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Abstract: Ordered Weighted Averaging (OWA) operators have been integrated in Convolutional
Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN
integrate global information about the image in the early stages, where most CNN architectures
only allow for the exploitation of local information. As a side effect of this integration, the OWA
layer becomes a practical method for the determination of OWA operator weights, which is usually
a difficult task that complicates the integration of these operators in other fields. In this paper,
we explore the weights learned for the OWA operators inside the OWA layer, characterizing them
through their basic properties of orness and dispersion. We also compare them to some families
of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the expo-
nential RIM OWA operator, finding examples that are currently impossible to generalize through
these parameterizations.

Keywords: OWA operator; aggregation functions; orness; convolutional neural network; deep learning

1. Introduction

Information fusion refers to the process of combining different sources of information
into a single output, which tries to summarize those inputs into a single element. The neces-
sity of fusing information appears in many applications, including sensor fusion, statistical
analysis, machine learning, and computer vision, among others. From a theoretical point of
view, aggregation functions are the most used mathematical tool to deal with information
fusion, especially averaging functions [1], where the arithmetic mean and the median are
prototypical examples.

A very good example of this averaging functions is the Ordered Weighted Averaging
operators (OWA) [2,3]. These are a very well-known family of parameterized class of
aggregation operators, which have been commonly applied in several fields, such as multi-
criteria decision making or fuzzy logic [4,5]. OWA operators can generalize a large array
of aggregations, such as the minimum, the maximum, or the median, among others. This
ability to represent very different aggregations has one downside, namely the difficulty
of determining the specific weights for an OWA operator in a given context, leading to
the development of several methods to establish their parameters [6–9]. Most of these
methods [6] are based on translating the opinion of an expert to a specific weighting vector,
usually restricting the natural complexity of the operator to a family of OWAs that are
easier to parameterize . In other proposals, the weights are obtained from data [8,9], but
even in most of these proposals, the OWA operators are still constrained to parameterized
variants.

In this work, we focus on the integration of OWA operators in Machine Learning and
Deep Learning, two fields that have grown in importance in recent years. Machine Learning
is the study of algorithms capable of learning from data [10]. With the increasing number
of data available, developing methods capable of extracting knowledge and exploiting
that information has become one of the main topics in the field. One of these methods
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are Neural Networks (NN), and in particular Deep Learning (DL), which comprises the
training of large NNs over large sets of unstructured data.

One of the most successful types of NN used in Deep Learning are Convolutional
Neural Networks (CNNs) [11,12]. CNNs are Neural Networks designed for the processing
of spatial data, such as images, where any piece of the input information is strongly
correlated to other nearby pieces, which form the neighborhood. This fact is usually
exploited by CNNs by using convolutional operations that impose local connectivity
constraints on the network weights. This results in layers of processing that only exploit
local information, ignoring the global perspective of the data, which only gets considered
in the final layers of the network.

Aiming at integrating OWA operators in CNNs to improve the performance of CNNs
in image classification problems, in a previous work [13], we introduced the OWA layer.
The OWA layer modifies the usual CNN architecture by using OWA operators capable of
aggregating the feature maps of a CNN based on global information (feature map metrics),
even when inserted in the early layers of the network. This modification tries to improve
the neighborhood analysis performed by the early convolutional layers of the network
by leveraging contextual information about the whole image. Furthermore, the specific
implementation proposed is designed to only provide new information without replacing
the information already present, minimizing the possibility of any negative impact in the
network expressivity.

The proposed layer learns its weights at the same time as the rest of the parameters in
the CNN, unlike previous proposals of integration of OWA operators into NNs [14–20],
where the OWA operators are considered independently from the network. These previous
methods used predetermined weights or independent training methods for the parameters
of the NN and the OWA weighting vector [15–17,21]. This difference makes the analysis of
the learned OWA operators especially interesting and lets us test whether usually employed
parameterized families of OWAs are expressive enough, or if directly learning the operator
weights results in wider range of OWAs. In particular, we compare the learned operators
with three families of OWA operators, the Binomial OWA [8], the Stancu OWA [22], and
the exponential RIM OWA [23].

Therefore, in this work, we elaborate on our previous work focusing on the study of
the OWA operators learned with the OWA layer and compare their properties to other
classical OWA operator families. To perform this analysis, we focus on the orness and
dispersion profiles of the learned operators, two measures introduced by Yager [2] that
characterize OWA operators in their closeness to the max operator and the concentration of
the weights.

In our previous work [13], we already showed how the OWA layer added new knowl-
edge to a mid-size CNN (based on the VGG13 architecture) on a relatively large dataset. In
this work, instead, we are interested in the specific operators learned, and we decide to
choose a reduced architecture to facilitate the study. In particular, we employ a minimal
two-layer CNN and train different configurations on a small image classification dataset,
CIFAR100 [24]. This small dataset and the smaller network architecture enables us to do
several repetitions of each configuration, letting us aggregate the final weighting matrices
for the OWA layer to extract more meaningful conclusions. Although we acknowledge
that considering an experimental framework with a single dataset is a limitation of this
work, it also enables us to carry out an in-depth study on the characteristics of the OWAs
learned, which would not be straightforward considering a variety of scenarios. The
findings presented are meant to serve as a foundation for guiding further lines of work,
where the OWA layer should be properly analyzed in larger networks and new datasets to
corroborate the presented results.

The remainder of this work is as follows. Section 2 introduces some preliminaries on
CNNs and OWA operators. In Section 3, we present the literature relevant to our proposal.
Section 4 defines our proposed layer architecture and its design. Then, Section 5 presents
the experimental implementation that we have chosen and the specific experiments that
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we use to test the new layer. Section 6 analyzes the results of the experiments, including
a detailed analysis of the OWA weighting matrices. Finally, Section 7 summarizes the
conclusions of the work and proposes some future research work.

2. Preliminaries

In this Section, we recall several concepts that are the basis for this work. First, we will
recall some fundamentals of CNNs in Section 2.1. Next, we will explore the OWA operator
and its characteristics in Section 2.2.

2.1. Convolutional Neural Networks

Generally speaking, Neural Networks (NNs) [25] are algorithms developed for pattern
recognition. They are built as an aggregation of multiple simpler units, neurons, arranged
in a network. These neurons, when properly trained, can specialize in different simple
tasks, letting the whole system learn complex behaviors.

One of the key features of these systems is the training algorithm, based in the idea
of backpropagation [26]. This algorithm evaluates the network over an input, and then
computes the errors between the obtained and expected outputs. These errors are then
backpropagated through the network, from output to input, updating all the parameters
along the way to increase the system accuracy. This technique enables the training of
extremely complex NNs over large datasets.

Different network architectures have been designed for specific purposes. Initially, the
Multilayer Perceptron (MLP) [27] was proposed as a multi-purpose neural network. MLPs
are dense networks that arrange the neurons in layers, each one fully connected to all the
nodes in the next and previous layers. This leads to complex networks with many weights
to train. Some architectures try to reduce this complexity according to the constraints of
specific problems. Convolutional Neural Networks (CNNs) [11,12] are another well-known
variant of NNs where convolutional filters are combined with pooling layers to deal with
multidimensional data such as image classification.

There are two main layers that define CNNs, convolutional and pooling layers. Con-
volutional layers determine the number of convolutions to apply, each one with its inde-
pendent weights (the convolutional filter). Since each convolution aggregates the input
into a single channel image, also known as feature map, the convolutional layer as a whole
generates a new image with as many channels as filters are applied in the layer. In these
convolutional layers, most of the information is aggregated across channels, while vertically
and horizontally the information is aggregated only on the immediate neighborhood of
each pixel. This means that the information codified in a single pixel of a feature map
comes only from its spatial neighborhood and ignores the rest of the image.

Pooling layers are used to aggregate the information in the spatial dimensions of the
image[24]. These layers keep the channels of the image intact and reduce the dimensionality
of the image in the vertical and horizontal dimensions. To perform this reduction, blocks of
a certain width and height are defined independently for each channel, and the information
in those blocks is aggregated to a single element. This aggregation is usually performed
using operators such as the maximum or the average, although there has been some work
also on the usage of general OWAs [18,19].

In CNNs, by design, the network tends to operate by exploiting local information
in the convolutional layers early in the architecture, and aggregating it into global scale
information on the later stages of the network, after each application of a pooling layer.
The OWA layer studied in this work tries to change this architecture, letting the network
learn some global information in the early layers. Examples of this type of architecture
specific to the image classification problem are LeNet [28], the VGG family of models [29],
ResNet [30], and DenseNet [31], among others.
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2.2. Aggregation Functions and OWA Operators

The main mathematical tool to deal with information fusion is the concept of aggrega-
tion function.

Definition 1 (Aggregation function [1,32]). A mapping f : [0, 1]N → [0, 1] is called an aggrega-
tion function if it satisfies boundary conditions, i.e., f (0, . . . , 0) = 0 and f (1, . . . , 1) = 1, and in-
creasing monotonicity, i.e., if xi ≤ yi for all i ∈ {1, . . . , N}, then f (x1, . . . , xN) ≤ f (y1, . . . , yN).

Aggregation functions encompass many different type of functions, such as t-norms
and t-conorms, among others. In this work, however, we focus on a specific type, called
averaging functions.

Definition 2 (Averaging function [33]). An aggregation function f : [0, 1]N → [0, 1] is called
averaging if min(x1, . . . , xn) ≤ f (x1, . . . , xn) ≤ max(x1, . . . , xn) for every x1, . . . , xn ∈ [0, 1]n.

Remark 1. Notice that, although averaging functions are defined on [0, 1], their domain can be
extended to any subinterval of the real line.

Special cases of averaging functions are the arithmetic mean, the median, the geometric
mean, and the OWA operators, which are the basis of this work.

OWA operators were first proposed by Yager [2,3] as a weighted averaging function
in which the weights are not associated to a particular input, but to a specific order position
based on the input magnitudes. This allows for easy modeling of linguistic terms, especially
in the context of linguistic information fusion [4].

Definition 3 (OWA operator [2,3]). An OWA operator based on the weighting vector W =
[w1, . . . , wn], with the condition wi ∈ [0, 1] for every i = 1, . . . , n and ∑n

i=1 = 1, is a mapping
F : Rn → R such that

(x1, . . . , xn) =
n

∑
i=1

wixσ(i) , (1)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that xσ(1) ≥ · · · ≥ xσ(n).

Some notable examples of OWA operators are max (Wmax = [1, 0, . . . , 0]), min (Wmin =

[0, . . . , 0, 1]), and the arithmetic mean (Wavg =
[

1
n , . . . , 1

n

]
).

In OWA operators, in contrast with the weighted arithmetic mean, the weights are
associated with the magnitude of the inputs. However, there are situations in which
the weights need to be associated with certain alternative criteria. In order to deal with
these situations, an extension of the OWA operator was also introduced, the Induced
Ordered Weighted Averaging operators (IOWA) [34]. The IOWA is a general class of OWA
operators in which the ordering of the arguments is induced by another variable, called the
order-inducing variable. The previous definition of the OWA operator holds, but defining
σ : {1, . . . , n} → {1, . . . , n} as a permutation such that x′

σ(1) ≥ · · · ≥ x′
σ(n), based on a set

of induced variables x′1, . . . , x′n that are, in general, different from x1, . . . , xn.
In this work, we study the OWA operators inside an OWA layer (presented later in

Section 4), where the objective is the aggregation of 2D feature maps, which do not have
an inherent linear order structure. This forces us to define several metrics that map the
information in a feature map into a single element, which will then induce the order for
the OWA operator. Thus, the underlying function for the OWA layer is in fact an IOWA,
although we refer to it as OWA for the sake of simplicity.

Observe that the OWA operator allows us to define a wide family of aggregation
functions varying from a pure OR operator (maximum) to an AND operator (minimum).
In order to characterize the behavior of an OWA operator, Yager introduced two mea-
sures [2], called orness and dispersion.
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Orness This measure, also called attitudinal character, tells us how close a certain operator is
to the max operator, that is, the preference it has for large argument values. It always
lies in the range [0, 1]. The orness measure of a weighting vector W ∈ [0, 1]n is
defined as

orness(W) =
n

∑
i=1

wi
n− i
n− 1

. (2)

As an example, the orness of the weighting vectors of some classical OWA operators
are orness(Wmax) = 1, orness(Wmin) = 0 and orness(Wavg) = 0.5.

Dispersion This measure, explored in depth in [35], gives us an impression of how con-
centrated the weights of the operator are. For example, the maximum dispersion is
obtained with a weighting vector corresponding to the average (wi =

1
n for every

i = 1, . . . , n), while the minimum is associated with those weighting vectors W where
there exists i ∈ {1, . . . , n} with wi = 1 (and wj = 0 for every j 6= i). In this work, we
use the classic dispersion definition

dispersion(W) = −
n

∑
i=1

wiln(wi) . (3)

There have been many proposals of OWA operator parameterizations. With these
parameterizations, the weight distribution of the operator can be controlled with a few
parameters. These methods guarantee that the operator maintains some interesting proper-
ties, but at the expense of constraining its expressivity. One of the latest proposals is the
Stancu OWA operator [22], which at the same times generalizes an earlier proposal, the
Binomial OWA operator [8].

Binomial OWA The Binomial OWA operator [8] is based on a binomial distribution, and
defined, for every i = 1, . . . , n, as

wi,n(t) =
(

n− 1
n− i

)
tn−i(1− t)i−1 . (4)

Stancu OWA The Stancu OWA operator [22] is instead based on Stancu polynomials and
defined, for every i = 1, . . . , n, as

wi,n(t, α) =
(n−1

n−i)∏n−i−1
s=0 (t + sα)∏i−2

s=0(1− t + sα)

∏n−2
s=0 (1 + sα)

, (5)

where t ∈ [0, 1], α ≥ 0, and an empty product denotes 1.

Another approach is the definition of weighting vectors guided by fuzzy quantifiers
(also known as Regular Increasing Monotone quantifiers or RIM), widely used in the area
of multi-criteria decision making [36]. In the literature many families of RIM quantifiers
have been proposed [23]. In particular, we focus on exponential RIM quantifiers.

Exponential RIM OWA The exponential RIM OWA operator [23] is based on the generat-
ing function

Q(x) =
{ ax−1

a−1 if a > 0 and a 6= 1 ,
x if a = 1 ,

(6)

with a = eλ, for a parameter λ ∈ R.

From the generating function Q(x) of the quantifier, the weights of the associated
OWA operator can be obtained as

wi = Q
(

i
n

)
−Q

(
i− 1

n

)
. (7)
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One of the main properties of the RIM quantifiers with exponential generating func-
tions is that they maximize the entropy for a given orness. This property makes them a
solution to the MEOWA operator proposed by O’Hagan [37], maybe the most well-known
family of OWA operators.

3. Related Work

OWA operators have been widely used since they were first proposed by Yager [2],
thanks to their ability to represent and generalize some well-known aggregations and
linguistic operators, such as the minimum, the maximum or the median, among others.
Many ways of determining their specific weighting vectors have been developed in the
literature [6–8]. Most of these methods are supervised approaches, focused on translating
an expert opinion to a set of weights [6]. These systems for weight determination are often
related to specific families of parametric OWAs, where the expressivity of the operator
is reduced to adapt to some usual property constraints [7]. Some of these parameteriza-
tions [8,22,23] were presented in Section 2.2.

In other problems, where more expressivity is needed, some works have explored
ways to determine the weights of the operators from data [9]. In this work, we will focus
on this second approach, but integrating the operators in a standard NN backpropagation
loop, designed for complex problems with large numbers of data. The combination of OWA
operators and NN has also been already explored in the literature [14–21]. Usually, the
OWA operator (or other fuzzy measure-based aggregation function) is introduced outside
of the classifier [15–17,21], for example, to aggregate an ensemble of classifiers, but some
other approaches have also been explored [14,18–20].

One of the most ambitious proposals of integration methods is the Linear Order
Statistic Neuron developed by Veal et al. [14]. In this work, the authors propose an artificial
neuron fully based on an OWA operator, modifying the original simple perceptron idea.
When assembled into a complete network, these kinds of neurons would probably exhibit
very different properties to those of the NNs, although it is a preliminary work.

The most common approach, and arguably the most natural application of OWA
operators (and other families of aggregation functions), is the aggregation of the output
of multiple classifiers, which can include Neural Networks [15–17,21]. In these schemes,
each classifier of the ensemble is trained independently from the rest, and the operator is
used to aggregate the outputs into a single one, improving the final system accuracy at the
expense of increasing the global complexity.

Another approach that has been explored is the integration of a Fuzzy Measure-
based operator (of which the OWA operator is a particular case) in the pooling layer of a
CNN [18,19]. In this case, the aggregation used to reduce the dimensionality of a feature
map in a pooling layer is replaced with other types of aggregations. Specifically, in these
works, the authors employed a Choquet-like integral and show an improvement in results
compared to the usual mean and max aggregations.

Finally, the main inspiration for this work has been the “Fuzzy Layer” proposed
in [20]. In [20], the fuzzy layer is composed of several OWA operators that are applied to
the feature maps generated by a convolutional layer, thus generating a set of new fused
maps. These feature maps serve as the input to the next layer, completely replacing the
original ones. Regarding the selection of the operators, they manually established fixed
operators. In contrast, our OWA layer proposal in [13] is also composed of several OWA
operators that generate new fused feature maps, but with important differences. With
respect to the usage of the new feature maps, in our proposal, the fused feature maps are
used to augment the information of the network, preserving the original feature maps.
Moreover, we do not fix beforehand the weights of the OWA operators, but instead, we let
the network learn them as parameters. This process of automatic weight determination is
the focus of this work.

The OWA layer that we explore in this work was previously defined in [13,38], where
we presented some preliminary results about the impact of the layer in CNNs. In the
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previous works, we found an increase in the accuracy of a medium-sized VGG13 network
on a large image dataset, but we did not study the learned OWA operators and the way
they codify information. In this work, we continue exploring new results, focusing on the
analysis of the learned OWA operators. For this analysis, we use a simpler network and
the CIFAR100 [24] dataset both to reduce the complexity of the problem and the number of
variables involved and to allow for a greater number of repetitions of each experiment.

Additionally, we compare the learned operators of the OWA layer with several the-
oretical families of OWA operators. In particular, we use the Stancu OWA operator [22],
the Binomial OWA operator [8] and the exponential RIM OWA operator [23]. The Stancu
OWA operator is based on the Stancu polynomial and is capable of generating infinitely
many sets of weights for a specific orness value, defined by a second parameter α. At the
same time, it also generalizes the Binomial OWA operator [8]. We also compare the learned
operators to the exponential RIM OWA operator [23], proposed as a MEOWA [37] operator
based on a RIM quantifier.

4. Methods

In this section, we propose our method for developing the OWA layer of a CNN. In
Section 4.1, we present the main structure, the OWA Layer that will be integrated into
the network. In Section 4.2, we list the different ordering metrics that we can use inside
the OWA Layer to sort the feature maps, and Section 4.3 explains the way we perform
the aggregation of those feature maps. Finally, Section 4.4 details the initialization of the
weight matrix for the OWA operators represented by the layer.

4.1. Layer Structure

We propose the integration of OWA operators in a general CNN via the use of a special
OWA layer [13,38]. This layer will be placed inside the convolutional region of the network
and will modify the input data, a 3D matrix of activations, by adding newly generated
feature maps by means of OWA operators.

This layer structure responds to our intention of only augmenting the information on
the network while using the OWA operators to aggregate the channels based on channel-
wise information, usually unavailable to the convolution operation. This way, the layer
introduces some of the global scale information codified through channel-wise metrics
into the computation of the early layers of the network, which usually exploit only local
information. The general structure of the layer is depicted in Figure 1.

Cin × I × J

Cin × I × J C f eat × I × J

Cout × I × J

Concatenation

AggregationSorting

Figure 1. Proposed OWA layer structure.

This layer takes a 3-dimensional matrix of I rows by J columns by Cin channels (feature
maps) as input, and appends C f new channels of the same size to the matrix. Each of
the new C f channels are obtained by aggregating the original Cin channels by means of
a specific OWA operator. These OWA operators are defined by a weighting matrix of
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Cin × C f elements, which are treated as any other parameter in the network and learned
through backpropagation.

To apply these OWA operators, two stages are needed. In the first one, we sort the
original Cin channels is a decreasing order based on a channel-wise metric. Recall that, since
we are ordering with respect to a global feature map metric and aggregating channel-wise,
we are considering induced OWAs. In the second stage, we perform C f weighted linear
aggregations on the sorted channels. These two steps combined give us C f independent
OWA operators that share the same ordering metric. Finally, these new C f are concatenated
to the original matrix, giving an output with a total of Cout = Cin + C f channels.

Note that, in our aggregation proposal, we consider the channel as a whole, rather
than aggregating each position (i, j) independently. Thus, we have to carefully define the
order metric used for the sorting stage, and the way the aggregation itself is performed,
which are not trivial. We elaborate on these issues in the next sections.

4.2. Feature Map Ordering Metrics

As previously explained, our aim is to involve global image information in the feature
maps generated in the convolutional part of the CNN. This is done by using OWA operators,
whose ordering is given by a channel-wise metric that characterizes the whole channel
(feature map). For this, we will use several ordering metrics that assign a real number to
each feature map X of dimension I × J. Then, the ordering of the channels is performed by
this real number, which represents to some extent the interest in the information stored in
the channel. We consider the following metrics:

• Sum, Median and Maximum of channel values. We consider first some of the more
classical aggregations. These operators ignore the spatial relationships of the data but
still represent the general activation level of the channel.

Sum(X) =
I

∑
i=1

J

∑
j=1

X(i, j) . (8)

Median(X) = median(X(1, 1), . . . , X(I, J)) . (9)

Max(X) = max(X(1, 1), . . . , X(I, J)) . (10)

• Channel entropy. Intuitively, the entropy is a measure of disorder, of the amount of
information codified in a channel. A higher value of entropy means more uniformity
in the input data, while a smaller entropy value means more contrast and information
in that input. For feature maps, we can argue that the entropy of the channel is a good
indicator of how interesting the information in the channel is. To compute this metric,
we first normalize each element X(i, j) of the channel with the softmax function:

X′(i, j) = Softmax(X(i, j)) =
eX(i,j)

∑I
k=1 ∑J

l=1 eX(k,l)
. (11)

After applying it, we have X′(i, j) ∈ [0, 1] and ∑I
i=1 ∑J

j=1 X′(i, j) = 1. Then, we can
apply the Shannon entropy [39] formula to these values by

H(X) = −
I

∑
i=1

J

∑
j=1

X′(i, j) log X′(i, j) . (12)

• Spatial variation entropy. Generally speaking, the entropy of an information source
depends on the codification chosen for it. As the channel values are usually spatially
correlated, like an image, we can consider a codification that takes these relationships
into account. To obtain the corresponding entropy value, we first compute the hori-
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zontal and vertical variations of each position (i, j) of the channel, which are given,
respectively, by

Vh(X)(i, j) = |X(i, j)− X(i− 1, j)| for every i = 2, . . . , I, j = 1, . . . , J , (13)

and

Vv(X)(i, j) = |X(i, j)− X(i, j− 1)| for every i = 1, . . . , I, j = 2, . . . , J . (14)

We flatten and concatenate all the differences together into a 2I J − I − J length vector
V. Then, we proceed normally, applying the softmax function for every j in V:

V′(j) = Softmax(V(j)) =
eV(j)

∑2I J−I−J
i=1 eV(i)

. (15)

Then, we apply the Shannon entropy [39] formula to these normalized variation
values by

Hsv(X) = −
2I J−I−J

∑
i=1

V′(i) log V′(i) . (16)

• Total variation. The Total variation (TV), as defined in [40], is a metric that conveys
similar information to the entropy for spatially constrained data. It tells us how
much variance there is between a pixel and its neighbors, being high for images
with crisp borders, and low for uniform images. For this metric, we calculate the
differences between each pixel and its horizontal and vertical neighbors and aggregate
the absolute differences over the image. This is done in the following three steps:

TVv(X) =
I

∑
i=2

J

∑
j=1
|X(i, j)− X(i− 1, j)| , (17)

TVh(X) =
I

∑
i=1

J

∑
j=2
|X(i, j)− X(i, j− 1)| , (18)

TV(X) = TVv(X) + TVh(X) . (19)

4.3. Feature Map Weighted Aggregation

Once the Cin input channels have been sorted by one of the measures of Section 4.2,
we can proceed to the second critical stage, their weighted aggregation. For this purpose,
we define C f independent OWA operators, each one represented by a weighting vector
composed of Cin weights.

These weights constitute a raw unconstrained version of the OWA, and we transform
them before applying the aggregation to ensure that they correspond to proper weighting
vectors. The main reason to work with the weights in their unconstrained form is to easily
integrate them into the main backpropagation loop, allowing them to be learned with the
rest of the parameters in the network.

To translate the weights into a valid OWA operator, as defined in Section 2.2, we need
to ensure that wi ∈ [0, 1] for every i = 1, . . . , n and that ∑n

i=1 = 1. The easiest way to
comply with these constraints is to first clip the negative weights to achieve wi ∈ [0, ∞)
for every i = 1, . . . , n, and then normalize to guarantee ∑n

i=1 = 1, which implicitly ensures
that wi ∈ [0, 1] for every i = 1, . . . , n.

To clip the negative weights, we employ the ReLU function. This is a well-known
function that integrates well in the common gradient descent learning algorithm, with a
very fast implementation. It is defined as

ReLU(wi) = max(wi, 0) for every i = 1, . . . , Cin . (20)
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Then, we normalize the weights by dividing each weight by the total sum of the
weights, ensuring that the weighting vector adds up to one. The final weights are
calculated as

w′i =
ReLU(wi)

∑
C f
j=1 ReLU(wj)

for every i = 1, . . . , Cin . (21)

The resulting weighting vector is a proper OWA weighting vector.
With the final set of C f weighting vectors calculated, which can be seen as weighting

matrix of size C f × Cin, the aggregation itself is straightforward. Each new channel Yk,
k = 1, . . . , C f , is given by

Yk(i, j) =
Cin

∑
l=1

w′l × Xσ(l)(i, j) , (22)

for every i = 1, . . . , I, j = 1, . . . , J. The input feature maps Xσ(l) are sorted according to
one of the channel metrics presented in Section 4.2, defining a permutation σ(l) such that
Metric(Xσ(1)) ≥ · · · ≥ Metric(Xσ(n)).

4.4. Weight Matrix Initialization

The last key factor in the OWA layer is the initialization of the weighting matrix. The
weights, as explained in Section 4.3, are transformed before applying them. This results in
an increased operation stack in the backpropagation calculation, meaning that a correct
initialization of these weights is vital to allow their convergence to meaningful operators.
Most early work in NNs used Gaussian initialization with fixed parameters [24], but recent
works have proven the importance of a good initialization [41].

In our case, to approach this problem, we decide to initialize the weights with the
absolute value of a Gaussian distribution, keeping the mean at 0 and controlling the
standard deviation through a parameter α, with α > 0. This way, we ensure that they are
initially positive, and at the same time we can check experimentally for the optimal value
of α to guarantee convergence of the weights in the layer. Each weight of the weight matrix
is initialized to

wi =

∥∥∥∥N (0,
1
α2 )

∥∥∥∥ . (23)

5. Experimental Framework

This section describes the experiments that we perform to test the new architecture and
the way they are executed. In Section 5.1, we present the image classification problem to be
solved and the dataset employed. Section 5.2 proposes a simple CNN capable of solving
this problem, and the specific way we can introduce the new OWA Layer to this network.
After that, Section 5.3 gives some specific implementation details, and Section 5.4 specifies
the evaluation metrics to be used. Finally, Section 5.5 lists the three main experiments that
we performed according to the previous specifications.

5.1. Dataset

For testing the architecture, we choose a small and simple image classification
dataset, CIFAR100 [24]. It is a well-known dataset, composed of 60,000 color images in a
32× 32 pixel resolution. These images are sorted into 100 balanced classes, each split into
a train partition of 500 examples and a test partition of 100 examples.

In this work, our main point of interest is the properties of the OWA operators learned
inside the OWA layer. Accordingly, we decide to keep the problem definition narrow and
work only on this dataset. This choice facilitates the analysis of the results at the cost of
keeping them constrained to this experimental framework. In particular, we choose to
focus on an image classification problem as it is one of the most common applications for
CNNs. The use of this small dataset allows us to run more configurations and repetitions
of each configuration, thus giving us more data to aggregate and analyze.
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5.2. CNN Architecture

We designed a small CNN with the minimal size to host the new layer, composed of
two convolutional blocks, each one composed of a convolutional filter followed by a batch
normalization stage and a ReLU activation layer. After the convolutional stage, we used a
simple dense layer as the output. The architecture is summarized in Table 1. For a review
of the usage of the OWA layer on a larger network, refer to [13].

The choice of the base architecture is again motivated to allow for more repetitions of
the experiments. In this case, choosing a minimal architecture also reduces the number of
variables involved in the configuration of the OWA layer, allowing us to focus better on
the analysis of the learned operators.

With this base architecture, we can insert the proposed layer between the two con-
volutional blocks, using the 64 channels of the first block as input and generating a new
representation with an increased number of channels to use as input in the second convolu-
tional block. This insertion point is denoted as OWA1 in Table 1.

Table 1. Network architecture.

Name Kernel Size Stride Output Size

input_data - - 32× 32× 3

conv1 3× 3 1 32× 32× 64
OWA1 - - 32× 32× (64 + C f ) *
conv2 3× 3 1 32× 32× 64
maxpool 2× 2 2 16× 16× 64

flatten - - 16, 384
linear - - 100
* The OWA layer produces C f new channels, but as it concatenates those with the original output of the conv1
layer, its final output has 64 + C f channels.

5.3. Training Details

For the implementation of the following experiments we used PyTorch [42] 1.4.0
through the Fastai library [43] in its 1.0.60 version.

We focused on the comparison of the reference architecture and the modified one,
studying the impact of the new layer. For this reason, we kept the same hyperparameters
consistent thorough the experiments. We used a maximum learning rate of 1× 10−4 with
a 1cycle policy for hyperparameter management (as described in [44] and implemented
in Fastai). We chose this parameter by using the lr_finder tool in Fastai base, adjusting it
for the reference configuration. We also used a batch size of 64 across all experiments, the
highest we could fit in our GPU. The reference hardware used to run these experiments
consisted of a computer equipped with an Intel(R) Core(TM) i5-8500 CPU, 20 GB of general
purpose RAM, and a NVIDIA GeForce RTX 2060 Super GPU with 8 GB VRAM.

We used data augmentation, identical in all experiments, based on the setup proposed
in [45]. In particular, we used horizontal flipping with a 0.5 probability and a random
padding and crop by four pixels, both keeping the initial image size of 32× 32 pixels.

Our code is available for reproduction at https://github.com/irisdominguez/OWA
_Layer, last accessed on 4 August 2021.

5.4. Evaluation

For the evaluation of the impact of the new layer, we compare the final test top five
accuracy of the trained CNN with and without the new layer inserted. For each version,
we repeated the training from scratch 40 times, each one executing 80 epochs, and evaluate
the top five test accuracy at the end. Then, we compute the average top five test accuracy
of the 40 repetitions as the base result.

To assert the statistical significance of the results, we also use the non-parametric
Mann–Whitney U test [46]. For this test, we consider the null hypothesis that the top five

https://github.com/irisdominguez/OWA_Layer
https://github.com/irisdominguez/OWA_Layer
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accuracy results of both the reference and the modified architecture top five accuracies come
from the same random distribution (double sided), and we require a p-value lower than
0.05 to consider that there is statistical difference when running the modified architecture.

5.5. Experiments

We designed three experiments to understand the kind of OWA operators learned
by the network when different configurations are used. We focus on the initialization
parameter α, the number of learned features C f , and the sorting metric.

1. Initialization and convergence. The first experiment was to determine the optimal
initialization variance α of the weighing matrix and gave an initial view on the
convergence of the parameters. We chose a fixed ordering metric (Total Variation,
as described in Section 4.2) and a fixed number of learned OWAs (C f = 64, equal
to number of input layers) and tested the effect of a range of α on the final learned
weights.
We then plotted different metrics for each OWA weighting vector (namely, orness and
dispersion as described in Section 2) to check if the network was learning a variety of
operators or if they were limited in their expressivity.

2. Number of operators. The second experiment analyzed the impact of the number of
learned operators C f . We performed the experiment with a single ordering metric
and fixed initialization and varied C f from 1 to 64 (the number of input channels). We
gathered both the top 5 accuracy results for the network and the orness and dispersion
profiles of the different configurations.

3. Impact of ordering metric. Finally, for the third experiment, we froze all the parameters
except for the ordering metrics presented in Section 4.2. This allowed us to observe
the behavior of the network with different global information introduced into the
OWA layer through these metrics.
We analyzed both the orness and dispersion profiles of the operators learned for each
different metric.

Additionally, we manually selected some of the learned OWA weighting vectors
from the third experiment to compare them with the Binomial OWA, Stancu OWA, and
exponential RIM OWA operators defined in Section 2.2.

6. Results and Discussion

In this Section we present and analyze the results of the experiments. In Section 6.1,
we present the results of the first experiment regarding the initialization of the weights.
Next, in Section 6.2, we study the results of the second experiment, exploring the diversity
of the learned operators as we modify the number of learned features. In Section 6.3, we
study the third experiment, where we focus on the impact of using different ordering
metrics. Finally, Section 6.4 analyzes some OWA operator examples learned in the third
experiment and compares them to several parametric OWA families.

6.1. Initialization and Convergence

The top 5 accuracy results of this first experiment are shown in Table 2, where we
can observe the final top 5 accuracy of the network when we varied the initialization
parameter α. Although there is a statistically significant improvement in the top 5 accuracy
over the reference of about 2%, there is little difference between the different initialization
parameters accuracy-wise.

In Figure 2, we focus on the orness and dispersion of the learned features as we
vary α. To create this figure, we first sorted the operators in each matrix, from lowest to
highest orness, and then averaged the 40 weighting matrices of the repetitions of each
experiment to denoise them. From this average matrix, we can then computed the orness
and dispersion of each operator.
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Table 2. Accuracy results for initialization variants.

Init α Top 5 acc. p-Value

Reference 52.17± 1.5
1 54.28± 1.4 <0.001 *
2 54.47± 1.4 <0.001 *
4 53.95± 1.5 <0.001 *
8 54.50± 1.6 <0.001 *

16 54.38± 1.4 <0.001 *
32 54.13± 1.7 <0.001 *
64 54.61± 1.4 <0.001 *

128 54.26± 1.4 <0.001 *
256 54.43± 1.3 <0.001 *
512 54.49± 1.3 <0.001 *

1024 54.18± 1.7 <0.001 *
* Results marked with * have better top 5 accuracy than the reference with p-value < 0.05.

As expected, we can observe how larger values of α (a smaller variance of the initial
weights) allows the network to generate a larger diversity of learned features. With an
initialization with α = 128, we already observe an orness range of 0.1 to 0.9, covering OWA
operators from close to min to close to max. There is a clear tendency to max-like operators,
with 54 operators covering the range of ornessess 0.6 to 0.9, and only 10 operators in the
range 0.1 to 0.6 (min-like). We can also observe how lower values of α (α < 128) have a
similar shape in the orness profile, but reduced range, and how higher values (α > 128) do
not increase the range or change the shape of the profile anymore.

About the dispersion, we can observe a maximal value of dispersion (around 4) for the
features with an orness close to the average, dropping to lower values of dispersion for the
features with minimum and maximum orness. The fact that operators with similar values
of orness (operators 10 to 20 on all α configurations show an orness of 0.4 to 0.6) show also
a similar value of dispersion suggests a high stability in the shape of the operators across
initialization configurations.

Even though these matrices are averaged over the experiments, there is a notable
decrease in the stability of the dispersion values for larger values of α. This suggests that
increasing the value of α not only does not increase the diversity of the operators anymore
(as seen on the orness figure) but also leads to noisier and less stable operators.
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Figure 2. Orness and dispersion profiles of learned features for the initialization variants (α).
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6.2. Number of Operators

The accuracy results of the second experiment are summarized in Table 3, where the
top 5 accuracy of the network, averaged over the 40 repetitions with the same configuration,
is shown against the number of learned features C f introduced in the layer. In this experi-
ment, the sorting metric is the total variation, and α is set to 128. The final top 5 accuracies
are also shown as a violin plot in Figure 3, where we can observe a clear correlation between
the increase in C f and the final top 5 accuracy, with all the results with a C f > 4 showing
a statistically significant result over the reference. The improvement shown reaches 3%
over the reference when the highest number of learned features is used. This suggests that
adding more operators also increases the knowledge added to the network and proves the
diversity of the operators learned in the training.

In Figure 4, we show the orness and dispersion profiles of the learned operators,
obtained in the same fashion as in Section 6.1. For this figure, considering the variable
number of features learned C f , we use a logarithmic horizontal axis to simplify the com-
parison between different configurations. On the orness profiles, we can observe how, for
each number of features C f from 2 to 16, an increase in the number of features implies
an increase in the range of orness. In those cases the upper limit of the profile is close to
1.0 (max-like), while the lower limit begins at 0.6 and gets lower with the added features,
getting to 0.1 (min-like) for C f = 16. From C f = 32 to C f = 512, adding new features does
not increase the range, and instead reduces it slightly. At C f = 512, we can observe that
the upper orness limit remains constant, close to 1.0, but the lower limit has gone back to
0.35, losing some and-like operators. Recall that in this experiment, the highest C f were
associated with a higher top 5 accuracy.

Reviewing the dispersion profiles in Figure 4, we can observe how, when the orness
profile recedes (C f = 32 to C f = 512), the dispersion of the equivalent operators also
decreases. Note how the complete dispersion profile curve becomes lower when C f
becomes higher. This means that the operators learned with higher C f values are more
concentrated, with narrower distributions, even for similar orness values. The learned
feature of the highest orness (the last feature of each set) can be noted as an example,
sharing a similar orness value for each configuration, but with a decreasing dispersion
when the number of features is increased.

These results suggest that learning more OWAs leads the network to explore a certain
region of the orness profile meticulously, with many operators that show a low dispersion.
In the example configuration, for the total variation metric and α = 128, this region lies
between orness 0.3 and orness 1.0. Recall that this same region was explored by many
more operators when we increased the parameter α in the first experiment.

Table 3. Accuracy results by number of learned features.

C f Top 5 acc. p-Value

Reference 52.17± 1.5
1 52.46± 1.4 0.331
2 52.72± 1.7 0.176
4 53.38± 1.3 <0.001 *
8 53.18± 1.5 0.007 *

16 53.40± 1.2 <0.001 *
32 53.74± 1.7 <0.001 *
64 53.88± 1.2 <0.001 *

128 55.07± 1.4 <0.001 *
256 55.03± 1.2 <0.001 *
512 55.35± 1.3 <0.001 *

* Results marked with * have better top 5 accuracy than the reference with p-value < 0.05.
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Figure 3. Final accuracies of the system depending on the number of learned features.
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Figure 4. Orness and dispersion profiles of learned features depending on C f , the number of learned features.

6.3. Impact of Ordering Metric

Finally, the accuracy results of the third experiment are shown in Table 4. Here, we
show the average top 5 accuracy of the configuration with the specific ordering metric
shown, α = 128 and C f = 64, sorted from lowest to highest accuracy. We can observe
statistically significant improvement in all the configurations, but the largest improvements
appear with the total variation metric (2% higher than the reference).

To further explore the differences between the metrics, we show the average orness
and dispersion profiles (Figure 5), obtained in the same fashion as in Sections 6.1 and 6.2.
We also show a single example of the resulting weighting matrix of each configuration in
Figure 6, each matrix with its features (rows) sorted top to bottom from lowest to highest
orness value. These figures show how different ordering metrics tend to converge to
different learned features, with different preference for or-like or and-like operators.

We can highlight the two entropy metrics, which both learn a similar distribution of
orness slanted to the and-like operators.

A particularly relevant example is the case of the median_activation ordering, which in
the matrix shows weight patterns that appear unrelated to the sorting of the layers, and
in the orness figure shows the most limited range of all the metrics. This indicates that
the median_activation is not adequate to induce the ordering of the channels, making the
learned OWAs closer to a regular weighted aggregation. This highlights the importance of
the metric selection on the OWA layer to obtain meaningful OWA operators.
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Table 4. Accuracy results for different metrics.

Metric Top 5 acc. p-Value

Reference 52.17± 1.5
H 53.78± 1.4 < 0.001 *

Hsv 53.87± 1.4 < 0.001 *
Sum 53.93± 1.4 < 0.001 *
Max 53.99± 1.2 < 0.001 *

Median 54.11± 1.1 < 0.001 *
TV 54.27± 1.5 < 0.001 *

* Results marked with * have better top 5 accuracy than the reference with p-value < 0.05.

0 10 20 30 40 50 60
Feature

0.2

0.4

0.6

0.8

O
rn

es
s

Sum
TV
Max

Median
H
Hsv

0 10 20 30 40 50 60
Feature

2.75

3.00

3.25

3.50

3.75

4.00

D
is

pe
rs

io
n

Sum
TV
Max

Median
H
Hsv

Figure 5. Orness and dispersion profiles of learned features for the different ordering metrics.
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6.4. Comparison to Theoretical Families of OWA Operators

In Figure 7, we show some examples of the operators learned in the third experiment.
The raw learned operators are shown filtered to remove noise with a moving average of
window size 5. The examples include four examples of parameterized OWA operators of
equivalent orness, namely the Binomial OWA, the exponential RIM OWA, and two variants
of the Stancu OWA [22] with different alpha values (α = 0.15 and α = 0.3).
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Figure 7. OWA operator examples.

We can observe how the simpler examples (Features 1 and 64 in the figure) are
monotonic and behave very similarly to the Stancu OWA operator and the exponential
RIM operator. In the case of Feature 1, with orness 0.22, the learned operator is best
approximated by the Stancu OWA with α = 0.3, while for the Feature 64, with orness 0.85,
the best approximation would be the Stancu OWA with α = 0.15. In any case, they can
be properly generalized by the Stancu OWA. In both cases, the exponential RIM operator
seems to give a very good approximation without the need of any parameter adjustment
(it only varies according to orness).

For the other cases, we have chosen a few examples that are harder to generalize.
In the case of Features 15 and 54, we can observe how they exhibit a bi-modal weight
distribution, a case that cannot be directly modeled with any of the chosen parameterized
families of OWA operators. The most extreme examples, Features 5 and 12, show a similar
problem, giving most weight to the lowest and highest sorted inputs simultaneously, while
giving almost no weight to the intermediate inputs. This is the opposite of a median-like
operator, an unusual behavior for the classical OWA operators. We can observe how none
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of the families can approximate these distributions, especially in the case of the Feature 12,
where the best approach is the simple mean represented by the RIM operator.

From these results, we can conclude that the theoretical families of OWA operators
currently studied are coherent with many of the data-driven OWA operators learned with
OWA layers, but not with all of them. Some of the behaviors shown are currently hard or
impossible to model and parameterize with these families, showing room for improvement
in terms of expressivity in parameterized OWA families.

7. Conclusions and Future Work

The OWA layer [13] is a CNN layer capable of augmenting the feature maps in a CNN
by aggregating them with OWA operators. This leads to an increase in accuracy for CNNs
in image classification problems. In this work, we have explored the OWA layer as a way
of combining OWA operators with CNNs, with the objective of studying new ways of
learning the weights of OWA operators.

First we have confirmed the preliminary results reported in [13,38], observing an
improvement in the accuracy of our test network in this specific experimental framework.
With respect to our main objective, we have been able to observe how the network generates
clean and diverse operators, with orness ranges covering the full spectrum of possibilities.
We have also assessed the need for a proper initialization, showing in the first experiment
how it can impair the ability of the network to learn diverse operators. The second
experiment performed shows how the number of operators learned influences the explored
range of possibilities and how the network can extract knowledge even from a small
number of operators. Finally, the third experiment has shown how different sorting metrics
lead the OWA layer to learn different OWA operators, allowing us to observe how the
sorting metric changes the knowledge contributed by the layer.

The most important results, arguably, come from the final comparison between the
learned operators and some theoretical families, namely the Binomial OWA [8], the Stancu
OWA [22], and the exponential RIM OWA [23]. Our learned operators are empirically
consistent with these parameterizations in most cases, but we have also found several
examples of operators that are currently impossible to approximate by these families.
Considering the nature of the operators learned by the OWA layer, built from scratch and
only driven by the data, we believe that this proves a deficiency in the current models.
We hope that these results will aid in the design of new models of OWA operators, less
constrained and capable of expressing more complex relationships between the input data.

Regarding the OWA layer, we hope that future work will unveil new applications
where there is a higher margin of improvement, paving the way to new interactions of OWA
operators with other AI tools. The results achieved in this work are still constrained to a
narrow experimental framework, and should be extended in future works to new datasets
and problems to study the differences in the OWAs learned in different applications as
well as the usefulness of the OWA layer. In particular, it would be interesting to study the
behavior of the modified CNN when applied to larger datasets, such as ImageNet [47] and
its version with reduced image resolution, Tiny ImageNet [48].
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