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Abstract: For the repair level and spare parts stocking problems, generally METRIC type methods
and Level of repair analysis (LORA) are used separately. Since LORA does not consider the avail-
ability of capital goods, solving LORA and spare parts stocking problems sequentially may lead to
suboptimal solutions. On these considerations, this study presents a joint optimization method to
minimize the service logistics cost under the constraints of system availability. Maintenance capability
factor and maintenance decisions are introduced into the joint optimization model to express the
influence of multiple failure modes on repair level and spare parts stocking. Thus, we establish the
bridge relationship between LORA and METRIC models. The joint optimization model is solved
by an improved iterative algorithm, and a typical fleet system is taken as an example to verify the
correctness and effectiveness of the model and the algorithm. Compared with the optimization of
spare parts inventory and maintenance level independently, the joint optimization method could
effectively reduce the service logistic system cost.

Keywords: fleet; service logistics; LORA; VARI-METRIC; multiple failure modes

1. Introduction

A system is considered dynamic when its characteristics and logical or capacity con-
figuration change over time [1]. An emblematic case of these systems is fleet systems,
in which several configurations may satisfy the same goal [2]. In aircraft groups, for exam-
ple, this fleet system assigns combat, training, and other missions in different geographical
regions [3,4]. A small improvement in inventory costs or maintenance capability can
produce meaningful savings of fleet systems. These motivations are capable of defining
and quantifying the performance of a service logistics system, without losing sight of its
complex characteristics.

Level of repair analysis (LORA) and spare parts stocks allocation are current topics in
the field of service logistics research. LORA is used to analyze the maintenance decision of
key components in the system when they fail. It could formulate the maintenance level of
repair, move to repair, or discard, as well as identify maintenance resources [5]. Spare parts
are critical resources of service logistics system which play an important role in operating
missions. The fleet system’s availability would be degraded if key components fail or
spare parts are not available [6]. LORA and spare parts stocks are typically optimized
individually to obtain the best cost within their individual limitations. Many researchers
have neglected the relationship between spare parts stocks and maintenance, which leads
to the non-optimal cost of the fleet system [7]. Therefore, it is necessary to propose a joint
optimization method of spare parts stocks and level of repair analysis.

Modeling LORA in isolation usually requires an explicit relationship between compo-
nents and maintenance resources such as one-to-many link [8,9], one-to-one link [10,11],

Appl. Sci. 2021, 11, 7254. https://doi.org/10.3390/app11167254 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0932-6563
https://doi.org/10.3390/app11167254
https://doi.org/10.3390/app11167254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167254
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167254?type=check_update&version=2


Appl. Sci. 2021, 11, 7254 2 of 15

or many-to-one link [12,13]. However, there are few hypotheses about component fail-
ure modes in the previous studies. Failure modes of fleet’s components are complicated,
because of high speed, heavy load, or strong impulse conditions [14,15]. Maintenance
resources and cost implications of different failure modes are different, such as when a fleet
system is in the state of short circuit, the corresponding corrective repair time distribution
may not be identical [16,17]. Therefore, multiple failure modes should be considered
simultaneously for analyzing the repair level of the fleet’s components.

Modeling the joint optimization of spare parts stocks and LORA, the structure of
operating system and service logistics system needs to be defined separately. Alfredsson
builds a nonlinear integer programming model based on the single-echelon repair network
and two-indenture system structure [18]. The system unavailable time, spare parts waiting
time, and fault repair time are taken into account in this model. Basten applies the enumer-
ation method to the maintenance decision flow model to solve the feasible solution of a
single-indenture system [19], and then develops the system to a two-indenture structure
and suggests an iterative algorithm for handling the joint problem of spare parts stocks and
LORA [20]. For the multi-echelon multi-indenture system, some researchers started seeking
the approximate solution of the joint optimization model. Triki investigates the estimated
domain spectrum of decision variables by simulating parameter value changes [21]. Based
on the fuzzy method, Xue proposes a multivariable fuzzy parameter convex optimization
algorithm to solve the EBO (Expected Back Order) problem [22]. By comparing with the
convex optimization algorithm and sequential methods, Guo demonstrates the iterative
algorithm superior [23]. In reference [19], the authors acknowledge two drawbacks in
their work. The first is related to considering a symmetrical repair network (i.e., making
the same decisions at all locations of a given echelon for each component and resource).
The second is related to the simplifying assumption of infinite repair capacities. These are
also the main shortcomings of current research.

Maintenance capability is an important parameter of multi-echelon multi-indenture
system optimization models; only one of them is usually considered in the modeling.
Liu et al. formulate maintenance capability uncertainty as a chance-constrained frame-
work [24]. One important conclusion of this research is that a higher maintenance capability
level ensures a higher availability of spare parts. Using the LORA decisions as an input,
the spare parts stocking problem is solved to decide which components to put on stock at
which location(s) in the repair network in which quantity, and many examples can be found
in reference [25], such that a target availability of the capital goods is achieved against
minimum holding costs [20].

Maintenance decision-making is also important in the multi-echelon multi-indenture
system optimization models. Maintenance decisions determine inventory changes at
different maintenance locations. A well-known method to solve the inventory dynamic
change problem is (VARI-)METRIC [26,27], which is a greedy heuristic that is known to find
solutions that are close to optimal, such as Feng et al. build a single-echelon multi-indenture
joint optimization model by considering the ratio of maintenance decisions (repair, move to
repair, discard) [28]. Although current research shows that joint optimization has more
advantages in cost saving than single optimization, the lack of comprehensive analysis
of maintenance capability and maintenance decisions would result in a solution that is
not optimal.

Given these antecedents, a new two-echelon two-indenture nonlinear joint optimiza-
tion model for a fleet system is built in this study. Under the availability constraint,
we formulate maintenance capability factor and maintenance decisions as the influences of
different failure modes. The inventory problem, repair level, and maintenance resource
allocation of spare parts are solved by an improved iterative algorithm. Therefore, an eco-
nomic and effective service logistics system optimal method can be established to ensure
the long-term and stable economic operation of the fleet system.
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2. System Description

This section describes the characteristics of the fleet system and service logistics system.
According to the current research, we propose several hypotheses to provide the theoretical
basis for the joint optimization modeling.

2.1. Two-Indenture Fleet System Description

A fleet system is thought to be made up of dozens or hundreds of homogeneous
subsystems; each subsystem has the same structure and can be considered an independent
system. In order to improve maintenance efficiency, the modular design is generally
adopted. The fleet system structure would be divided into multiple indentures.

The 2-level structure is shown in Figure 1, including Shop Replaceable Unit (SRU),
which is the subset of Line Replaceable Unit (LRU). Moreover, at the location of mainte-
nance for a system, SRU can fail and be repaired. Basten has done a detailed analysis of the
definition of LRU and SRU [19].
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The assumptions of the two-indenture fleet system are as follows [20]:

(1) In a given fleet system, the deterioration process of each homogenous component is in-
dependent and uniform, which indicates that each component randomly degenerates
according to the same law over time.

(2) The subcomponent will be replaced to repair system, if the corresponding component
fails. Therefore, when a component should be maintained, each subcomponent at the
same echelon level should be decided moved, discard, or repaired.

(3) It takes little time on replacing a defective LRU, and the replacement belongs to oper-
ational availability. Therefore, compared with the supply and operational availability,
we should focus on the former one (supply availability).

(4) Discarding the LRU implies that its SRUs are discarded as well.
(5) For each component at each location, an (s− 1, s) continuous review inventory control

policy (one for one replenishment) is used. That is, the replenishing and ordering
strategy for one missing component is adopted to keep the stock at the level of s.
Because each component has multiple failure modes, and each mode has a different
failure mechanism and failure rate, the system has different degrees of influence and
consequences [14]. Two assumptions of multiple failure modes of components are
added in this study:

(6) The failure modes of the component appear randomly.
(7) Minor fault mode could be repaired on base location; serious fault mode should be

sent to the depot location for repair.

2.2. Two-Echelon Service Logistics System Description

A two-echelon service logistics system is composed of three Base locations and two De-
pot locations. As indicated in Figure 2, the fleet system executes duties at the Base locations.
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The assumptions of the two-echelon service logistics system are as follows [20]:

(1) Each maintenance location has a set of resources, including spare parts, mainte-
nance workers, maintenance equipment, and tools. The maintenance capability is
proportional to the resources available for maintenance.

(2) The discard decision is only considered in the Depot.
(3) A failed (sub)component may not be shipped to a lower echelon level. When a failed

component with echelon level e should be repaired, the corresponding subcomponent
must be maintained at echelon level f ≥ e, rather than a lower level.

(4) There are no lateral transshipments between locations at the same echelon level or
emergency shipments from locations at a higher echelon level; functioning spare parts
are only supplied from one specific location at the next higher echelon level.

When the Base location cannot repair the failure components, they must be trans-
ferred to the Depot location for maintenance. At this point, the Depot location must
decide whether to repair or discard the failed component. Due to the (s-1, s) continuous
review inventory control policy, minimizing the expected number of backorders is a good
approximation of maximizing the availability [26].

3. Two-Echelon Two-Indenture System Modelling
3.1. Mathematical Model of LORA

The characteristics of fleet system repair level and spare parts allocation are evaluated
in this section. We introduce maintenance capability factor and maintenance decisions
(repair, move, discard) into LORA and METRIC models. This method can reflect the
influence of multiple failure modes on the joint optimization model.

We consider the structural dependence relationship between system components,
as well as the maintenance resources in the model. LORA is used to analyze the optimal
repair level of components and determine the type and quantity of maintenance resources.
Therefore, the key issues of repair level analysis are as follows:

(1) Analyze the maintenance decision of failure components based on failure mode:
move, repair, discard;

(2) Analyze the level of repair decision-making;
(3) Determine the maintenance resources needed to implement the maintenance decision.

According to the above two-echelon two-indenture system structure logic analysis,
an LRU and its SRUs are taken as an example to build a LORA model. The variables and
descriptions involved in this paper are shown in Table 1.
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Table 1. NOTATION.

Variable Name Implication

Input Variables

i Component number, LRU: i = 0; SRU: i = 1 · · · I
h LRU family number, h = 1 · · ·H
j Location number, Depot: j = 0; Base: j = 1 · · · J
k Subsystem number, k = 1 · · ·N

λi,j Yearly demand means value of component i at location j
qi Conditioned failure rate of a SRU on the parent LRU
ri,j Repairing probability of component i at location j
Ti,j Repairing time of component i at location j
Oi,j Order and ship time of component i from the Base to the location j
f ci Price of component i

Mi,j The number of components i in the system

Intermediate Variables Ni,j Quantity of component i in repair at location j

Decision Variables
Xi,j,d Maintenance policy d of component i at location j
Yr,j Allocation of Maintenance resources r at location j
si,j Level of inventory of component i at location j

(1) If the LRU fails, the possible maintenance decisions are repair, move, and discard:

X0,j,repair + X0,j,move = λ0,j, j = 1, 2, · · · (1)

X0,0,repair + X0,0,discard =
J

∑
j=1

X0,j,move (2)

Constraint (1) states that the number of repairs and moves at Base location is equal to
LRUs’ annual failure times.

Constraint (2) states that the number of repairs and discards at Depot location is equal
to the number of LRUs moves.

(2) If the failure is determined to be caused by SRU, there are:

Xi,j,repair + Xi,j,move = λi,j (3)

J

∑
j=1

Xi,j,move = ∑
d∈D

Xi,0,d (4)

X0,j,repair =
I

∑
i=1

Xi,j,repair (5)

Constraint (3) states that the number of repairs and moves at Base location is equal to
SRUs’ annual failure times.

Constraint (4) states that the number of repairs and discards at Depot location is equal
to the number of SRUs moves.

Constraint (5) states that the number of LRU repairs at Base location is equal to the
sum of all SRUs repairs.

(3) Maintenance decisions need the corresponding maintenance resources. So d = repair
needs the following constraint:

Xi,j,repair ≤ Yr,j · λi,j, i ⊂ Ωr (6)

where Ωr is a collection of all the components that need the resource r for repair.

3.2. Mathematical Model of Spare Parts Stock

Spare parts are components of a system unit that can be dismantled and replaced
immediately following a failure. According to the basic METRIC model, Base location
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should refill supplies to satisfy the demand with new or fixed LRU, when an LRU is
replaced on a subsystem. Two levels including Base and Depot are used to satisfy the
demand of LRU, based on the inspection capability at Base level [29]. The aim of inspection
is to verify the replacement and demand of SRU. Furthermore, the SRU demand at the
Depot is always satisfied by repairing the failed SRU, while at the Base it can be satisfied
only if the Base is certified to execute the repairing process, otherwise, the SRU demand is
redirected to the Depot [30].

The total demand λi,j of an SRU is the sum of two contributions:

λi,0 =
J

∑
j=1

λi,j
(
1− ri,j

)
+ λ0,0qi, i = 1, 2, 3 . . . (7)

The demand of SRU deriving from a failure of LRU, inspected at the Bases, not certified
to execute the maintenance operations:

λi,j = λ0,j · r0,j · qi, i = 1, 2, 3 . . . , j = 1, 2, 3 . . . (8)

The demand of SRU deriving from a failure of LRU inspected at the Depot:

λ0,0 =
J

∑
j=1

λ0,j
(
1− r0,j

)
(9)

Sherbrooke points out that the mean variance ratio of the number of repairs is greater
than 1, so the Poisson distribution assumption is not applicable [26]. We believe that in the
discrete distribution function, the negative binomial distribution satisfies the feature that
the variance is greater than the mean. It can be used to describe the discrete feature of the
arrival of spare parts demand.

At the Depot, the pipeline of any SRU is composed by the components in maintenance
and the Expected Backorder. The expected value and the variance of the pipeline are related
only to the repairing time and to the level of spare parts in stock:

E[Ni,0] = λi,0Ti,0 + EBO(si,0|λi,0Ti,0), i = 1, 2, · · · (10)

For each SRU, any Base offers a pipeline consisting of components under maintenance,
previously requested and arriving from the Depot, and the EBO:

E
[
Ni,j
]
= λi,j

[((
1− ri,j

)
Oi,j + ri,jTi,j

)]
+ fi,jEBO(si,0|λi,0Ti,0) (11)

Var
[
Ni,j
]

= λi,j
[((

1− ri,j
)
Oi,j + ri,jTi,j

)]
+ fi,j

(
1− fi,j

)
EBO(si,0|λi,0Ti,0)

+ f 2
i,jVBO(si,0|λi,0Ti,0)

(12)

where fi,j is the fraction of i-th SRU at the Depot to supply the j-th Base.

fi,j = λi,j
(
1− ri,j

)
/λi,0, i = 1, 2, 3 . . . (13)

Analogously, the LRU pipeline at the Depot can be described by:

E[N0,0] = λ0,0T0,0 +
I

∑
i=1

fi,0EBO(si,0|λi,0Ti,0) (14)

Var[N0,0] = λ0,0T0,0 +
I

∑
i=1

fi,0EBO(si,0|λi,0Ti,0) +
I

∑
i=1

fi,0(1− fi,0)VBO(si,0|λi,0Ti,0) (15)

where fi,0 is the fraction of the i-th SRU needed to repair the LRU.

fi,0 = λ0,0qi/λi,0 (16)
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J

∑
j=0

fi,j = 1

The values representing the LRU pipeline at the Bases are then:

E
[
N0,j

]
= λ0,j

[(
r0,jT0,j +

(
1− r0,j

)
O0,j

)]
+

I

∑
i=1

EBO
(
si,j
∣∣E[Ni,j

]
, Var

[
Ni,j
])

+ f0,jEBO(s0,0|E[N0,0], Var[[N0,0]) (17)

Var
[
N0,j

]
= λ0,j

[(
r0,jT0,j +

(
1− r0,j

)
O0,j

)]
+ f0,j

(
1− f0,j

)
EBO(s0,0|E[N0,0], Var[[N0,0])

+ f 2
0,jVBO(s0,0|E[N0,0], Var[[N0,0]) +

I
∑

i=1
VBO

(
si,j
∣∣E[Ni,j

]
, Var

[
Ni,j
]) (18)

where f0,j is:
f0,j = λ0,j

(
1− r0,j

)
/λ0,0, j = 1, 2, 3, · · · (19)

When the number of components in repair obeys the negative binomial distribution,
The EBO of LRU at Base j is:

EBO
(
s0,j
)
= EBO

(
s0,j
∣∣E[N0,j], Var[N0,j

])
(20)

where E
[
N0,j], Var[N0,j

]
is the mean and variance of a negative binomial distribution.

In order to calculate the EBO of components, we need to convert the mean and variance
into parameters (a, b) from the negative binomial distribution nbin(x, a, b).

Since it cannot be guaranteed under any conditions, the variance of the number of
parts under repair of all parts in the system at all maintenance points in the service logistics
system is greater than 1. Instead of using a general conversion formula, the transforma-
tion formula is derived from the definition of mean and variance of negative binomial
distribution in this study.

E[x] = ∑ x · nbin(x, a, b) = a · 1− b
b

, Var[x] = a · 1− b
b2 (21)

Then we can get:

a =
E
[
N0,j

]2
Var

[
N0,j

]
− E

[
N0,j

] , b =
E
[
N0,j

]
Var

[
N0,j

] (22)

In this case, we only need to satisfy the requirement that the variance of repairs is
greater than its mean value, which is obvious. According to Equations (22) and (20) for
calculating EBO can be converted into:

EBO
(
s0,j
)
=

∞

∑
x=s0,j+1

(
x− s0,j

)
nbin(x, a, b)=

∞

∑
x=s0,j+1

(
x− s0,j

)( a + s0,j − 1
s0,j − 1

)
bs0,j(1− b)a (23)

When the system is a series structure, the system’s availability is the product of all
LRU’s availability:

A
(
s0,j
)
=

(
1−

EBO
(
s0,j
)

M0,j

)M0,j

(24)

The marginal benefit factor δ is used to complete the optimization solution of spare
parts inventory through the marginal analysis algorithm, and the solution logic is shown
in Figure 3.
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3.3. Mathematical Model of Joint Optimization

Based on the above service logistics model, a two-echelon two-indenture nonlinear
joint optimization model of fleet system is constructed by introducing multiple failure
modes and discard decision.

min ∑ ∑ f ci · si,j + ∑ ∑ ∑ vci,j,d · Xi,j,d + ∑ ∑ rcr,j ·Yr,j

s.t. A
(
si,j
)
≥ Amin, i= 0, 1, · · · , j = 0, 1, · · ·

X0,j,repair + X0,j,move= λ0,j, j = 1, 2, · · ·

X0,0,repair + X0,0,discard=
J

∑
j=1

X0,j,move

Xi,j,repair + Xi,j,move= λi,j
J

∑
j=1

Xi,j,move= ∑
d∈D

Xi,0,d

X0,j,repair=
I

∑
i=1

Xi,j,repair, i ∈ Γ0

Xi,j,repair≤ Yr,j · λi,j, i ⊂ Ωr

Xi,j,d ∈ N, Yr,j ∈ {0, 1}

(25)

The objective function consists of three parts: spare parts cost, maintenance deci-
sion cost, and maintenance resource cost. The constraints include two parts: availability
constraints related to spare parts and LORA related to failure components.

If multiple failure modes are included in the LORA model, with the increase of
component types, more detailed failure mode information is needed as the input of the
model. The scale of model solution would be more and more difficult to the solute.

In the actual project, the serious failure mode usually requires more maintenance
resources. In other words, the move ratio R is: R = n/N. Where n is the number of moves
and N is the number of failed components.

The move ratio parameter R reflects the maintenance ability r of the Base locations,
and its numerical relationship is:

r = 1− R = 1− n/N = Xi,j,move/λi,j, j = 1, 2, · · · (26)

Discard decision Xi,0,discard means the system needs to order spare parts. Spare parts
order lead time is Li, the probability of components being discarded is ri,0, the number of
repairs at Depot is:

E[Ni,0] = mi,0[((1− ri,0)Ti,0 + ri,0Li)], i = 0, 1, · · · I (27)

where ri,0 = Xi,0,d/λi,j.
To summarize, there would be r of failure components repaired at Base location; ri,0 of

failed components discarded due to the high maintenance cost; and 1− r− ri,0 of failed
components repaired at Depot location.

Some authors focus on how to assess system availability with the constraint of re-
sources, especially spare parts and equipment, by analytical method or numerical ap-
proach [31–33]. The practical motivation of this research is optimizing stock allocation
targeting maximum availability with the constraint of preassigned maintenance policy.
The essential motivation of this technique is on the hypothesis that availability can be
dividing into two independent parts, maintenance availability and supply availability,
respectively. So, most of the research express the effect by EBO or MDT (mean delay time).
However, different maintenance capability factors indicate that maintenance decision-
making changes dynamically. The approach of this airtcle tries to define the logistic
support to ensure a specified availability. In this case, an availability-cost function is
created in order to evaluate service logistics costs associated with a required service level.
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The better the maintenance capability of the Base level, the better the system avail-
ability. System availability (A) is proportional to maintenance capability (r). Due to the
maintenance resources allocation, the service logistics cost (C) is negatively correlated with
r. In summary, A is negatively correlated with C. As two important indicators of the service
logistics system, A and C can be connected with each other through r of Base location.

3.4. Mathematical Model Solution

In reality, the joint solution of LORA and spare parts stocking is a sequential optimiza-
tion. First, the costs with failure number and repaired costs can be optimized by LORA.
Then, the spare parts stocking can be dealt with VARI-METRIC, based on the LORA’s
results. Finally, the location of spare parts in the repair network can be found to achieve a
target availability of capital goods with the lowest possible spare parts holding costs [30].

The proposed iterative algorithm is shown in Figure 4. It is obvious to find that the
sequential approach is two of the same building blocks.
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By solving the LORA model, the cost (maintenance resources cost ∑ ∑ rcr,j · Yr,j

and maintenance cost ∑ ∑ ∑ vci,j,d · Xi,j,d) is minimized when the solution
(

Xi,j,d, Yr,j

)
satisfies the constraint conditions. According to the results, the maintenance ability r of the
component at the Base location is calculated. r is taken as the input parameter of the spare
parts inventory METRIC model, and the inventory solution Si,j is obtained.

The “intermediate” decision contains move decision, while the “final” decision in-
cludes repair and discard decision. Thus, only the costs of final decision should be focused
on. We define hk

i,j,d as the decision cost of component i added to LORA model in the k-th
iteration:

hk
i,j,d =

∑ ∑ f ci,j · si,j

λi,j
(28)

where si,j is the result from iteration i − 1.
The cost coefficient of maintenance decision is:

vci,j,d =

{
vci,j,d + hk

i,j,d, d ∈ {repair}
vci,j,d, d ∈ {move}

(29)

As mentioned above, the holding costs as the inputs of LORA should be changed
in i-th iteration only if the corresponding repair/discard decision was selected in the
former iteration. This is a way to gradually estimate the resultant holding costs for all
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corresponding repair/discard decision. Then, the proposed algorithm will find optimal
total costs: LORA costs and holding costs resulting from the spare parts stocking analysis.

The stop condition of the proposed algorithm is the solution of LORA and is identical
to the previous iteration. If there are two different LORA solutions with the same costs,
the solution shown in both iterations is selected, and the algorithm terminates.

4. Numerical Experiment

We take two key subsystems—LRU1 and LRU2—of the fleet system in reference [30]
as examples. LRU1 consists of four SRUs; LRU2 consists of three SRUs. Thus, we can
verify the effectiveness and correctness of the joint optimization model through considering
7 different failure modes. The two-echelon service logistics system consists of one Depot
location and three Base locations. The number of subsystems in the three Base locations are
13, 30, and 20. The annual demand of spare parts for the two key LRUs at the three Base
locations are 3, 7, 5, and 2, 4, 3. The target availability of the fleet system is 95%.

4.1. Analysis of the Influence of Maintenance Capability on Service Logistics Cost

Considering the change of component maintenance decision caused by multi failure
modes, part of the failed components are left in the Base locations, and part of the failure
parts are moved to the Depot locations to be repaired or discarded. The relationship
between the maintenance capability at the Base locations and the total cost of the system
under the constraint of 95% availability can be seen below in Figure 5.
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With the maintenance capacity gradually increasing from 0 to 1, the cost of the ser-
vice logistics system presents a fluctuating trend. Under the constraint of availability,
the optimization results of maintenance capability factor change dynamically. When the
maintenance capacity factor is 0.65, the cost reaches the minimum value of 30,358,050.
Lower maintenance capacity requires Depot locations to allocate more maintenance re-
sources, and higher maintenance capacity would lead to an increase in maintenance activity
costs. Therefore, we can confirm that the fleet system does exhibit an optimal maintenance
capacity factor.

4.2. Spare Parts Inventory Analysis of Fleet System

Table 2 shows the inventory optimization results of the system when the maintenance
capacity is 0.65 under the constraint of 95% system availability.
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Table 2. Inventory optimization results.

Components
Inventory Lever

Depot Base1 Base2 Base3

LRU1,0 4 9 17 15
SRU1,1 4 3 5 4
SRU1,2 2 1 2 2
SRU1,3 3 1 2 2
SRU1,4 4 2 5 3
LRU2,0 2 5 8 6
SRU2,1 2 2 3 3
SRU2,2 3 3 5 5
SRU2,3 3 3 5 5

By comparing the inventory results in reference [30], it is found that the optimization
results reduce the inventory of LRU2 in our study with the inventory of LRU2’s SRU
increased slightly. Obviously, dynamic optimization of maintenance capacity could get
more economical service logistics decisions.

In terms of maintenance decisions, they are more inclined to repair LRU by replacing
SRU, which reduces the cost of purchasing the LRU2. At this point, the inventory of LRU1
is appropriately increased. In comparison, we saved 6.4% on spare parts inventory cost.

To illustrate the correctness of the model and algorithm of this study, we take the
last iteration of the joint optimization model as an example. The inventory optimization
process is shown in Figures 6 and 7.

Figure 6 shows the relationship between system EBO, availability, and system cost.
System cost increasing means the inventory is increasing, the system availability is in-
creasing, and the EBO is decreasing. According to the downward trend of the EBO curve,
it can be judged that this curve conforms to the definition of the “convex” function; that is,
any point on the curve is optimal. According to the relationship between availability and
EBO, any point on the available curve line is also optimal.

Figure 7 shows the selection process of SRU, LRU1, and LRU2. The abscissa represents
the number of iterations. If one iteration is completed, an additional inventory of parts
is added. It can be seen in the first 40 iterations that the algorithm selects increasing the
inventory of SRU as the optimal solutions.
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According to the marginal benefit factor analysis, the factor value of SRU was greater
than LRU1 and LRU2 in the first 40 iterations. Furthermore, since the price of SRU is
much lower than LRU, the impact of price factor is greater than EBO reduction in the first
40 iterations.

When the iterations exceed 40, the algorithm selects increasing the inventory of LRU.
This is due to the inventory of the SRU satisfying demand. At this time, EBOSRU(Si,j

∣∣mT)
is small enough, and the price of LRU1 is much higher than SRU. Therefore, δSRU is close
to δLRU1.

Similarly, since the price of LRU2 is much higher than LRU1 and SRU, when the
iterations increase to 105, δLRU2 is close to δSRU , δLRU1.

The same curve trends are also found in reference [30]. This proves the correctness
of our model and algorithm. All cases that conform to the two-echelon two-indenture
structure are applicable to this model and algorithm.

5. Conclusions

By considering the multiple failure modes, the new joint optimization model of repair
level and spare parts inventory for a two-echelon two-indenture fleet system is built.
By introducing maintenance capacity factor and discard decisions into the joint model,
an improved iterative algorithm is designed to obtain the optimal solution of maintenance
capacity and spare parts inventory. The effectiveness of the model and algorithm is verified
by a typical example.

The contributions and innovations of this study are as follows: (1) The bridge of the
dynamic maintenance capability factor between system availability and system cost is
established effectively to solve the maintenance decision difficulties of increasing scales
coming from the different characteristics of multiple failure modes considered in the
LORA model. (2) Optimizing maintenance capability factor could dynamically get more
economical joint optimization service logistics decisions. (3) The iterative process of the
improved iterative algorithm shows that the availability of the fleet system can be effectively
guaranteed by keeping the basic inventory of LRU unchanged and increasing the inventory
of SRU. This study realizes the practical significance that the joint optimization model can
guarantee the economy of the system.

As a further improvement, the risk of obsolescence of repairable systems can be
introduced. Since the lifespan of the model is very wide, asset management related to
life cycle cost is also factored into maintenance decisions and inventory management.
For the additional multi-state components [34], common cause failures (CCFs) [35] and
data uncertainty are complex problems regarding service logistics decisions.
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