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Abstract: Pelagic chlorophyll-a concentrations are key for evaluation of the environmental status
and productivity of marine systems, and data can be provided by in situ measurements, remote
sensing and modelling. However, modelling chlorophyll-a is not trivial due to its nonlinear dynamics
and complexity. In this study, chlorophyll-a concentrations for the Helgoland Roads time series
were modeled using a number of measured water and environmental parameters. We chose three
common machine learning algorithms from the literature: the support vector machine regressor,
neural networks multi-layer perceptron regressor and random forest regressor. Results showed that
the support vector machine regressor slightly outperformed other models. The evaluation with a
test dataset and verification with an independent validation dataset for chlorophyll-a concentrations
showed a good generalization capacity, evaluated by the root mean squared errors of less than
1 µg L−1. Feature selection and engineering are important and improved the models significantly, as
measured in performance, improving the adjusted R2 by a minimum of 48%. We tested SARIMA in
comparison and found that the univariate nature of SARIMA does not allow for better results than
the machine learning models. Additionally, the computer processing time needed was much higher
(prohibitive) for SARIMA.

Keywords: time series regression; artificial intelligence; Helgoland Roads time series; support vector
machine; multi-layer perceptron; random forest; productivity; SARIMA

1. Introduction

Pelagic chlorophyll-a concentrations (chl-a) are a common indicator of primary pro-
duction and key to evaluation of the health and productivity of marine and freshwater
systems [1,2]. It is therefore of crucial importance to accurately measure/predict chloro-
phyll from proxy parameters in such systems [3]. Accelerated global warming is exac-
erbating climate change and unsettling ecosystems’ processes, while the impacts of this
are directly affecting marine primary production and triggering an upwards transfer of
effects that reach humans. Thus, the importance of modelling chlorophyll is emphasized in
environments undergoing change resulting from global warming [4].

Prediction of chlorophyll-a time series data is a challenge due to their complexity
and nonlinearity, and indeed, conventional approaches show limitations with prediction
of unobserved data [5,6]. To date, all conventional approaches, including factors based
on single measurements, are limited with regard to prediction accuracy of chlorophyll-
a concentrations [7]. A few previous studies have tried to implement various machine
learning techniques to predict chlorophyll concentrations, mainly in fresh water systems,
with a few in marine regions [8–11].

Machine learning (ML) techniques constitute a set of tools belonging to the fields of
computer science and artificial intelligence. The versatility of these techniques allow the
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successful application in many fields of science and to a great variety of problems. The
focus is often placed on tackling pattern recognition problems and on the construction
of predictive models to make data-driven decisions [12]. According to [13], the general
benefits of ML algorithms for time series prediction over classical methods include the
ability of supporting noisy features, noise and complexity in the relationships between
variables and in the handling of irrelevant features.

State-of-the-art ML algorithms for time series regression include random forest re-
gressor (RF), support vector machine regressor (SVR) and neural networks multi-layer
perceptron regressor (MLP). All of these have been used to some degree in the literature
for the prediction of chlorophyll-a concentrations in aquatic systems, and have achieved
significantly accurate results in both error and goodness of fit metrics [3,11,14]. These are
studies based in chl-a time series either with short length and daily frequency or long-term,
low frequency sampling time series, using different ML methods to best predict chl-a
behavior. The features applied as predictors in these studies are limited to just a few,
but it must be considered that the dynamics in lacustrine systems are distinct from those
presented in marine systems. Here we extend these ideas and test these methods on a good
quality long-term time series, the Helgoland Roads time series, evaluating the prediction
using unseen data. With the purpose to compare ML methods with a classical statistical
regression model, we included an improved autoregressive integrated moving average
(ARIMA) model, called seasonal ARIMA (SARIMA), which includes seasonal parameters
to support data with a seasonal component [15].

The objective of this work is to evaluate the accuracy of machine learning algorithms
for the estimation of chlorophyll-a concentration, using in situ high resolution long-term
datasets. We (1) assess three ML algorithms—random forest, support vector regressor
and neural networks multi-layer perceptron regressor—for chlorophyll-a concentration
estimation; (2) examine the importance of feature selection and engineering in the different
models; (3) compare with, and evaluate, a univariate SARIMA classical regression model.

2. Materials and Methods

All the ML models used in this study were implemented applying the “Scikit-Learn
package”, which is an open-source Python module project that integrates a wide range
of common ML algorithms [16,17], while the SARIMA model was implemented with
the statsmodels package [18]. The preprocessing was also implemented in the Python
environment, using the well-known packages Pandas, NumPy and SciPy [19].

2.1. Datasets

The Helgoland Roads is a long-term pelagic monitoring site (54◦11.3′ N, 7◦54.0′ E)
about 60 km off the German coast and represents a marine transition zone between coastal
waters and open sea (Figure 1) [20]. Since 1962, surface water samples have been collected
on working days, taken with a bucket lowered from a research vessel. Secchi depth
and water temperature (SST) are measured in situ and the water samples analyzed in
the laboratory for nutrients (nitrate, phosphate and silicate) and salinity. Chlorophyll-a
concentration measurements were started at the end of 2001, acquired in laboratory by
FluoroProbe (bbe Moldaenke GmbH, Kiel, Germany) [21] and, since, 2004 have been
complemented with high-performance liquid chromatography analysis (HPLC) [22,23].

Sunshine duration, wind speed and direction [24–26], North Atlantic Oscillation
(NAO) daily index (NOAA ESRL Physical Sciences Laboratory, Boulder, CO, USA, 2020)
and zooplankton abundance [27], were added to the Helgoland Roads parameter matrix for
this work (Table 1). As indicated in the literature [28–30], and also from working experience,
the included parameters are environmental variables which determine algal verdure and,
thus, modulate chlorophyll-a concentrations in marine systems.



Appl. Sci. 2021, 11, 7208 3 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 
Figure 1. Helgoland Roads monitoring site position (black triangle) in the German Bight, between 
the Helgoland (H) and Dune (D) islands. 

Sunshine duration, wind speed and direction [24–26], North Atlantic Oscillation 
(NAO) daily index (NOAA ESRL Physical Sciences Laboratory, Boulder, Colorado, USA, 
2020) and zooplankton abundance [27], were added to the Helgoland Roads parameter 
matrix for this work (Table 1). As indicated in the literature [28–30], and also from work-
ing experience, the included parameters are environmental variables which determine al-
gal verdure and, thus, modulate chlorophyll-a concentrations in marine systems. 

Table 1. Statistical description of parameters used as determinants to predict chlorophyll-a concen-
tration (target) after linear interpolation (std, min and max are standard deviation, minimum and 
maximum values, respectively). 

Parameters Units Counts Mean Std Min Max Median 
Secchi depth m 4920 3.70 1.80 0.20 12.00 3.67 

SST °C 4920 10.64 5.00 1.10 20.00 10.30 
Salinity _ 4920 32.31 1.06 26.71 36.11 32.42 

SiO4 µmol L−1 4920 6.49 5.04 0.01 37.20 5.26 
PO4 µmol L−1 4920 0.56 0.41 0.01 3.98 0.53 
NO3 µmol L−1 4920 10.19 9.82 0.10 77.38 7.12 

Sunlight Duration h 4920 4.78 4.52 0.00 16.60 3.60 
NAO index _ 4920 −9.44 121.55 −564.29 351.95 −0.52 

Wind Direction Degrees [°] 4920 203.09 74.71 20.00 353.00 212.00 
Wind Speed m s−1 4920 8.23 3.28 1.60 20.80 7.80 
Zooplankton 
Abundance 

individual
s m−3 4920 3164.70 4450.64 5.00 75,364.50 1676.21 

Chlorophyll-a µg m−1 4920 2.40 2.86 0.00 45.45 1.48 

2.2. Data Preprocessing 
The raw data of Helgoland Roads are characterized by long-term measurements on 

work-daily frequency, with missing values during weekends and extreme bad weather 
days. When merged with date of other features such as zooplankton abundance, it ends 
with approximately 40% of missing data in the time series. To fill the missing data and 
creating a regular sampled daily time series, a number of imputation methods were tested 
in sunlight duration, a feature added to the Helgoland Roads from an external source, 
with no missing values. After creating a synthetic missing values dataset with sunlight 
duration, we calculated root mean square error (RMSE) and coefficient of determination 
(R2) between the original and interpolated data. Minimum changes in frequency distribu-
tion between missing data and interpolated variables, lowest RMSE and highest R2, were 

Figure 1. Helgoland Roads monitoring site position (black triangle) in the German Bight, between
the Helgoland (H) and Dune (D) islands.

Table 1. Statistical description of parameters used as determinants to predict chlorophyll-a concen-
tration (target) after linear interpolation (std, min and max are standard deviation, minimum and
maximum values, respectively).

Parameters Units Counts Mean Std Min Max Median

Secchi depth m 4920 3.70 1.80 0.20 12.00 3.67
SST ◦C 4920 10.64 5.00 1.10 20.00 10.30

Salinity _ 4920 32.31 1.06 26.71 36.11 32.42
SiO4 µmol L−1 4920 6.49 5.04 0.01 37.20 5.26
PO4 µmol L−1 4920 0.56 0.41 0.01 3.98 0.53
NO3 µmol L−1 4920 10.19 9.82 0.10 77.38 7.12

Sunlight
Duration h 4920 4.78 4.52 0.00 16.60 3.60

NAO index _ 4920 −9.44 121.55 −564.29 351.95 −0.52
Wind Direction Degrees [◦] 4920 203.09 74.71 20.00 353.00 212.00

Wind Speed m s−1 4920 8.23 3.28 1.60 20.80 7.80
Zooplankton
Abundance

individuals
m−3 4920 3164.70 4450.64 5.00 75,364.50 1676.21

Chlorophyll-a µg m−1 4920 2.40 2.86 0.00 45.45 1.48

2.2. Data Preprocessing

The raw data of Helgoland Roads are characterized by long-term measurements on
work-daily frequency, with missing values during weekends and extreme bad weather
days. When merged with date of other features such as zooplankton abundance, it ends
with approximately 40% of missing data in the time series. To fill the missing data and
creating a regular sampled daily time series, a number of imputation methods were tested
in sunlight duration, a feature added to the Helgoland Roads from an external source, with
no missing values. After creating a synthetic missing values dataset with sunlight duration,
we calculated root mean square error (RMSE) and coefficient of determination (R2) between
the original and interpolated data. Minimum changes in frequency distribution between
missing data and interpolated variables, lowest RMSE and highest R2, were the basis for
the decision to use a linear interpolation, supported by [30]. After the interpolation, we
have daily datasets of parameters in Table 1 comprising approximately 13 years, from
2 November 2001 to 22 April 2015, and presented in Supplementary Materials, Figure S1.

In this study, to validate the performance of the ML models, the dataset was split
in 80% (n = 3940) for model training, and 20% (n = 980) for model testing, so we could
investigate the model generalization ability [31]. To eliminate the dimensional differences
of the data and improve the prediction ability of the models, we used the StandardScaler
method from the Scikit-Learn package, which standardizes features by removing the mean
and scaling to unit variance.
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The training dataset, the sample of data used to fit the model, dates from 2 November 2001
to 15 August 2012 (~11 years), while the test set is from 16 August 2012 to 22 April 2015
(~2.5 years) and it is used for model evaluation (Figure 2). For independent validation, we
used a linear interpolated time series of HPLC estimated chlorophyll data (5 May 2015 to
27 November 2018, n = 348).
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Figure 2. The train and test partition in chlorophyll-a concentration target (black solid and gray solid
lines, respectively), and the HPLC chl-a validation dataset (black dashed). After the split, the testing
dataset will remain untouched, to guarantee no leakage of information to the training step. The
validation dataset is the independent validation.

2.3. Feature Engineering and Selection

The Pearson correlation coefficients were calculated to investigate linear relationships
between chlorophyll-a concentration and the other variables (Table 2). All correlation
coefficients were lower than 0.5, indicating no strong linear correlation between chlorophyll
and any other variable.

Table 2. Pearson correlation among predictors and the target chlorophyll-a concentration.

Predictors Code Correlation

year year −0.05
sin (days) sin (days) 0.04
cos (days) cos (days) −0.46

Secchi depth SD 0.15
Sea Surface Temperature SST 0.27

Salinity Salinity −0.22
Silicate SiO4 −0.31

Phosphate PO4 −0.29
Nitrate NO3 −0.09

Sunlight duration Sunlight 0.31
NAO index NAO 0.06

sin (wind direction) sin 0.02
cos (wind direction) cos 0.10

Wind Speed Speed −0.20
Zooplankton Abundance Abundance 0.22

Chlorophyll-a Chl 1.00

Prediction is a major task of time series data mining, which uses known historical
values to estimate future values, and feature selection and engineering is essential and
crucial for accurate predictions [32]. To seek improvement, 15 days lagged predictors were
generated, totalizing 211 features [33]. The choice of lags was based in a two-week period
where all the predictors supposedly influence chlorophyll-a concentration, including chl-a
past values, i.e., the lagged target values were used as predictors (t − 1, . . . , t − n; with t as
the current time and n = 15). As there are significant seasonal differences, e.g., summer and
winter nutrients uptake, the definition of two weeks seemed reasonable for this work to
input information, considering that the machine learning algorithms are data-driven and
they are not mechanistic models [34]. Additionally, date features were generated, namely,
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“year” and “day of year” from 1 to 365 or 366. The cyclic variables “day of year” and “wind
direction” were transformed with

sin [2π (day of year)/(number of days in year)] (1)

cos [2π (day of year)/(number of days in year)] (2)

sin [2π (wind direction (◦))/(360)] (3)

cos [2π (wind direction (◦))/(360)] (4)

to ensure that the last day of a year was understood to be in sequence with the first day of
the next year and 0◦ degree in direction was equal to 360◦ [35].

A large number of features in the dataset drastically affects both the training time as
well as the accuracy of machine learning models. One means to limit model complexity
from multiple variables is to reduce the model by selectively eliminating predictors. Feature
selection procedure was conducted applying a combination of Recursive Feature Elimina-
tion. We used Scikit-Learn module Recursive Feature Elimination with cross-validation
(Scikit-Learn feature.selection RFECV module) and Ridge estimator, to estimate the best
number of features balanced with accuracy (Figure 3). After the best number of features
were defined with the Ridge cross-validation method, we applied Recursive Feature Elim-
ination (Scikit-Learn feature.selection RFE module) with SVR linear estimator, this way
selecting the 17 best parameters to model chl-a in a robust manner (Table 3) [36].
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Figure 3. Result of RFECV with Ridge estimator. The black dot represents the maximum value of
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there is an exponential decay/increase in the R2/RMSE. RMSE unit is µg L−1.

Table 3. Chosen features after Feature Selection process. The negative numbers represent the number
of lags in the original features (t − 1, . . . , t − 15).

Features

SD
SST

Salinity
Secchi_−1

SST_−1
SST_−2
SST_−9

SST_−12
SST_−13
SST_−14
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Table 3. Cont.

Features

SST_−15
Salinity_−1

Chl_−1
Chl_−4
Chl_−5
Chl_−7
Chl_−8

2.4. Model Selection and Hyperparameter Tuning

The algorithms evaluated in this study are random forest regressor (RF) [37], support
vector machine regressor (SVR) [38] and multi-layer perceptron regressor neutral network
(MLP) [39,40]. These were chosen to be widely used and to present available information
that allows the easy application in any level of knowledge concerning ML. Compared with
deep learning approaches, traditional machine learning does not need large amounts of
data to train and the computer processing can be performed in low-end machines without
a GPU (Graphics Processing Unit) [41].

SVR is a kernel-based nonlinear regression method. It transforms the original in-
put data space into a high-dimensional input space (hyperplanes) and performs linear
regression in the high-dimensional space by defining a maximum margin separator, which
minimizes expected generalization error instead of the prediction error in the training
dataset. The kernel functions, which take as input the dot products of pairs of input points,
allows the SVR to map the inputs efficiently compared to calculating the corresponding
points of each input in the high-dimensional space. Basically, SVR finds hyperplanes that
minimize the errors and maximize the margins of continuous data [6].

RF is a machine learning technique that utilizes an ensemble of decision trees for
regression tasks. It randomly takes subsets of the data and input variables, and the results
of all trees are averaged to achieve a better result than individual trees. The use of random
samples of the training data for multiple decision trees reduces overfitting compared to
using the entire training set with a single decision tree [42].

MLP is an artificial neural network and it consists of connected nodes, resembling the
neurons in a biological brain. It consists of at least three layers of nodes: the input layer,
hidden layer and output layer. Excluding the input layer nodes, each node receives inputs
from the other nodes, and the outputs are calculated using a nonlinear activation function.
The learning process for MLP involves continually adjusting weights in the network to
minimize the error rate using backpropagation. Backpropagation computes the gradient of
the loss function with respect to the weights and updates the weights in the network using
methods such as stochastic gradient descent [42].

Depending upon the study cases, different ML algorithms usually require some ad-
justments. These are often crucial for the development of a successful application. Each
ML algorithm has parameters, so-called hyperparameters, which define the setup of the
machine to modelling the target function. For each model, a search range of hyperparame-
ters was tested. In cases where a value was selected at the edge of the search range, a new
cross-validation was conducted including more values.

All hyperparameter tuning of the models (Table 4) is based on GridSearchCV in the
Scikit-Learn package, which can evaluate all possible given combinations of hyperparame-
ter values using 10-fold cross-validation. This procedure determines the best combination
of hyperparameters of the model that gives the best accuracy, in terms of coefficient of
determination (R2).

Cross-validation is a model validation technique for obtaining reliable and stable mod-
els. The use of multiple models in the evaluation removes possible biases of some models
with some data sets. We used the training dataset to search for the best parameters, and
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reported the prediction performances on the test dataset using these parameters [43]. The
mentioned grid search was performed independently for each model on the training subset.

Table 4. Hyperparameters tested in GridSearchCV and those applied to each ML algorithms.

Model Hyperparameter Selected Value Default

SVR

kernel rbf rbf
C 3 1

gamma 0.01 0.1
Epsilon 0.1 0.0001

MLP

max_iter 90 200
hidden_layer_sizes 80 100

activation logistic relu
solver adam adam
Alpha 0.5 0.0001

warm_start True False

RF

bootstrap True True
max_depth 11 None

max_features 14 auto
min_samples_leaf 13 1
min_samples_split 2 2

n_estimators 100 100

R2, adjusted coefficient of determination (adj R2) and RMSE were the metrics used in
this work to evaluate the predictions. The use of adj R2 in multiple regression is important
because it increases only when new independent variables that increase the explanatory
power of the regression equation are added; this makes it a useful measure of how well a
multiple regression equation fits the sample data. A linear base model, available in Scikit-
Learn, was used to observe the improvements using the more sophisticated algorithms.

2.5. SARIMA Model

For the SARIMA model, the univariate chl-a data was used, while maintaining the
partitions in the training and test dataset. To test stationarity, the Augmented Dickey–Fuller
test (ADF) was applied indicating significant stationarity (p < 0.05) in the train and test
datasets. To fill the model (p, d, q) × (P, D, Q)365, where 365 represents the seasonality, the
best autoregressive (p, P) and moving average (q, Q) parameters were selected using an
iterative method in the train dataset. The parameters ranged from 0 to 4 in the nonseasonal
parameters (p, q) and 0 to 2 in the seasonal parameters (P, Q), selecting the combination
with lowest Akaike information criterion (AIC). The difference order parameters d and D
were 0, due to the stationarity results of the ADF test. The best parameters selected using
the training dataset were (4, 0, 1) × (2, 0, 1)365, and this SARIMA model was used to fit the
test dataset.

3. Results

For this study, the best R2, adj R2 and RMSE achieved for predicting chlorophyll-a
using support vector machine regressor, random forest regressor, and neural network multi-
layer perceptron regressor are presented in Table 5. In a combination of hyperparameters
tuning and feature selection, the models showed improvement compared with the default
models (no feature selection, no tuning) for the test datasets. Comparing the algorithms,
SVR reached the best R2 (0.78) and RMSE (1.113 µg L−1), however, these were only slightly
better results (MLP = 0.76; 1.144 µg L−1 and RF = 0.75; 1.189 µg L−1). The algorithms
presented good performances for the subsets of training dataset during the cross-validation
step (Figure 4). In addition, the predicted values were close to the observed data (Figure 5).
All the ML algorithms were better than the linear base model.
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Table 5. Comparison of nonoptimized (default) and optimized model performances for predicting
chlorophyll-a concentration during training (train) and testing (test) steps. The linear model serves
as a base model.

Default

Train Test
adj R2 R2 RMSE (µg L−1) adj R2 R2 RMSE (µg L−1)

SVR 0.81 0.82 1.255 0.63 0.71 1.273
RF 0.96 0.96 0.23 0.15 0.33 1.929

MLP 1 1 0.04 0.02 0.23 2.068

Optimized

Train Test
adj R2 R2 RMSE (µg L−1) adj R2 R2 RMSE (µg L−1)

SVR 0.77 0.77 1.424 0.77 0.78 1.113
RF 0.81 0.81 0.495 0.74 0.75 1.189

MLP 0.75 0.75 0.56 0.76 0.76 1.144

Linear (Base Model)

Train Test
adj R2 R2 RMSE (µg L−1) adj R2 R2 RMSE (µg L−1)
0.74 0.76 1.47 0.65 0.73 1.227
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The algorithms gave a good performance for the training dataset and allowed a
good generalization for the test dataset, as it can be seen from how close the predicted
values are from those observed in Figure 5. Using all of the 211 features and the default
hyperparameters, the results in the test data were not as good as those from the optimized
models (Table 5), mainly due to overfitting, when the models are more complex than
necessary and the fitting in the training dataset is affected by noise [44].

Considering the features used as inputs in each of the algorithms, the Recursive
Feature Elimination was implemented by combining Ridge and SVR linear estimators
and selecting a maximum number of 17 predictors. This generated the following result:
(‘SD, ‘SST’, ‘Salinity’, ‘SD_-1’, ‘SST_-1’, ‘SST_-2’, ‘SST_-9’, ‘SST_-12’, ‘SST_-13’, ‘SST_-14’,
‘SST_-15’, ‘Salinity_-1’, ‘Chl_-1’, ‘Chl_-4’, ‘Chl_-5’, ‘Chl_-7’, ‘Chl_-8’), with the negative
numbers in the codes (Table 2) representing the applied lag in days. The adj R2 results,
which are sensitive to the number of used predictors, showed improvement from 0.02 to
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0.76 for MLP, while for SVR the result improved from 0.63 to 0.77 and from 0.15 to 0.74 for
RF in the test dataset.
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For the independent validation, a chl-a dataset acquired by HPLC, the predictions
had better RMSE and R2 than the test datasets (Figure 6). Again, the higher values had
limitations in prediction, but the lower variance compared with the training and testing
datasets allowed for better evaluation indicators, with RMSE for all algorithms in the order
of 0.3 µg L−1 and R2 reaching approximately 0.90.
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The iterative SARIMA parameters selection uses much more computer processing
time compared with the GridSearchCV method in machine learning. The latter is a scale of
seconds to minutes while the former hours to days. It took around two weeks to select the
best p, q, P and Q parameters in the daily data considering a yearly seasonality. Fitting the
test dataset with the SARIMA model gave the worst results when compared with the ML
models (Figure 7).
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4. Discussion

Machine learning analysis was conducted on the Helgoland Roads time series to
develop the best fit of chlorophyll-a concentrations over time using different parameters
and their lagged correlates. For the three algorithms implemented, the model results
were virtually equal in the evaluation metrics, presenting similar results in prediction,
with slightly better values for the model SVR. For the time predictions, each of the three
models’ performances are acceptable with high R2 values greater than 0.70 and RMSE lower
than 1.5 µg L−1, ~40% smaller than the chlorophyll-a concentration standard deviation of
2.9 µg L−1. However, all of the algorithms were unable to predict extreme values (Figure 8).
It was expected that a certain degree of decrease in accuracy would be incurred because of
the difficulty in capturing and reproducing these extreme peaks [45]. One hypothesis that
would explain the underestimation of extreme values is the absence of predictive features,
e.g., hydrodynamics can result in the transport of chlorophyll from other areas as an input
event, even though salinity and wind parameters are reliable indicatives for current and
wave dynamics in the German Bight [46]. As these events do not present as a temporal
pattern, the ML models do not recognize the influence on the target.
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Because each algorithm is based on different algebraic assumptions and procedures,
they can result in different predictions. Between SVR and MLP, [14] points to differences in
the nonlinear equalization performance and the structural risk minimization principle of
SVR being more effective than the empirical risk minimization principle of neural networks
in terms of minimizing error. According to [47], in MLP the method for determining
global solutions is difficult to converge because of its inherent algorithm design and model
parameters are more complex than SVR, whereas the SVR has ready access to global optimal
solutions, obtained by solving a linearly constrained quadratic programming problem [14].
Between SVR and RF, as we saw, the linear base model gave good results. There is the
possibility of a linear dependency that is better captured by SVR, probably a result from
the linear interpolation in the preprocessing step of this study.

The feature selection and tuning of hyperparameters was extremely important and
improved the results substantially. This was noticeable in the adj R2 results for default and
optimized models. Analyzing the 17 features used in SVR and described in the results
section, the algorithm considered SST, lagged SST, lagged chlorophyll, salinity and Secchi
depth to reach the best results presented in this work. It is important to point that ML is
a data-driven approach, but it is possible to make inferences about the selected features.
The number of selected features was a response of balancing bias and variance in the
learning algorithms [48]. For this study, we noticed the choice of SST as an important
feature, probably representing the seasonal patterns in the chlorophyll target.

Better R2, adj R2 and RMSE results in the independent validation dataset are possibly
due to less variability and absence of extreme values, and shows the good generalization
that the ML models are capable of. All of the good results, for both the test and independent
validation data, show the better prediction power of the three ML algorithms evaluated in
this study. Comparing with the classical SARIMA model, the univariate and linear back-
ground did not achieve the results needed for it to outperform the ML models. Compared
with the ML literature, studies such as [3] and [11] achieved results of R2 ranging from
0.50 to 0.80, analyzing shorter time series of chl-a in lakes. The authors of [49] predicted
variations of chlorophyll-a in different sites of the North Sea using generalized additive
models (GAM) and the R2 results ranged from 0.15 to 0.63. In [28], using GAM to predict
chl-a in a spatial approach for the North Atlantic, got the best result for R2 at 0.83. All of
these values show how variable different methods’ performances in predicting chlorophyll
can be, not necessarily meaning one method is better than the other, but more adaptive.
ML models proved their generalization capacity and high accuracy.

5. Conclusions

In this work, we evaluated three machine learning algorithms in a regression task.
Support vector regressor presented a slightly better performance, with the advantage that
it used less computational time, and generated chlorophyll concentration predictions with
0.78 correlation to the observed data, in comparison to 0.76 and 0.75 for MLP and RF,
respectively. Moreover, the root mean square error was approximately 1.1 µg L−1 for the
test dataset and less than one for the independent validation data, which is approximately
38% percent smaller than the standard deviation of 2.9 µg L−1. This study demonstrates
the ability of machine learning models to use environmental in situ time series to predict
the chlorophyll concentration with significant accuracy (R2), higher than 70%, and the
importance of tuning hyperparameters and defining the best predictors (feature selection).
Most chlorophyll-a prediction studies are conducted in fresh water environments or using
satellite data and limited time series, so this work can be considered a step toward the use of
machine learning algorithms in marine areas based on long-term time series. Being aware
of the limitations presented in this study, in future works it would be interesting to work
with irregular sampled time series, improve the method for feature selection, ensemble
results of different ML and classical statistical models, and evaluate the forecasting power
of these models in the short and long term. Besides, the use of deep learning approaches
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has become more and more common, and in many cases, they are outperforming the
traditional ML algorithms, with the cost of higher computer processing times.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167208/s1, Figure S1: Time series of parameters used to predict chlorophyll-a concen-
tration: (a) Secchi disk depth, in meters (m); (b) Sea Surface Temperature, in degrees Celsius (◦C);
(c) Salinity (−); (d) Silicate (µmol L−1); (e) Phosphate (µmol L−1); (f) Nitrate (µmol L−1); (g) Sunlight
duration, in hours (h); (h) NAO index (−); (i) Wind Direction, in degrees (◦); (j) Wind Speed, in meters
per second (m s−1); and (l) Total zooplankton abundance, individuals per cubic meter (ind. m−3).
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34. Saberioon, M.; Brom, J.; Nedbal, V.; Souček, P.; Císař, P. Chlorophyll-a and Total Suspended Solids Retrieval and Mapping Using
Sentinel-2A and Machine Learning for Inland Waters. Ecol. Indic. 2020, 113, 106236. [CrossRef]

35. Tang, W.; Li, Z.; Cassar, N. Machine Learning Estimates of Global Marine Nitrogen Fixation. J. Geophys. Res. Biogeosci. 2019, 124,
717–730. [CrossRef]

36. Lenert, M.C.; Walsh, C.G. Balancing Performance and Interpretability: Selecting Features with Bootstrapped Ridge Regression.
AMIA Annu. Symp. Proc. 2018, 2018, 1377–1386.

37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.08.146
http://www.ncbi.nlm.nih.gov/pubmed/30121046
http://doi.org/10.1162/99608f92.5c5f0525
https://machinelearningmastery.com/how-to-develop-machine-learning-models-for-multivariate-multi-step-air-pollution-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-machine-learning-models-for-multivariate-multi-step-air-pollution-time-series-forecasting/
http://doi.org/10.1016/j.scitotenv.2014.09.005
http://doi.org/10.5555/1953048.2078195
http://doi.org/10.25080/Majora-ebaa42b7-012
http://doi.org/10.3153/AR19009
http://doi.org/10.1007/s10152-004-0192-4
http://doi.org/10.1023/A:1016026607048
http://doi.org/10.4319/lo.2008.53.4.1294
http://doi.org/10.1016/j.seares.2008.07.004
https://cdc.dwd.de/portal/
https://cdc.dwd.de/portal/
https://cdc.dwd.de/portal/
http://doi.org/10.1007/s10152-004-0191-5
http://doi.org/10.1371/journal.pone.0003836
http://www.ncbi.nlm.nih.gov/pubmed/19043583
http://doi.org/10.1111/gcb.13916
http://www.ncbi.nlm.nih.gov/pubmed/28944532
http://doi.org/10.1016/j.ecolmodel.2019.01.001
http://doi.org/10.3390/app9071459
http://doi.org/10.1016/j.dss.2010.08.028
http://doi.org/10.1109/ACCESS.2020.2983234
http://doi.org/10.1016/j.ecolind.2020.106236
http://doi.org/10.1029/2018JG004828
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/BF00994018


Appl. Sci. 2021, 11, 7208 14 of 14

39. Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2,
359–366. [CrossRef]

40. Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmo-
spheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

41. Phung, V.H.; Rhee, E.J. A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud
Image Patches on Small Datasets. Appl. Sci. 2019, 9, 4500. [CrossRef]

42. Ooi, K.S.; Chen, Z.; Poh, P.E.; Cui, J. BOD5 Prediction Using Machine Learning Methods. Water Supply 2021, ws2021202. [CrossRef]
43. Sun, Y.; Li, J.; Liu, J.; Chow, C.; Sun, B.; Wang, R. Using Causal Discovery for Feature Selection in Multivariate Numerical Time

Series. Mach. Learn. 2015, 101, 377–395. [CrossRef]
44. Lee, S.; Chung, J.Y. The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout

Prediction. Appl. Sci. 2019, 9, 3093. [CrossRef]
45. Rezaie-Balf, M.; Kisi, O.; Chua, L.H.C. Application of Ensemble Empirical Mode Decomposition Based on Machine Learning

Methodologies in Forecasting Monthly Pan Evaporation. Hydrol. Res. 2019, 50, 498–516. [CrossRef]
46. Schloen, J.; Stanev, E.V.; Grashorn, S. Wave-Current Interactions in the Southern North Sea: The Impact on Salinity. Ocean. Model.

2017, 111, 19–37. [CrossRef]
47. Chen, W.-H.; Hsu, S.-H.; Shen, H.-P. Application of SVM and ANN for Intrusion Detection. Comput. Oper. Res. 2005, 32, 2617–2634.

[CrossRef]
48. Munson, M.A.; Caruana, R. On Feature Selection, Bias-Variance, and Bagging. In Machine Learning and Knowledge Discovery
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