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Abstract: Non-contact visual monitoring of vital signs in neonatology has been demonstrated
by several recent studies in ideal scenarios where the baby is calm and there is no medical or
parental intervention. Similar to contact monitoring methods (e.g., ECG, pulse oximeter) the camera-
based solutions suffer from motion artifacts. Therefore, during care and the infants’ active periods,
calculated values typically differ largely from the real ones. In this way, our main contribution
to existing remote camera-based techniques is to detect and classify such situations with a high
level of confidence. Our algorithms can not only evaluate quiet periods, but can also provide
continuous monitoring. Altogether, our proposed algorithms can measure pulse rate, breathing rate,
and to recognize situations such as medical intervention or very active subjects using only a single
camera, while the system does not exceed the computational capabilities of average CPU-GPU-based
hardware. The performance of the algorithms was evaluated on our database collected at the Ist

Dept. of Neonatology of Pediatrics, Dept of Obstetrics and Gynecology, Semmelweis University,
Budapest, Hungary.

Keywords: photoplethysmography; rPPG; pulse rate; breath rate; respiration rate; NICU monitoring;
non-contact; remote; vital sign

1. Introduction

Reliable and continuous monitoring of the vital functions of newborn infants is of
the utmost importance in a hospital. In Neonatal Intensive Care Units (NICU), the infants
need special attention. The standard vital sign monitoring consists of measuring the
heart rate (HR), peripheral oxygen saturation (SpO2), breathing rate (BR), blood pressure
and temperature.

HR and BR can be measured with ECG electrodes. However, in a NICU the use of
them is typically avoided unless there is some particular heart problem, because the many
wires can impede kangaroo care and cause stress to the infant [1], the single-use disposable
adhesive electrodes are costly, and they might even cause skin damage to preterm infants.
A pulse oximeter, wrapped around an infant’s ankle or wrist, is used to measure pulse rate
(PR) and SpO2, but it does not measure BR. Though pulse oximeters do not use adhesive
contact, they can also cause permanent skin damage to very premature infants. Current
methods of repeated, non-invasive blood pressure measurement and continuous skin
temperature monitoring require direct contact with the body as well. Therefore, there is
an established need for the development of non-contact vital sign monitoring devices in
hospitals as well as for homecare use. This is a burgeoning field.
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Newborn infants are often active–including spontaneous kicking with legs, stretching
the arms, and twisting the body. Cot mattresses with an embedded pressure sensor array
can provide breath signal. However, they are highly sensitive to different motions and the
position changes of the infant, and are also prone to false apnea alarms. Radar systems
have been developed for PR and BR estimation [2,3]. These devices use the Doppler-
effect to measure the movements of the skin to pick up respiratory and pulse frequency
components. However, motion-sensitivity is yet again an unsolved problem, as motion
can induce interference creating artifacts in the radar signal. Thermal imaging has been
used to estimate BR from the temperature changes around the nose [4], but it requires the
measurement accuracy to be in the millikelvin range in a heated incubator environment
making the realization of this technology expensive.

With the advance of algorithmic frameworks and the decreasing cost of CMOS RGB
video cameras and embedded computing, the research field of videostream-based vital
sign measurement is expanding ever faster.

Remote photoplethysmography (rPPG) measures the vascular volume changes in a
non-contact way. The blood volume in the living tissue increases and decreases according
to the beat phases of the heart. It causes tiny changes in light absorption and scattering,
creating a periodic variation in color and brightness of the skin that is not perceptible to the
naked eye, but regular cameras are able to record it, enabling the estimation of pulse rate.

Most often the estimation of breathing rate is based solely on observing the inspiratory
and expiratory movement of the chest.

In the paper, we propose algorithms for a motion tolerant, continuous non-contact,
single camera infant vital sign monitoring system using an ensemble of machine learning
architectures. The system can be a good complementary solution for infant monitoring
in hospitals and in homecare in those situations where contact solutions are not practical
(i.e., for continuous, long-term monitoring).

In summary, our work makes a three-fold contribution:

• We designed a new method for non-contact pulse-rate monitoring of newborn infants,
with comparable or better performance compared to methods that are currently
considered state of the art, and proposed a new temporal augmentation technique–
called frequency augmentation–for better generalization of the neural network in the
whole pulse range.

• We designed a new method for non-contact respiration monitoring of newborn infants,
with a performance comparable or better to the methods that are currently considered
state-of-the-art, such as [5].

• To enable true continuous monitoring, we developed a classification block to identify
scenarios that need to be handled differently. Static object detection and dynamic event
analysis provide information on an infant’s presence, activity, and care or intervention
events, moreover image quality and possible errors.

In the second section, we lay down the basics and current state of research and
development in remote vital sign measurement of adults and infants by introducing
related works. Then, we describe our methodology for classification, pulse and respiration
extraction, the proposed algorithms, and the system. Afterward, we present our gathered
database and the achieved results on it. In the discussion, we compare performances of
the proposed algorithms on our data set with the implementations of other, previously
proposed remote vital sign monitoring algorithms. Finally, we conclude our results.

The parents of all involved infants gave written approval for the usage of the video
and other medical data for this scientific research.

2. Related Works

Various algorithms exist to remotely measure vital signs. Earlier methods used clas-
sical techniques for pulse and breath rates extraction: blind source separation [6,7], color
space analysis [8] or ballistocardiographic methods [9] for pulse signal extraction, and
Optical Flow [10,11] or Euler Motion Magnification [12] for respiration signal extraction, and
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Fourier analysis for rate value estimation [13,14]). However, these extractors are very
sensitive to motion artifacts, due to the lack of image interpretation.

Most recent studies employ either mixed [15–17] or purely neural network solu-
tions [18–21] for these tasks to increase motion-robustness and overall performance.

Deep-learning-based heart-rate measurement methods were reviewed by [22]. It also
compares their performance on the UBFC-RPPG dataset. The first end-to-end convolutional
neural network (CNN) was proposed by Chen et al. named DeepPhys [21] which uses an
attention mechanism: it consists of two connected streams, the attention stream–whose
input is a single frame and is responsible for region of interest (RoI) selection–and the
motion stream–whose input is the normalized frame difference and is responsible for
physiological signal extraction. Just recently, Zhan et al. analyzed this network [23] and
concluded that it learns the wavelength-dependent characteristics of blood absorption
color variation to extract physiological signals–as classical algorithms do–, and that the
choice and parameters (e.g., phase, spectral content) of the reference-signal may be more
crucial than anticipated–i.e., the network learns and performs better if the label is well
selected, prepared and aligned.

Spetlík et al. developed two separate convolutional networks [20], one for extracting
pulse signal from video and the other for estimating pulse rate from the previously extracted
signal–with the application of a signal-to-noise ratio (SNR)-based loss function.

A 3D-network named PhysNet was introduced by Yu et al. [19] which exploits not only
spatial but spatio-temporal features. This network is completely end-to-end—there are no
pre-processing steps—its input is a sequence of images and the output is the corresponding
pulse signal.

However, most of the published results were developed for or trained on adults. Neonates
have a weaker pulse and the variation of periodicity in their pulse and—especially—in their
breathing rate is much higher. Parents and clinical staff often interact with the infants at the
NICU. This includes the routine and non-routine medical interventions, manual vital sign
checks, changing diapers or blankets, feeding and caressing, which makes the continuous
camera-based vital sign monitoring of neonates challenging.

Up to recent years, only classical algorithms have been used for video-based infant
monitoring-these are summarized here briefly. Camera-based non-contact estimation of
pulse rate in the neonatal care unit was first reported in 2012 [24]. In this work, seven
infants were monitored for only 30 s with a web camera 20 cm away from the face and
with special illumination. In another study [25], video camera recordings were conducted
of 19 infants. The camera was placed on a tripod at approximately 1 m from the infant and
the face region was recorded for up to 5 min. RoI was manually selected and pulse rate
was estimated from Fast Fourier Transform (FFT) analysis of the green channel. In 13 of
19 neonates it was possible to derive PR estimates for 90% of the time. These studies were
conducted on brief video recordings with ideal conditions (e.g., controlled illumination,
resting patient). However, it is essential to analyze the feasibility of the method in a long-
term and uncontrolled scenario, in a real hospital or home environment under normal
lighting conditions–and most importantly, without affecting patient care. With this in
mind, Villarroel et al. [26] directed their study, which contains the analysis of around
25 h’ long “valid camera data”. The video recording is labeled as “valid camera data”
outside the following occurrences: (1) regular interaction between the clinical staff and
the baby; (2) clinical interventions; (3) baby taken out of the incubator to be held by the
mother (“kangaroo care”). In addition to PR and BR, the relative changes in SpO2 were
also measured. The authors concluded that it is possible to monitor PR, BR and SpO2
continuously in the neonatal care unit, with an accuracy which is clinically useful. However,
they also reported that even during stable periods (“valid camera data”) some phenomena
prevented the accurate estimation of the vital signs, namely: (i) major changes in lightning
conditions (turning on/off the lights, blocking sunlight from the window next to incubator);
(ii) variations in the baby’s activity pattern (heavy subject motion); (iii) lack of visible skin
area (the neonate is covered by a sheet). These factors reduced the time for which they
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could accurately estimate vital sign values from 24.9 to 20.1 h. For the remaining part, they
could estimate PR, to be more specific: the root-mean-square error (RMSE) between their
estimate and the ECG-derived value was less than 5 beats-per-minute (BPM). The average
RMSE on this selected part was 3.95 BPM.

The previous methods were not motion-robust and worked only in the daytime (when
visible light is present), therefore M. van Gastel et al. developed a system [27] that functions
in near darkness (using custom near infra-red (NIR) illumination and monochrome cameras
with filters) and uses modern motions-robust core rPPG algorithm, namely the PBV [28].
The focus of this study was to compare systems with 2 or 3 wavelengths and to compare
different body parts (face and upper torso) for signal extraction (with manually selected and
tracked RoI). To this end, the authors created a dataset with 7 different subjects and a total
duration of 134 min. They demonstrated the feasibility of non-contact cardiac monitoring
of neonates in NIR and that the upper torso also contains valuable pulse information.
Furthermore, the authors reported that accurate results were not only obtained for scenarios
without motion but also for common milder movements of neonates–such as wriggling,
turning and respiration induced motion. However, in the proposed system RoI selection is
manual and long-term RoI tracking is not stable (and is itself a challenge, i.e., not suitable
for continuous monitoring).

Considering all these results and facts, the application of deep neural networks (DNN)
on neonate monitoring is promising, as it can solve all common tasks/issues (e.g., RoI
selection, tracking, motion compensation) internally, in an end-to-end fashion and might
perform better in motion scenarios (because it can handle non-linear relationships [21]).
Furthermore, in classical approaches, facial regions of the infants were generally selected as
RoI, although skin-pulsatility is only slightly lower in the upper torso region [27]–which is
therefore not used. In contrast, deep CNNs are capable of learning sophisticated weighted
RoI (attention) maps and “track” them precisely, frame-by-frame, with great stability. Such
an approach was proposed in [29,30], where it was used for skin segmentation and patient
detection. In our algorithms, we introduced a scene-understanding step which, on the one
hand finds ROI for respiratory signal extraction focusing especially on the torso and, on the
other hand, it distinguishes between various scenarios such as empty incubator, extensive
motion, clinical intervention, and unacceptable image quality, etc. as in [31] which is an
independent parallel work. In that study, the authors proposed non-contact algorithms
for estimating heart rate and respiration rate from preterm infants in an unconstrained
and challenging hospital environment. The process involved the extraction of cardiac-
and respiratory-signals from the video camera data via deep learning algorithms and the
development of robust techniques for the estimation of vital signs. The proposed multi-
task deep learning algorithms performed three tasks that provided essential information
for the automatic extraction of vital signs in a hospital environment: (1) the detection
of the patient in the video frame, (2) the automated segmentation of skin areas, (3) and
the detection of time periods during which clinical interventions were performed by the
attending hospital staff.

An automated pipeline of respiration estimation in NICU was introduced by [5]. They
compared the traditional optical flow-based respiration signal extraction to the solution
based on DeepFlow which is an algorithm for motion matrix estimation proposed by [32].
This is an optical flow extended by a descriptor matching algorithm that builds upon a
multi-stage architecture with interleaving convolutions and max pooling-a construction
akin to deep convolutional networks. In the referred comparison, the DeepFlow-based so-
lution outperformed the traditional OpticalFlow-based solution evaluated on their dataset
which contains records from the infant’s whole body with the camera facing from the head
down to the feet.

3. Methodology

We employ multiple different classical methods and neural networks for real-time
classification, to log activities, find regions of interest and to estimate pulse rate and breath-
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ing rate, and extract various additional pieces of information, such as in motion activity
monitoring and different nursing activities. First, we separated the different detection
tasks and developed a solution for them. At the top level, the scenario is recognized by
applying statistical methods and a neural network. In this way, we can interpret the scene
and provide high-level warnings and control for the lower-level vital sign extractions. In
parallel, the respiration and heart signal extraction and rate calculation are performed by
two separate networks. Finally, a long duration statistical evaluation is done, collecting
information from the different algorithmic components.

In the following subsections the main algorithmic components are described. These
are the (i) the Top-Level Classification block, (ii) the Pulse Calculator Block and (iii) the
Respiration Calculator Block.

3.1. Top-Level Classification Block

This block provides continuous monitoring of the incubator and identifies the current
care status and infant activity. The input of the block is the videostream, while the output
is (i) a decision on whether to run the Respiration Calculator Block and Pulse Calculator
Block, (ii) bounding box (RoI) of the infant if present, and finally (iii) the videostream is
passed to both calculator blocks. Statistics can also be logged based on the 14 features the
block extracts.

Two basic analysis types are combined in this block: Static object detection and Dy-
namic feature extraction (Figure 1). The static object recognition is performed every 3 s,
while the dynamic event analysis is evaluated over an overlapping moving window of
6 s, also every 3 s. The choice of the time window length is the result of a grid search
hyperparameter optimization.

Dynamic Feature
Extraction

   - infant presence
   - nursing
   - parent's hand, arm
   - none is detected

   - empty incubator
   - extensive motion
   - slight periodic motion
   - image quality not 
     acceptable

Videostream

Decision

Decision

RoI Detector
(UNET)

Pulse Net

RPMCalcRate

Static Object
Detection

(YOLO-v3)

Classification 
Network
(LSTM)

classification results
neural networks

input

BPM

Top Level Classification Block Respiration Calculator Block

Pulse Calculator Block

RateEstNet

Respiration
Extractor

Figure 1. Information flow between the different algorithmic components. From the Videostream input 14 features are
extracted via Dynamic feature extraction and Static object detection. The concatenated feature vector is processed by the
Classification network, which outputs categories and a decision whether to run Respiration Calculator Block and Pulse Calculator
Block. The former runs based on this decision and receives the videostream. UNET segments images, while Respiration
Extractor outputs the wave-like respiration signal and CalcRate calculates the breathing rate. The Pulse Calculator Block runs
based on the decision, receives the videostream and the bound box of the infant, if detected. Pulse net uses its attention
mechanism, outputs the wave-like pulse signal and RateEstNet calculates the pulse rate. Alarm signals (e.g., apnea) and
additional statistics can be extracted from the classification and the numerical results.

At the static object detection task, the following image contents are identified by
YOLO-v3 object detector [33]: the body of the infant (head and torso), the presence of
parents (gloveless hands), the presence of medical staff (blue gloves), the presence of
nursing bottles (feeding the baby). We have selected YOLO-V3 for object detection, because
it is one of the fast state-of-the-art networks which has the required accuracy and can
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be trained with relatively few samples. The YOLO-v3 returns relative coordinates of the
object candidates and confidence values as well; however, the latter are only used in the
decision-making process and passed to the LSTM.

The extracted dynamic properties are low level features of the video, such as camera
noise, average brightness, and periodic motions.

The outputs of the two analysis types are fused with a recurrent network. The com-
bined result leads to the classification of the status, which is used to enable the respiration
and pulse-rate networks by excluding the time periods when their results cannot be calcu-
late with high confidence due to extensive motion, caring, or lack of infant. Naturally, the
status information can also be logged with the rates and activity pattern of the infant. This
provides a meaningful statistics for the supervising doctor of the department.

3.1.1. Feature Extraction and Object Detection

The Top-Level Classification Block has the following output categories:

1. Baby is present and respiration-like signal is detected.
2. Baby is present showing intensive motion, interpreted as random and frequent self-motion.
3. Caring or other intervention happens.
4. No motion or minimal motion can be found in the incubator, but the baby is detected.
5. The baby is not detected in the scene, empty incubator.
6. Multiple subcategories collecting unacceptable camera image quality and possible

errors: low light conditions, blurry view, camera image is saturated, consecutive
frames do not differ from each other.

The classification uses a set of features extracted from the resized input stream. The
input RGB frame size is [500, 500, 3], the frames are resized by linear interpolation and
converted to grayscale format and collected into a stack of [w, h, N] size, where w = 128,
h = 128 are the width and height, and N = 120 is the number of frames, which corresponds
to 6 s at 20 frame-per-seconds. We originally tested about 30 features, and found 14 with the
largest information content (F = [F1, .., F13]). The selected features belong to four groups:

1. Intra-frame statistics. Mean value of the image brightness and mean value of the
standard deviation of each frame in the stack:

F1 =
1
N

N

∑
i=1

Xb
i , (1)

F2 =
1
N

N

∑
i=1

σ(Xi), (2)

where Xi is the ith grayscale frame of [w, h] size, Xb
i is the HSV brightness of the

ith RGB frame, N is the number of frames in the stack, the vinculum denotes the
mean value of all the pixels (i.e., spatial average) and σ(·) is the (spatial) standard
deviation operator.

2. Inter-frame statistics. Difference is calculated for each frame pair and their absolute
value is averaged:

F3 =
1

N − 1

N

∑
i=2
|Xi − Xi−1| (3)

In addition, dense optical flow is calculated for each consecutive frame using the
Horn–Schunck method [10]. We tested multiple methods and selected this one,
because it accurately finds larger displacements (like moving limbs), and can still
follow smaller movements (like chest or back). The magnitude of the optical flow is
averaged for each frame pair in the frame stack, providing the next feature value F4.
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3. Statistics of individual pixel history. In this group simple statistics are calculated for
each pixel separately as 1D vectors along the time dimension. The first such feature is
the maximum of the sample (temporal) standard deviation (s(·)) of the pixel vectors:

F5 = max
x,y

{
s(X)x,y

}
(4)

where 1 ≤ x ≤ w, 1 ≤ y ≤ h are the coordinates of the pixels in a frame.
The next two features (F6, F7) are the minimum and maximum value of the one-
sample Kolmogorov–Smirnov test [34] of the pixel series. This test quantifies how
the individual pixel value probability distribution differs from the Gaussian null-
distribution through the time window of the stack.
To express the different rate periodic motions in the scene, two frequency domain ratios
are calculated as well. For each pixel vector i, an N length DFT is calculated resulting
in Si( f ) the power spectrum. F8 characterizes the mean value of the low frequency
energy component (Equation (5)) from 5 to 40 Hz discounting the near DC compo-
nents. F9 is the mean value of the signal-to-noise ratio of the breath frequency band of
40–120 BPM over the high frequency noise in the 120–200 BPM span (Equation (6)).
The choice of the frequency bands originates in the physiologically relevant range
(40–120 BPM) and out-of-band frequencies. According to the measurements, the
upper motion energy band is flat and mostly composed of the data acquisition and
instrumental noise, while the lower band is related to the movements of the infants.

F8 = log10

(
1
N

N

∑
i=1

(
39

∑
f=5

Si( f )

))
(5)

F9 = log10

 1
N

N

∑
i=1


120
∑

f=40
Si( f )

201
∑

f=121
Si( f )


 (6)

4. Static object analysis. A YOLO-v3 network is applied to the individual frames. The
detection task determines the sought object types and their location. Our solution is
primarily used for detecting the infants. Besides, other typical objects are recognized
such as hands, arms and caring artifacts. The presence of such classes in the frame
are concatenated to the aforementioned features, resulting in a 13-dimensional vector.
Note that the output of this detector (more precisely the bounding box for the baby)
is reused in the pulse network.

3.1.2. Classification Network

The normalized feature vectors are processed by a recurrent network which has
sequential input and classification type output. The network (Figure 2), contains two
layers of fully connected (FC) cells with ReLU activation function, a stateful LSTM cell [35]
and a skip connection of a FC+ReLU concatenated before the last fully connected cells,
terminating with a SoftMax function. To smooth the output and filter out spikes that have
no physiological importance, temporal average pooling is used before the final classification
output is generated.
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Figure 2. The figure on the left illustrates the collected frame stack size. The central one shows the extracted feature vectors
resulting from dynamic and static object analysis. The concatenated vector contains the following 13 features: mean value of
image brightness (Equation (1)) and mean value of standard deviation of each frame in the stack (Equation (2)), the average
of the absolute value of the difference for each frame pair (Equation (3)), magnitude of dense optical flow averaged for
each frame pair in the stack, the maximum of sample (temporal) standard deviation of pixel vectors (Equation (4)), the
minimum and maximum value of the one-sample Kolmogorov–Smirnov test of the pixel series, the mean value of the low
frequency energy component (Equation (5)), the mean value of the signal-to-noise ratio separated based on frequency range
(Equation (6)), and 4 YOLO-v3 detected classes (infant, hand, arm, caring artifacts). The data flow is shown upper right, and
the architecture of the classification network lower right.

3.2. Pulse Calculator Block

The Pulse Calculator Block first extracts a wave-like pulse signal from the videostream,
then estimates the pulse rate using two neural networks. The block receives (i) the decision
from the Classification Block on whether to run, (ii) the bounding box (RoI) of the infant
and (iii) the videostream as inputs. Its output is the pulse rate.

The pulse network is responsible for the pulse signal waveform extraction from the
video. We have adapted two state-of-the-art neural networks: the DeepPhys [21] and
the PhysNet [19]. Although DeepPhys learned more quickly than PhysNet, we chose
PhysNet because it could be further trained with pulse-rate reference and our database
has more of this kind of data. For PhysNet a stack of images serve as the input and its
output is a signal segment (e.g., 128 samples long) which enables us to train it with a
signal correlation-based loss function (negative Pearson correlation loss (NegPea) [19])
or even with pulse-rate values using Negative Signal-to-Noise Ratio loss (NegSNR) [20],
while the output of DeepPhys is only one sample point. Therefore, it can be trained with
basic point distance objectives only, such as Mean Absolute Error (MAE) or Mean Squared
Error (MSE).

The input of PhysNet is 128 stacked frames of resolution 128 × 128. For better
performance the infant’s torso and head is cropped from the original 500 × 500 image
using the result of the YOLO-v3 detector and then downscaled to 128 × 128 using area
average interpolation. The 128× 128× 128 configuration was selected by taking account of
the experiments of [19] where several kinds of configuration were examined and 128 long
configuration gave the best results.

Rather than simply estimating the pulse rate from the signal with the maximum
frequency component, we achieved better results with the application of our rate estimator
network, called RateEstNet. The input of the rate estimator network is the output of the
signal extractor network. It is a one-dimensional fully convolutional network with an
architecture resembling the network of Špetlík et al. [20].
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Network Architecture

The PhysNet variant with the best performance from the work of Yu et al. [19] was
chosen, namely: PhysNet128-3DCNN-ED, where 128 denotes the time depth of the network
input (128 frames); 3D denotes that it is a 3-dimensional fully convolutional neural network;
and ED denotes that an encoder-decoder part is applied (in time domain). This network
architecture is illustrated in Figure 3.

128
12
8x

12
8

128 128 128
64
x6

4

64 64 64 32
x3

2
32 16

x1
6 32 8x

8
64 8x

8
128 8x

8
1 12

8

OUT P UT

64 channels
32 channels

RGB input

output

Figure 3. Illustration of the convolutional and average pool layers of the PhysNet architecture. The
input is 128 stacked frames. Orange color denotes the convolutional, blue the deconvolutional
(transposed convolutional) and red the average pool layers. At the bottom of each layer the time
depth is shown and after the layer-blocks the spatial resolution. The output is the corresponding
pulse signal.

After each convolutional layer, batchnorm and ELU are applied. The spatio-temporal
kernels (Depth, Height, Width) have a size of [D = 3, H = 3, W = 3]. The number of the
input channels is 3 (128 stacked RGB frames) which is increased to 32 and then to 64. The
channel number remains 64 until the last convolution which outputs 1 channel–it functions
as a channel averager. In the encoder part the time dimension is squeezed to a quarter and
is stretched back to its original size in the decoder part. The output is a vector containing
the 1-dimensional pulse signal. The total number of trainable parameters is 866,689.

The RateEstNet network is also a fully convolutional network, but in this case one-
dimensional. It consists of 8 convolutional layers with a kernel size of 17. Dropout is
applied before each convolution, and a batchnorm and ELU activation function follow it.
The channel number of the input is 1 (as it is a 1-dimensional pulse signal). With the first
convolution it is increased to 32, then doubled in every consecutive layer until the channel
number reaches 256. Then it is decreased in the same way to 32. After the 3rd and 8th
convolutional layer a max pool layer is inserted with a kernel size of 5 and a stride of 2.
Before the final average pool–that outputs the estimated pulse rate–the output channels of
the last (8th) convolutional layer are weight-averaged using another convolution with a
kernel size, stride and output channel of 1. The total number of trainable parameters is
1,482,467. The graphical illustration of the network is shown in Figure 4.
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Figure 4. Illustration of the effect of RateEstNet on the input. The temporal resolution (D) marked at
the top and the number of channels (C) in the middle.

3.3. Respiration Calculator Block

The Respiration Calculator Block first finds the torso of the infant, then extracts a
wave-like breathing signal from the videostream of the torso, and calculates the breathing
rate (BR). The inputs of the block is (i) the decision from the Classification Block on whether
to run, and (ii) the videostream. Its output is the breathing rate. The block can be divided
into 4 parts:

1. ROI (Region of Interest) Detector
2. Respiration Extractor
3. Respiration Signal Masking
4. Rate Calculation

ROI Detector is a UNET [36], which is applied to segment the torso, because this part
of the image carries the most information related to respiration. Moreover, in this way,
we can eliminate the disturbing motion components of the limbs. The result is the torso
mask (a probability mask), in which the torso pixels are close to 1, while the other pixels
are close to zero (Figure 5). This map is one of the inputs to the Respiration Extractor.
We have selected UNET for torso segmentation, because it is a relatively simple and fast
state-of-the-art network which has the required accuracy and can be trained with relatively
few samples for these kinds of simple tasks.

Figure 5. This figure represents how the UNET-based ROI detector finds the torso of the newborn
baby. Middle images show the predicted masks. Right images represent the masked inputs.

The Respiration Extractor generates the respiration signal waveform from the video. As
a first step, it calculates a motion map from each consecutive image pairs using Farneback’s
dense optical flow algorithm [37]. We found this optical flow calculation method particu-
larly efficient here because it was able to precisely follow the tiny movements of the back
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and the chest. The motion map was then multiplied with the torso mask. The respiration
signal value is calculated from the weighted motion map for each frame. We also tried other
methods for motion matrix calculation such as DeepFlow which was proposed by [5] and
described by [32]. In Section 6 we provide a comparison between our and [5]’s results con-
sidering breathing rates. During our work, we also designed and tested a CNN structure
for this task with an architecture inspired by PhysNet. However, its performance did not
exceed the performance of dense optical flow on our data set. Moreover, its computational
burden was significantly larger, therefore we decided not to use it.

Respiration Signal Masking uses the decisions of the Top-Level Classification Block to
enable or disable the breathing rate calculation from the respiration signal waveform. In
this way, the BR calculation is enabled, when the calculation is considered to be reliable,
which means: the infant is visible, respiration-like motion is detected, no caring, neither
nursing, nor intensive motion is going on (ECG-based BR measurement is also unreliable
in these cases due to intensive body motion. Moreover, ECG measures false values in these
cases without detecting that the measurement is disturbed, therefore it corrupts the BR
statistics in the reports.). Please note that the BR is a critical indicator of apnea i.e., the
cessation of breath. Apnea happens only in the quiet periods, when there are no body or
limb movements of the infant. In these periods, the respiration monitoring subsystem is
activated and performs the measurement accurately because there are no other disturbing
movements in the scene. Therefore, it can be used to generate alarm signal in the case
of apnea.

The Rate Calculator is the end node of the respiration algorithm which provides the
numerical BR in respiration per minute (RPM). The output of Respiration Extractor is
filtered with a band-pass filter (20–120RPM) and masked in time as described in the
previous paragraph. Then, it is packed into 200 long vectors. For rate (breath frequency)
calculation, FFT appears a good solution. However, the respiration of infants can change
suddenly both in amplitude and frequency, which misleads the FFT. Therefore, it is a
common approach to use rate calculation methods based on peak detection [5,31]. We have
implemented a rate calculation method which is based on peak detection, and similar to
the ones used in [31,38]. This algorithm (called CalcRate) starts with the inversion of the
signal and an adaptive thresholding step, where the threshold level is the local mean value
of the input signal. In this way, we obtain a binary signal, where the value 1 represents the
respirations (the positive peaks), and the starting of the respirations are indicated with the
rising edges. In the last step, those respirations, which are closer than 0.3 s are merged, and
the rate is calculated by averaging the time intervals between the peaks and converting the
result into a frequency value. The process is shown in Figure 6.

As we mentioned earlier, the calculated BR values can be used to generate alarm signal
in apnea situations. In these cases, we can use a 10-s and a 120-s long version of calculation
window simultaneously, in real time. The former is used to recognize apnea situations and
respond quickly if it is necessary.
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Figure 6. Operation method of the classical rate calculation (CalcRate). The BR is calculated by
1/(Mdi/20)·60 where Mdi is the mean of d distances between the rising edges of actual peaks.

4. Dataset

Due to the lack of a public annotated database of video-based incubator monitoring,
for the training of our neural networks and for validation and evaluation purposes, we
built our own database. Data were collected in the NICU of the Ist Dept. of Pediatrics and,
II. Dept. of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary. The
population demographics of the participants can be seen in Table 1.

Table 1. Population Demographics.

Subject 1 2 3 4 5 6 7

Recording time (hours) 96.7 5.5 39.4 27.4 51 105.5 50.1
Gender F M M F F M F

Gestational age (weeks) 32 32 + 3 31 + 4 35 + 4 39 32 33
Birth weight (g) 2020 1840 1850 1870 3150 2120 2080

Postnatal age (days) 4 4 10 8 4 7 2
Actual weight (g) 1900 1850 1680 1820 2905 2040 1960

Length (cm) 46 44 - 45 57 45 44
Head circumference (cm) 32 29.5 - 32 34 30 32

Respiratory support no no no no no no no
Pharmacological

cardiovascular support no no no no no no no

Any drugs * no no no no yes no no
Fitzpatrick scale 2 3 2 2 2 2 2

* Drugs may alter muscle tone/physical activity (e.g., sedatives, anticonvulsants etc.).

Videos of infants were recorded using a single Basler acA2040-55uc RGB camera with
a resolution of 500 × 500 pixels at 20 frames per second. Reference data for respiration
and pulse, including the waveforms and the calculated rates, were provided by the vital
sign monitoring systems of the hospital, from the Philips IntelliVue MP20/MP50 models
with standard interface card and custom software interface. No dedicated light source was
used. The storage of the videos and reference data is done in raw format both to avoid
compression artifacts and to make the offline test environment identical to the online one.

The video recording was done from several different camera-angles (at least 4 distinct)
and with different optics (aperture and zoom) to increase generality and avoid overfitting.
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This enables transferring an algorithm trained with our database to another incubator or to
apply it in homecare.

A software tool was developed for the annotation and structuring of the recordings.
This annotation tool loads the acquired data into our database in an automated manner,
based on the time of recording, video length and settings. After that, the footages is
annotated manually. These tags describe the scenario, the availability of the reference data,
the image quality and the existence of the proper illumination. There are tags for intensive
baby movements, care, blurred image, phototherapy device is on, saturated image, empty
incubator, low luminance level, dislocated camera, missing reference etc.

The database contains 96 h of annotated data. For the pulse estimation neural network,
we handpicked a 4-h-long training set, a 1-h-long validation set and a 15-h-long test set,
which all contain a balanced portfolio of the different scenarios. Participants split among
the sets in a disjunct manner with at least 2 participants in each to maintain generalization
and independence.

Our algorithms were developed for neonatal vital sign monitoring. Therefore, they
had to be prepared for recognizing specific life-threatening situations such as apnea or
extreme vital sign figures. On the one hand, fortunately, these kinds of situations occur
rarely. Therefore, the lack of such events in our database motivated us to synthetize video
events with low/high respiration and pulse rates and even missing vital signs. This can be
considered to be a kind of frequency augmentation. For pulse-rate training, validation and
test purposes, we re-sampled the video in time in each dataset. For respiration evaluation
purposes, we skipped or inserted frames between two breaths. The inserted frames were
the multiplication of the last real frame from the video. However, to avoid the bit-level
changeless periods, we have added real camera noise and real NICU lighting changes.
The pixel-wise AC components were acquired from image sequences of stationary, empty
incubators. The resulting AC components were superposed on different images in the
following way:

G(x, y, i) = S(x, y) +
(
E(x, y, i)− µ(E(x, y))

)
, (7)

where x, y represents pixel location in the generated (G) frame and empty incubator frame
(E), respectively. The DC component (µ)–which is the mean intensity of the given pixel–
was subtracted from a sequence of images and superposed on static scenarios (S), where i
represents the current frame in the sequence. The static scenario is a single image with an
infant present in the incubator. In this way, we were able to model subtleties such as varying
shadows and pixel-level camera noise hardly visible to the human eye, although strongly
affecting a computer vision system, especially a neural network in the training period.

5. Results

The accuracy and the execution times of the three algorithmic blocks are evaluated in
this section.

The second and the third blocks are responsible for the pulse and breathing rate
calculation. Due to the lack of a public database of newborns, evaluation and comparison
had to be done on our database. Therefore, we picked two recently published state-of-the-
art algorithms [5,19] and implemented them. In this way, we could do a fair comparison,
because the evaluation of the methods was done exactly on the same data.

5.1. Top-Level Classification Block

A 12-h-long video set of the clinical trial was selected for system-wide top-level
classifier evaluation. The protocol for the selection was to cover all available classes with
as many possible transitions between them as the recordings allowed, all different camera-
angles, and different infants. In total, this set contained approx. 5.5 h quiet and visible
baby, 1.5 h of extensive motion, 3 h of care periods, 1.5 h empty incubator and half an
hour various degraded image quality sequences (such as dark or saturated view, UV lamp
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treatment). During model validation and optimization, 5-fold cross-validation is used.
Under these conditions, the Top-Level Classifier architecture provided 97.9% sensitivity
(true positive rate), 97.5% specificity (true negative rate) and 98.1% F1 score (harmonic
mean of precision and sensitivity) in the formerly listed main event classes (Figure 7).
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Figure 7. Confusion matrix of the main categories in a representative 12 h set.

Dynamic and static analysis provide complementary information about the scene,
e.g., respiration-like waveform is detected, and the infant is visible. As a result, we found
that the combination of analysis (see Figure 8) greatly enhanced the precision of the system,
resulting in accurate detection of the infants’ movements on one hand, and indicator items
of care/cure in the incubator on the other hand.

Figure 8. Static analysis: object detection examples, which are used in the top-level classifier to separate and identify
excessive motion, caring, empty incubator, etc. categories during operation. The ROI of neonates is passed to the
pulse network.

The execution time of feature extraction is in the range of 150–190 ms, object detection
by YOLOv3 detector is 740–850 ms, classification network inference is 5–10 ms, all executed
once in every 3 s. These values are measured on a i5 processor-powered, conservative setup,
using a single processor with no GPU acceleration enabled, with the implications that such
a system could run on relatively low-end computers or even on embedded systems.

5.2. Pulse Calculator Block

For the training and testing of the network, the 2 different large datasets were used
which are summarized in Table 2. Only a short video segment was available with pulse
signal waveform reference, which was used for pre-training the PhysNet [19] network
with NegPeaLoss (using heavy augmentations). Then, we further trained it on a 5-h-long
dataset (#2) with pulse-rate reference using SNRLoss, defined as follows:

L = − log10


250
∑

f=80
S( f ) · u( f )

250
∑

f=80
S( f ) · (1− u( f ))

 (8)
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where S( f ) is the power spectrum of the output signal, u is the reference binary template
function containing 1 or 0 for each f frequency. The summing is performed over the pulse
range, from 80 BPM to 250 BPM. The precise definition for u is the following:

u( f ) =

{
1, if f ∈ [ f ∗ − δ, f ∗ + δ]

0, otherwise
(9)

where f ∗ is the reference pulse rate and δ is the acceptance value chosen to be 6 BPM.
Please note that the power spectrum calculation consists of differentiable steps, therefore
it works well with the back-propagation algorithm, and so can be used for training the
neural network.

The rate estimator network (RateEstNet) was trained together with the pre-trained
PhysNet on training set #2 with Mean Absolute Error (MEA, also known as L1) loss function.

Table 2. The training (#2), validation (#3), and test (#1) datasets used for the pulse network.

Number (#) Length Available References

1 15 h pulse rate, SpO2
2 4 h pulse rate, SpO2
3 1 h pulse rate, SpO2

Because we had a limited amount of data compared to the number of parameters
of the networks, we used regularization and generalization techniques such as dropout
and augmentations. We introduced a novel augmentation method for periodic time series
signals, namely the frequency augmentation. This is done by resampling in time (using
linear interpolation) a shorter or longer input video back to 128 samples length and
changing the reference accordingly. With frequency augmentation we can imitate pulse
rates in the whole range from 80 BPM to 250 BPM. Consequently, we can create a training
set with uniform pulse-rate distribution. Thus, the network will not be biased towards the
mean pulse-rate value. General image augmentations were also applied such as horizontal
and vertical flip or the manipulation of image brightness and saturation. These methods
were used to avoid overfitting and achieve good generalization.

Evaluation was done on a 15-h-long (#1) test dataset. It is considered to be challenging
because it contains unfiltered continuous monitoring with heavy motion and low illumina-
tion level parts. There is even a 1 h segment where the head of the baby is covered with
sheet (Figure 9).

Figure 9. Frames from our challenging test dataset (#1 in Table 2). Conditions depicted from left to right: Heavy motion-
twisting the body, swinging arm, covered baby, normal and low light conditions.

The results of different methods can be seen in Table 3, as evaluated on the test set #1
(Table 2). Different metrics were computed to quantify the performance of the networks:
(1) MEA–Mean Absolute Error between reference and pulse-rate estimate; (2) RMSE–Root
Mean Squared Error between reference and pulse-rate estimate; (3) R–Pearson correlation
coefficient of the reference and estimated pulse rate in time.

In the case of PhysNet-SNR (first row in Table 3) the network output is a signal, and
the pulse rate is estimated from it via frequency analysis. First the pulse signal was filtered
using a 6th order band-pass Butterworth filter with 80 BPM and 250 BPM cutoff frequencies.
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Then, a Fourier transform is applied on a sliding window of length 512 samples with a
stride of 1 s. A Hamming window is also used on the sliding window, before the Fourier
transform to avoid spectral leakage. The maximum power spectrum component is chosen
to be the estimated pulse rate.

The RateEstNet network is “fused” and trained together with PhysNet. The results
of the standalone PhysNet and the results with the addition of RateEstNet are depicted
in Figure 10 and the Bland–Altman plot of RateEstNet can be seen in Figure 11. From the
latter, we can see that there is no significant systematic error (as the mean is close to zero)
between the reference and RateEstNet method.
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Figure 10. Illustration of model estimates and reference of pulse rates. At the bottom the whole 15-h-long test dataset is
plotted. Above that two selected 2-h-long segments are enlarged. Finally, at the top a half-an-hour-long segment is shown.
From the bottom plot we can see that the estimation is the worst from 6.5 to 8 h. The explanation for this is that in this part
the head of the neonate is covered with sheet, therefore only a small skin area is visible.
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Table 3. Calculated metrics for PhysNet (first row) and for the ensemble of PhysNet and RateEstNet
(second row) regarding the whole test set. Italic and blue colored typeface denote our method (Physnet +
RateEstNet). At the bottom, the results are shown when omitting parts from the test set where the
head of the infant was covered or the illumination level was low (i.e., from 6th to 8th h and from 12th
to 13th h, see Figure 10).

Arch MAE [BPM] RMSE [BPM] R

PhysNet-SNR 8.61 14.37 0.48

PhysNet +
RateEstNet 7.08 9.87 0.57

Omitting parts:
PhysNet-SNR 6.03 9.84 0.626

PhysNet +
RateEstNet 6.19 8.65 0.630

From Table 3. it is clear that using the RateEstNet network (the second row in Table 3)
after PhysNet is beneficial in estimating pulse rate according to the metrics corresponding
to the whole test dataset. On the other hand, –as one can observe in Figure 10. –at specific
parts in our test set, the performance of especially PhysNet is severely degraded: from
around 6th to 8th h where the head of the neonate was covered with a sheet and from 12th
to 13th h where illumination level was low (see snapshots in Figure 9). Therefore, we also
calculated the metrics when omitting these parts shown in the bottom two lines of Table 3.
In this way, the performance was very similar, suggesting that the fusion of PhysNet
and RateEstNet could better handle the challenging segments while the performance was
almost the same outside of them.

In the evaluation, we used the rate values provided by Philips IntelliVue as reference.
There is a difference in the parameters of the filtering used by Philips and the parameters of
the filter used in our algorithm. Moreover, there would be differences in other parameters,
thresholds too. Therefore, we cannot obtain a perfect match between the pulse rates and
the reference. There are smaller slips between the reference values and the calculated rates,
consequently we obtain lower correlation values in the third column. If we used average
filtering in the comparison, the correlation values increased over 0.8 and RMSE values
were halved.

In addition, the effect of frequency augmentation was inspected. The model was
better able to handle extreme cases (when pulse rate was lower or higher than average) and
resulted in better overall performance when frequency augmentation was applied during
training, see a comparison in Figure 12.

The evaluation time of a 6.4 s video segment is approximately 10 s for the PhysNet
network and 0.01 s for the rate estimator network (RateEstNet) on a CPU. We also tested
the inference time of the networks on an NVIDIA Jetson Nano embedded system (which
has a 28-core Maxwell GPU) to prove that the networks are capable of real-time estimation
on a relatively low-price hardware. The running time of the ensemble of PhysNet and
RateEstNet is approximately 2 s for a 6.4 s video input, which verifies the ability of the
networks to function in real time.
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Figure 12. The estimated pulse rates from the output signal of PhysNet model–in the case of classical
image augmentation and additional frequency augmentation–and the corresponding reference
pulse-rate values on a selected time segment. The training of the model benefits significantly from
frequency augmentation.

5.3. Respiration Calculator Block

We could not use the same dataset for respiration that we used for pulse because
the ECG recordings were used far less than the pulse oximeter, therefore we had less
referenced data. As a result, we created another dataset from our database, where pulse
and respiration references were both recorded. For the evaluation we used 2 h of raw data
with respiration reference recorded about 3 independent babies.

The performance of the respiration network was evaluated on two levels. First, the
respiration signal provided by the impedance of the ECG electrodes was compared to the
respiration signal calculated by the Respiration Extractor. Though both signals reflect the
movement of the chest during the respiration, their representation is different, therefore
we cannot expect a perfect match. Moreover, they react to body/limb motion in different
ways. The comparison of the curves is illustrated in Figure 13. The statistical evaluation of
the two signals can be expressed in MAE (0.5494) and RMSE (0.6768) that can be measured
between the signals.

The second level of evaluation was on the rate level. The graphical comparison of
our solution to the reference is shown in Figure 14. As can be seen, the calculated rates
follow the reference, and the differences are mostly where there are extreme rate changes
or extreme values occurring. During these periods, there is typically some disturbance
which misleads either the reference or the visual methods (or both).

The statistical evaluation of the calculated breath rates is shown in Table 4. Here we
show the statistics for the entire data set (upper rows) and for some quiet periods (lower
rows). The evaluation of rates was performed using 120 s long moving average window
on the rates for the fair comparison. This length was used in [5] whom we compared our
results with, see Table 4. We also provide Bland–Altman (Figure 15) plot of breathing rates
calculated by the classical method which provided better results.
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Table 4. Statistical evaluation of the respiration-rates generated by classical (CalcRate) and the
DeepFlow-based algorithms. The second and the third rows (DeepFLow) show the results provided
by the implementation of the algorithm proposed by [5]. The bottom four lines show the results for
some quiet periods when there were moderate limb motions only. The evaluation was performed
using moving average where we employed a sliding window of 120 s, the same time window as
in the method we compare to [5]. Italic and blue colored typeface denote our method (CalcRate). We
applied two kinds of peak detector in the evaluation of the result of the DeepFlow-based algorithm.
FindPeaks is a peak detector provided by SciPy, while diffRate is developed by us and based on the
detection of points where the curve is crossing the zero line. As we can see, the type of peak detection
method has a big effect on the result.

Arch MAE RMSE

CalcRate 5.080 RPM 6.618 RPM

DeepFLow + findPeaks 14.196 RPM 17.122 RPM

DeepFLow + diffRate 5.848 RPM 7.553 RPM

On a typical calm period:
CalcRate 2.231 RPM 2.672 RPM

DeepFLow + findPeaks 10.008 RPM 12.334 RPM

DeepFLow + diffRate 3.474 RPM 4.676 RPM

We statistically evaluated the contribution of the ROI Detector as well. As is shown
in Table 5, the torso detection reduced the MAE. However, UNET increases performance
most significantly in situations when limb movement occurs, so it has a smaller effect on
the overall MAE and RMSE.

An advantage of our algorithm is that we can use a 10-seconds and a 120-s long
calculation window simultaneously in real time, the former to recognize apnea situations
and respond quickly if it is necessary. The authors in [5] used only a 120-s window, and
though it smooths the peaks (hence reducing RMSE), it can respond only slowly to an
apnea situation.

As we can see in Table 4, the type of peak detection method also has a big effect on the
result. This phenomenon is caused by the fact that the extracted respiration signal usually
contains special artifacts which are identified as valid peaks by findpeaks, because they are
in the valid frequency range and not filtered out by the horizontal threshold.

The evaluation time of a 10 s (200-frame-long) video segment is 1120 ms without the
ROI Detector (as the latter is not executed for every frame). This can be divided into two
parts: the running time of the Respiration Extractor (720 ms) and Rate Calculator Head
(400 ms). As we use the CalcRate rather than the Rate Calculator Head, the total execution
time is only 720 ms on a PC (CPU: Intel(R) Xeon(R) CPU @ 2.20GHz, CPU family-6).

Figure 13. Comparison of the calculated respiration signal to the reference. Due to body motion and the applied filters in
both the reference calculation and the introduced method, the phase of the signals changes, but the number of the peaks are
well kept, resulting in MAE: 0.5494, RMSE: 0.6768.
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Figure 14. Comparison of the reference breathing rate and the breathing rates calculated by the Respiration Calculator
Block. Every point is related to a 10-s-long input window of frames.

Table 5. Statistical evaluation of the ROI detector.

ROI Detector Signal Extraction Rate-Calc-Method MAE

UNET OpticalFlow calcRate 4.817 RPM

None OpticalFlow calcRate 5.153 RPM

Figure 15. The Bland–Altman plot calculated for the error of OpticalFlow + CalcRate.

6. Discussion

In the previous section, we showed the accuracy of our methods. In this section, we
compare our algorithms with state-of-the-art methods from the literature. The Top-Level
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Classification block is compared with [31] mostly at feature level. However, the pulse and
breathing rate calculation blocks are compared at performance level. In these cases, we
have implemented two state-of-the-art published methods [5,19] and fed them with our
datasets. In this way, we could do a fair comparison, because the evaluation of the methods
was done on exactly the same data sets.

The Top-Level Classification Block detects the presence of the infant and its activity
with high confidence. However, higher misclassification rates can be found between
classes i, ii, and iii (Figure 7). This confusion is a consequence of the manual, and therefore
slightly subjective annotating process, as it is not always possible to define explicitly the
boundaries of categories (e.g., whether an infant is moving slightly or significantly). The
confusion between care and other classes is identified as a result of the interpretation of the
manual tagging policy (similarly to [31]). The human annotators marked care periods as
uninterrupted, couple of minutes long time-windows, which sometimes included shorter
periods of empty incubator or situations when there were temporarily no adult hands in
the incubator. These short periods are detected correctly by the algorithm, hence causing
error in the evaluation. We did not include the apnea detection (class iv.) to this evaluation,
because here we used only real data, and we do not have real measurement data for apnea
situations in our data base at the time of the manuscript preparation. As a comparison
to the latest similar role system, our classification methodology gives not only quality
assessment as [31], but provides distinction of several typical motion types, broader artifact
detection capabilities and intervention types with similar or higher f-score [39] and lower
computational effort.

The state-of-the-art MAE score of pulse rate is around 6 BPM measured in adults [19]
(i.e., on the MAHANOB-HCI publicly available data set [40]). We applied the PhysNet [19]
network on our data set comprised of premature-infant subjects with similar results (see
Table 3 bottom part)–indicating that similar performance can be achieved in the case of
infants despite the fact that their pulse is weaker and faster. This can be (partly) attributed
to the fact that not only their head but their torso also holds valuable pulse information
which is used by the neural network. We fused and trained PhysNet together with our
RateEstNet network (PhysNet + RateEstNet in Table 3) which resulted in better overall
performance compared to PhysNet. In ideal conditions their performance was very similar
indicating that our method is more robust to environmental factors.

The performance of the Respiration Calculator Block was compared with [5] in which
the authors investigated specifically the respiration estimation of premature infants in
NICU from videos. In that work, the authors applied the DeepFlow [32] method for motion
matrix calculation and used Principal Component Analysis (PCA) to find the strongest
motion component.

We implemented the described algorithm using an open source OpenCV [41] imple-
mentation of DeepFlow and scikit-learn for PCA. We calculated the rates for our data sets
and compared them to our results. As shown in Table 4, our algorithms performed better
on both of our data sets. Compared to the statistical figures the authors reached on their
data set [5] the results on our data set here are poorer. The reason is that our data set is
more challenging because the infants in our data set are older (33 vs. 29 weeks gestational
age) and larger (2022 g vs. 1555 g), therefore they are more active, hence the videos contain
more movement, which generates a noisier motion matrix even in the calm periods.

The presented algorithms were trained and evaluated on the participant set typical of
the Hungarian population. So, the population of the participants contains only Caucasian
and Roma infants. Therefore, it is not guaranteed that the presented algorithms would
provide satisfying results in the case of infants with darker skin. It is harder to see the pulse
on darker skin. So, the performance of the “pulse calculator block” is likely to be lower in
this case. The applied dataset should be extended to adapt the presented algorithms to the
case of darker skinned infants.
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7. Conclusions

Algorithms for a single-camera-based premature-infant monitoring system was built
and tested on videos recorded in a NICU. Beyond the standard pulse and breathing rate
monitoring, the algorithms can measure the activity of the infants and can make logs of the
nurse/parent activity as well. Our algorithms can operate and provide meaningful data
continuously, using our Top-Level Classification Block, even when there is intensive infant
movement happening or care is being performed in the incubator.

A deep-learning-based solution was introduced for pulse detection, which was trained
directly on pulse-rate data with SNRLoss objective function, rather than pulse curves. For
respiration monitoring, a new heterogeneous algorithm was proposed. The system can
operate with a single-color camera in daylight and can function in darkness with a near-
infrared illumination.

Frequency augmentation and video manipulation techniques were introduced to
synthesize data for rare events such as very high/low pulse rate or apnea. Thus, we could
train our networks to accurately handle such infrequent but very important situations and
achieve better generalization.

We achieved results regarding pulse rate similar to the ones measured for adults [19]
implying that similar performance can be achieved in the case of infants even though their
pulse is weaker and faster.

Our respiration RMSE values are larger than the ones published in [5]. However,
the authors of that paper used videos of younger, therefore less active infants and they
used a dedicated camera for the respiration, placed in an optimal location for respiration
monitoring, but unsuitable for pulse monitoring. When the two algorithms were compared
on the same data sets our algorithm performed better.

The execution times of the algorithms show the feasibility of the real-time application
of our system on a relatively low-price PC or an embedded system with a GPU.
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