
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Figure 1. (a) Optical image of the piezoresistive sponge before and after coating with the conductive network; (b) scanning
electron microscope (SEM) images of the tactile sensor.
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The piezoresistive sensor response values were recorded with real-time sensor feed-
back using computer software, namely, KBD-24. Additionally, the testing conditions were
repeatedly applied to 10 different sensor samples to obtain data from different units and
properly analyze the stability and accuracy of the sensor prototype. Figure 2a shows the
gradual response obtained during each iteration, where it can be seen that the sensor
produced data even up to tiny pressure values. Notably, the response curve was very
close to a linear shape when loading values higher than 70 kPa were applied, as shown in
Figure 2b. This demonstrates the relationship that exists between the applied deformation
and the response outputs. Similarly, the piezoresistive effect showed a decrease in electrical
resistance with an increase in pressure loading.
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(b–d) Resistance response of the piezoresistive tactile sensor to an applied normal force of 15.75 N and shear force.

We measured the performance using the sensitivity (S) metric as defined in Equa-
tion (1); ∆R is the difference between the resistance R and the initial resistance (R0), while
∆P is the difference between the applied pressure P and the initial pressure P0. The statical
results reveal that there were three linear levels of sensitivity produced by the force sensor:
S1 = 0.0311 under a loading range of 10–30 kPa, S2 = 0.038 under a loading range of
30–70 kPa, and S3 = 0.075 under a loading range of 70–100 kPa.

S =
∆R

(R0 × ∆P)
. (1)

Additionally, we investigated the sensor’s response to normal and shear forces. Nor-
mal force was applied at 15.75 N for 300 s. As shown in Figure 2c, the piezoresistive
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effect decreased the electrical resistance under the normal force due to the continuous
deformation of the sensor. This decreased the diameter of the inner pores and increased the
contact of the conductive nanoparticles located on the walls. Conversely, shear force was
applied to the top surface parallel to the XY plane without applying any normal force. The
sensor showed an obvious resistance variation in response to any changes in the surface,
as shown in Figure 1d, owing to the unique elastic porous structure which enabled a fast
interaction between the conductive fillers located on walls.

Lastly, to further characterize the electrical properties and explain the voltage dis-
tribution, the sensor was powered by a constant resistor and a loading force of 15.75 N
was applied with different frequencies between 1 kHz and 10 kHz. The voltage outputs
produced by the sensor under the loading forces were set as a function of recording time, as
shown in Figure 3a,b. The results indicate super elasticity characterized by a fast response
of the sensor at 1 kHz frequency, while output peaks decreased with an increase in the
frequency values (up to 10 kHz). The results obtained reveal a decline in the amplitudes
produced by the sensor as the frequency values increased. This shows that the tactile
sensor is capable of achieving a rapid response, while it can enhance loading/unloading
forces with values of frequencies that are within the range that human skin can sense [34].
According to different application requirements, the current results prove the potential of
the sensor for a wide range of application areas.
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2.3. Gesture Recognition Procedure

One of the key functions of smart sensory gesture systems is their ability to instan-
taneously respond to external stimuli, as well as accurately identify force and position
information during somatosensory stimuli [35]. Three tactile sensors fabricated and char-
acterized as described above were used for training a machine learning model. Based on
using piezoresistive outputs, the system was first used for touch force recognition, and
later deployed within a robotic system for kinesthesis analysis.

In both cases, the sensors were assembled and fixed with an adhesive tape on the
thumb, index, and middle fingers of the right hand. Then, open-setting experiments were
conducted in which five volunteers were directed to establish typical hand motions used
during intravascular catheterization. The outputs from the tactile sensors were simultane-
ously collected to monitor the original gesture signals by converting hand force motions to
resistance variation values. During the process, Arduino uno 3r (Atmega 328P-PU) was
used as the data recording platform. The corresponding resistance changes were trans-
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ferred to the host computer via USB and used as the input data. To ensure high recognition
accuracy of hand movements, a huge dataset comprising different sensors was acquired
from multiple sessions, whereby the five volunteers were guided to repeatedly establish
only a single hand motion. In each trial, a minimum of 11,500 data points were acquired for
each movement, resulting in a total of 45,000 data points from all experiments. We further
argue that the new sensor structure has stable characteristics in terms of data acquisition;
that is, each sensor unit produces statistical data that are learnable by both traditional
machine learning and deep learning approaches. For this purpose, we developed a long
short-term memory (LSTM)-dense classification model and used it to classify the different
hand gestures obtained in the open-setting experiment. The LSTM-dense network was
implemented within Python based on the Keras® Tensorflow framework on a desktop with
a 2.2 GHz Intel i7 processor and an NVIDIA graphic processing unit. Recurrent networks
have relatively limited performance capacities on some time-series datasets due to the
vanishing gradient problem. Thus, LSTM serves as an alternative approach since it requires
switching the input, forget, and output gates without hidden cells. Furthermore, dense
layers were supplemented into the LSTM-based learning-based network to classify four
different types of hand gestures. The flow of the gesture recognition process is illustrated
in Figure 4.
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Figure 4. Learning-based network for hand motion classification.

The LSTM layers integrated into the network were separated with an attention unit,
while two consecutive dense layers were appended for the actual motion classification
based on signals received on the tactile sensors. The deep network consisted of three
main parts with different functional layers. The first mainly consisted of the input and
preprocessing layers, the hidden module included a variety of LSTM, attention, and dense
layers, and the last was a single-layered module for reporting the classification output.
During training, network parameters were configured arbitrarily, and the feature learning
stratagem of the network was based on unique training (60%), validation (20%), and test
(20%) datasets. The training was achieved with a dynamic learning rate initialized at 104,
an adaptive moment optimizer with a decay value of 106, and a recurrent dropout of 10%
added for regularization.

The performance of the final model was obtained under 1000 training epochs and
a batch size of 5. Differences in network performance were achieved, but only the best
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testing accuracies obtained are reported in Figure 5. The prediction performance of the
learning-based network was analyzed using the 20% test dataset, as shown in Figure 5.
The matrix shows that more intra-axial and intra-radial misclassifications were obtained
by the learning-based network. For instance, while 81.21% of 2960 push data samples
were correctly classified, 7.25% were misclassified as pull motions, whereas none were
misclassified as either of the radial motions. A similar result was obtained fror the two
radial motions.
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during intravascular catheterization.

However, extreme misclassifications were observed at very low percentages; for
example, 0.08% of the pull motions were predicted to be rotate-clockwise samples, and
0.09% of the rotate-clockwise motions were recognized to be pull samples by the learning-
based network. Overall, the deep learning algorithm exhibited an acceptably high-test
accuracy of 87.38%. Furthermore, the usability of data from the piezoresistive tactile sensor
in different existing classification methods was observed to investigate the possibility
of obtaining reliable hand motion recognitions with high accuracies. We compared the
learning-based network with five commonly used data classification methods, namely,
support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), neural
network, and k-nearest neighbor. The recognition accuracies obtained using each method
for the four hand motions are listed in Table 1. It can be seen from the table that the deep
learning algorithm demonstrated values in the same range as the conventional learning
algorithms, while the learning-based network arbitrarily introduced in this study showed
the highest recognition rate. It should be noted that proper tuning of the parameters can
improve the prediction performance of the models for the hand motion data.
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Table 1. Recognition rate of different classification methods.

Classification Methods
Recognition Accuracy on Test Data (%)

PUSH PULL RTCL RTCC Aggregate

LSTM + Dense 81.21 88.55 89.94 93.97 87.38
SVM 78.66 83.81 89.21 91.13 84.82
MLP 82.78 83.81 90.19 94.23 87.37
DT 84.04 75.41 87.18 89.88 84.52

KNN 85.33 80.70 90.58 92.08 87.31

In summary, the contacting and releasing actions of the piezoresistive tactile sensor
with an object can instantaneously convert finger tactile stimulus into notable real-time
electrical signals, which can be used to train machine and deep learning networks for
prediction tasks. These outputs can be varied according to the loading/holding contacting
fingers and releasing fingers. We demonstrated how our sensory system combines four
complex tasks, specifically, pushing, pulling, left rotating, and right rotating.

3. Application in Interventional Surgical Robot Training

Next, the sensor prototype was further validated by applying it to analyze the hand
motions made while manipulating the master interface of an interventional robot. The
robotic system, shown in Figure 6a, was used for catheterization of tools such as a guidewire
during intravascular interventions.
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3.1. Master Interface

The robotic system included a suite of master and slave devices which served as
the interface between surgeons and the tools. The master interface was a portable 2-DoF
robotic device that can be used to issue translation (push/pull) and rotation action during
interventions. It is located outside the operation room; hence, the interventionist can
sit outside the radiation area to issue control commands. The device has a knob with a
magnetostrictive electromagnetic bar that provides hand motion control data. Meanwhile,
the usability of the tactile sensor during intravascular interventions was validated by fixing
the sensors on the thumb and index fingers to obtain the tactile information as surgeons
manipulate the knob. The master device also had a display unit from a control station
which is used to guide the bedside (i.e., slave) robotic device during intravascular cardiac
interventions. As found in our previous study [36], data from the potentiometer sensor
bar are transmitted to a slave robotic device which is positioned close to patients in the
operation rooms.

The apparent resistance signals prove the fast response to touch with stability along
the testing time of the pushing and rotating processes. Moreover, we noticed that the
outputs of both sensors matched one another almost perfectly. This result proves the
potential of the piezoresistive tactile sensor for force sensing in surgical robots, smart
gloves, and e-skin.

3.2. Sensing Performance

Piezoresistive tactile sensors are mainly assigned to mimic the sense of touch in
human. Thus, they can enhance control and feedback studies. In this evaluation study, the
developed sensor was used for tracking the several hand motions during robot-assisted
procedures, i.e., pushing, pulling, clockwise rotation, and anticlockwise rotation, which
were analyzed using machine learning in the previous section. Usually, surgeons are aware
of their motions (push, pull, and rotate) made at any time, while they only anticipate
the sensory touch (stimuli) via experience using haptic feedback. These are transmitted
to their brain for translation purposes to decide the next hand motion needed during
an intervention. Thus, it has become vital to design systems that can predict the hand
movements for robot intelligence and surgery security purposes.

To mimic the surgeon’s capability of determining hand motion executed each time,
an open-setting experiment was carried out using two units of the piezoresistive tactile
sensors mounted on a volunteer’s thumb and index fingers to assess sensor feedback.
The sensors were fixed on the volunteer’s fingers while manipulating the robotic control
interface. The electrical resistance shows the sensor’s ability to respond swiftly as the
robot’s control interface was swiftly moved along the different axes. In this scenario, the
control knob of the robot hand was arbitrarily glided to different positions for several
seconds. During all procedures, the sensors were in a fixed position on a wearable glove;
thus, the pressure applied could be correctly recorded from the sensor’s surface. One key
function of the piezoresistive tactile sensor is the viscoelastic behavior of the elastomer
structure and the conductivity network fillers. During the process, sensors were in contact
with the robot arm for a period of 0.45 s and then released for 0.15 s. The results were
analyzed (Figure 6b,c), showing that the sensors exhibited a stable status. The apparent
resistance signals showed a fast response to the hand’s touch, while stability was inferred
along the testing time of the axial and radial processes. Furthermore, we noticed that the
outputs from both sensors matched one another closely. This result highlights the potential
of the piezoresistive tactile sensor for force sensing in surgical robots, smart gloves, and
e-skin.

3.3. Motion Analysis

Another demonstration of the piezoresistive sensor was investigated by analyzing
the displacement and velocity motion variables of the operator’s hand while carrying
out an interventional procedure. As basic operations are, in the broadest sense, transla-



Appl. Sci. 2021, 11, 7264 10 of 12

tion and rotation navigations, the displacement values were calculated as the linear and
angular distance traveled for each hand movement, while the velocity was obtained as
the first derivative of the displacement with time. Motion analysis was carried out with
respect to the relative resistance change during push and rotate operations (Figure 7), with
displacement and velocity obtained at the robot’s control knob plotted for visualization.
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The position and velocity of the robot’s master control for the axial and radial opera-
tions are given in Figure 7a–d, respectively. Both the position and the velocity signals were
recorded symmetrically with the relative resistance change during the push and rotate
hand motions. Some inferences can be made. For instance, integration of the sensing
components with the robot did not cause motion damping or an unsmooth trajectory when
handling the robot. Thus, it can be concluded that sensor placements did not interfere
with the procedure while operating the interventional robot for a range of different hand
motions utilized for tool manipulation during intravascular catheterization procedures.

4. Conclusions

This work reports the design of a low-cost, facile fabricated piezoresistive tactile sensor,
which is capable of imitating the human sense of touch. The resistance changes of our novel
microstructural design were presented, and the results reveal how forces applied to the
sensor were transformed into a measurable signal that could enhance pattern recognition.
The tactile sensor was utilized for a smart glove application during interventional surgery
via an acquisition unit collected during real-time resistance variations. The acquired data
were processed using machine learning models to analyze the sensed data and recognize
different types of hand gestures. The piezoresistive tactile sensors were able to recognize
hand gestures with an accuracy of about 87.38%, with applicability in analyzing hand
motions using a robot. In general, this work paves the way for the combination of flexible
materials with intelligent robots, as well as highlights the possibilities of realizing advanced
functions in human–machine interfaces.
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