
applied
sciences

Article

A Payload Based Malicious HTTP Traffic Detection Method
Using Transfer Semi-Supervised Learning

Tieming Chen, Yunpeng Chen, Mingqi Lv *, Gongxun He, Tiantian Zhu, Ting Wang and Zhengqiu Weng

����������
�������

Citation: Chen, T.; Chen, Y.; Lv, M;

He, G.; Zhu, T.; Wang, T.; Weng, Z.

A Payload Based Malicious HTTP

Traffic Detection Method Using

Transfer Semi-Supervised Learning.

Appl. Sci. 2021, 11, 7188. https://

doi.org/10.3390/app11167188

Academic Editor: Andrea Prati

Received: 26 June 2021

Accepted: 29 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China;
tmchen@zjut.edu.cn (T.C.); tuertong99@gmail.com (Y.C.); gongxunh@zjut.edu.cn (G.H.); ttzhu@zjut.edu.cn (T.Z.);
wangting@zjut.edu.cn (T.W.); derisweng@wzpt.edu.cn (Z.W.)
* Correspondence: mingqilv@zjut.edu.cn; Tel.: +86-1366-6600-887

Abstract: Malicious HTTP traffic detection plays an important role in web application security.
Most existing work applies machine learning and deep learning techniques to build the malicious
HTTP traffic detection model. However, they still suffer from the problems of huge training data
collection cost and low cross-dataset generalization ability. Aiming at these problems, this paper
proposes DeepPTSD, a deep learning method for payload based malicious HTTP traffic detection.
First, it treats the malicious HTTP traffic detection as a text classification problem and trains the
initial detection model using TextCNN on a public dataset, and then adapts the initial detection
model to the target dataset based on a transfer learning algorithm. Second, in the transfer learning
procedure, it uses a semi-supervised learning algorithm to accomplish the model adaptation task.
The semi-supervised learning algorithm enhances the target dataset based on a HTTP payload data
augmentation mechanism to exploit both the labeled and unlabeled data. We evaluate DeepPTSD on
two real HTTP traffic datasets. The results show that DeepPTSD has competitive performance under
the small data condition.

Keywords: malicious traffic detection; HTTP payload; Data augmentation; Transfer learning; semi-
supervised learning

1. Introduction

Web applications are the most popular applications on Internet, as they require a
smaller amount of client side resources, and are relaxed to deliver and maintain. There-
fore, a large number of attackers put web applications as their primary target. Among all
the network protocols, HTTP (Hypertext Transfer Protocol) is used by most of the web
applications for communication between web browsers and web servers, and a large ma-
jority of attacks against web applications are launched by using malicious HTTP requests,
e.g., SQL injection, XSS (Cross-Site Scripting). Therefore, malicious HTTP traffic detection
systems play an essential role in establishing a secure and reliable web application. In
practice, the malicious HTTP traffic detection models are usually deployed on a WAF (Web
Application Firewall) in front of the web servers.

The existing malicious network traffic detection methods could be divided into two
categories according to the exploited information, i.e., statistic based methods and payload
based methods. Statistic based methods [1–5] extract statistical features (e.g., duration
of flow, inter arrival time, number of packets, etc.) from network traffic analyzer (e.g.,
NetFlow [6]), and then apply rule based or learning based techniques to detect malicious
network traffic. These statistical features are payload-independent, and thus the statistic
based methods can address specific issues such as data privacy and traffic encryption [7].
However, statistic based methods have the following limitations. First, useful information
such as suspicious keywords in payloads are ignored, so it is difficult to detect malicious
network traffic that does not exhibit significant differences in flow patterns (e.g., SQL
injection). Second, most statistical features require a relative long period of monitoring time

Appl. Sci. 2021, 11, 7188. https://doi.org/10.3390/app11167188 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0121-5324
https://doi.org/10.3390/app11167188
https://doi.org/10.3390/app11167188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167188
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167188?type=check_update&version=1

Appl. Sci. 2021, 11, 7188 2 of 15

before they can be appropriately extracted, and thus they are usually used for representing
network traffic based on protocols such as TCP and UDP, and not suitable for malicious
network traffic detection from single HTTP requests. On the other hand, payload based
methods [8–15] detects malicious network traffic by analyzing the content of the packets
(e.g., URL, file path, request body, etc.), and thus they can be used for single HTTP request.
Therefore, these two types of detection methods can be used to complement each other. In
this paper, we focus on the payload based malicious HTTP traffic detection method.

Most state-of-the-art payload based methods adopt learning techniques for malicious
network traffic detection, including traditional machine learning techniques [8–11] and
deep learning techniques [12–16]. They train detection models by exploiting a corpus of
correctly labeled samples (including both normal and various types of malicious network
traffic samples), and then utilize the detection models for real-time malicious network
traffic detection. Although learning based methods could achieve high detection accu-
racy, they still suffer from the following problem: the learning techniques (especially the
deep learning techniques) require a large number of labeled samples to train the models.
However, it is very difficult to collect adequate labeled samples in practice, especially the
malicious network traffic samples. Although this problem could be alleviated by training
the detection models on a public dataset with a relatively large number of labeled samples
and then applying the trained models to the target systems, there is a significant pattern
shift between the samples collected from different systems (called the train-test gap prob-
lem), due to the unique characteristic of each individual system [17]. Applying the models
trained on the public dataset to a new system usually results in performance degradation.

To address the above problems, we propose DeepPTSD, a payload based malicious
HTTP traffic detection method based on deep transfer semi-supervised learning technique.
The main contributions of this paper are summarized as follows.

(1) We propose a deep learning framework for malicious HTTP traffic detection.
To ensure high generalization ability under the condition that the target system has very
limited number of labeled samples, we leverage the labeled samples of a public dataset to
train the initial detection model, and then fine-tune the initial detection model to adapt
to the target system based on a transfer semi-supervised learning model. To the best of
our knowledge, this is the first solution of combining deep learning with transfer learning
and semi-supervised learning for by augmenting the payload dataset malicious HTTP
traffic detection.

(2) We propose a HTTP payload data augmentation method based on a novel keyword
avoidance perturbation mechanism. To increase the diversity of the training samples,
we generate pseudo labeled samples by imposing noises to the original labeled HTTP
traffic samples while keeping the key portion unchanged. The pseudo labeled and original
labeled samples are then utilized collaboratively in the semi-supervised learning algorithm.

(3) We conduct cross-dataset validation on two real datasets to evaluate DeepPTSD.
The results show that DeepPTSD has competitive performance under the small data condition.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 details the proposed method. Section 4 reports the experiment results.
Section 5 concludes the paper.

2. Related work
2.1. Malicious Network Traffic Detection

The existing malicious network traffic detection methods could be divided into two
categories according to the exploited information, i.e., statistic based methods and payload
based methods. Statistic based methods extract flow based statistical features (e.g., duration
of flow, inter arrival time, number of packets, etc.) and apply rule based or machine
learning based techniques to detect malicious network traffic [1–5]. Although statistic
based methods could adapt to data privacy and encryption, they cannot detect malicious
network traffic that does not exhibit significant differences in flow patterns (e.g., SQL
injection). In addition, they require a relative long period of monitoring time to extract

Appl. Sci. 2021, 11, 7188 3 of 15

statistical features, so they are usually designed for network traffic based on protocols such
as TCP and UDP, and not suitable for malicious network traffic detection from single HTTP
requests. Payload based methods detect malicious network traffic by exploiting the content
of the packets (e.g., URL, file path, request body, etc.). Most state-of-the-art payload based
methods adopt traditional machine learning techniques and deep learning techniques for
malicious network traffic detection. Given a set of network traffic samples as training
data, learning based methods train a detection model, which could classify a new network
traffic sample as malicious or benign. The key factor for the learning based methods
is to extract good features to represent the network traffic samples. Traditional machine
learning techniques explore features from various aspects, including lexical features (e.g., N-
gram features, bag-of-word features, etc.) [8,9,18,19] and statistical semantic features (e.g.,
number of characters, number of parameters, count of sensitive keywords, etc.) [10,11,20].
However, these features should be manually designed based on domain knowledge and
require constant adjustment to accommodate changes in malicious network traffic patterns.

In recent years, thanks to the superior capability of automatically extracting represen-
tative features from raw data (especially the unstructured data), deep learning techniques
have been exploited for malicious network traffic detection [16]. For example, Saxe et al. [21]
proposed eXpose, which is a malicious payload detection model based on character-level
embedding and CNN (convolutional neural network). Park et al. [12] proposed a malicious
HTTP message detection model by using an autoencoder with character-level binary image
transformation. Peng et al. [13] proposed a joint approach of CNN, LSTM, and attention
mechanism to detect malicious HTTP traffic by exploiting character-level lexical features
and host features. However, character-level features cannot capture the latent semantics
of payloads, resulting in low generalization ability. Aiming at this problem, more recent
researches design detection model based on word-level features. For example, Yu et al. [22]
modeled a HTTP traffic sample as a natural language sequence under predefined vocab-
ulary using BiLSTM (bidirectional long short-term memory) with attention mechanism.
Le et al. [14] proposed URLNet, an end-to-end deep learning framework to learn a non-
linear URL embedding by applying CNN to both characters and words. Yang et al. [15]
designed a convolutional GRU (gated recurrent unit) for malicious URL detection based on
a predefined keyword library. However, deep learning techniques require a large number
of labeled samples to train the models, while it is almost impossible to collect adequate
labeled samples for each individual system, especially the malicious samples.

2.2. Small Data Learning

Small data learning is referred to the techniques designed to carry out learning on the
condition of lacking sufficient training samples [23], and the main strategies of small data
learning include data augmentation and knowledge transfer.

The data augmentation strategy attempts to compensate the training data by adding
slightly modified copies of the existing data or newly created synthetic data from the
existing data, with the purpose of reducing overfitting when training a learner [24–26].
On the other hand, knowledge transfer strategy tries to train a learner for the target
domain by leveraging knowledge from other domains, and could be divided into three
categories according to the types of transferred knowledge, i.e., representation transfer,
model transfer, and cognition knowledge transfer. Representation transfer attempts to
transfer the knowledge of representing the same object from different domains [27]. Model
transfer uses the learner trained from other domains to fit the small training data in the
target domain through fine-tuning its parameters [28,29]. Cognition knowledge transfer
leverages high-level knowledge such as common sense, domain knowledge, and other
concepts [30,31].

Small data learning is widely used in research areas such as computer vision and
natural language processing. In contrast, the application of small data learning in malicious
network traffic detection has been much more limited, especially when combined with

Appl. Sci. 2021, 11, 7188 4 of 15

deep learning. In our work, we propose a novel data augmentation scheme for payload
data, and design a small data learning framework based on the data augmentation scheme.

3. Methodology
3.1. Preliminary

First, we elaborate the data used for payload based malicious HTTP traffic detection.
Malicious information of web attacks is usually contained in the content of the request
URL (if a GET request is sent) or the request body (if a POST request is sent). If a HTTP
traffic sample is a GET request, its payload is the path of the URL. If a HTTP traffic sample
is a POST request, its payload is the path of the URL and the body of the request (i.e.,
the request parameters). To this end, a HTTP traffic sample s is defined as a tuple s = (x, y)
where x denotes the payload extracted from s (in the form of a string), and y denotes the
label of s (i.e., normal or the malicious type). Note that y is unknown if s is a testing sample.
We give an example of HTTP traffic sample in Example 1.

Example 1. Given a GET request with the URL as: http://www.test.com/scripts/index.php?id=1’
union select 1,2,3 from admin#, the obtained HTTP traffic sample is s = (x, y), where x is the path
of the URL (i.e., /scripts/index.php?id=1’ union select 1,2,3 from admin#) and y is SQL injection
(i.e., a type of malicious HTTP traffic).

Second, we define the problem in this paper as follows. Given a large public labeled
dataset DPU and a small dataset from the target system DTS (including both labeled and
unlabeled samples), the malicious HTTP traffic detection problem can be considered as
learning a mapping f : X → Y using DPU and DTS. For any unseen sample from the
target system sTS =

(
xTS, yTS), f

(
xTS) and yTS should be as similar as possible. Here, X

represents the input space and Y represents the set of labels.
Third, Figure 1 gives the architecture of DeepPTSD, which consists of three major

steps, i.e., model initialization, data augmentation, and transfer semi-supervised learning.
First, the model initialization step trains the initial model, with DPU as training data and
parameters being randomly initialized. Here, we treat malicious HTTP traffic detection as
a special text classification problem and utilize TextCNN as the underlying deep neural
network (detailed in Section 3.2). Second, the data augmentation step enhances the dataset
of the target system by generating a diverse set of samples from DTS. Here, we propose a
HTTP payload data augmentation method based on a keyword avoidance perturbation
mechanism for this task (detailed in Section 3.3). Third, the transfer semi-supervised learn-
ing step adapts the initial model to the target system by fine-tuning it on the augmented
dataset of DTS. In this paper, we use the same deep neural network (i.e., TextCNN) for
both the initial model and the model of the target system (i.e., target model). Here, we
design a learning framework by integrating a semi-supervised learning framework (i.e.,
the UDA framework detailed in Section 3.4) into a transfer learning structure, to leverage
the augmented samples.

In practice, the malicious HTTP payload detection model can be deployed as follows.
A user consults a web application and sends a request to the webserver. Before the request
arrives at the server, it will be processed by a WAF (Web Application Firewall), which takes
as input all the HTTP requests and processes them using the proposed malicious HTTP
payload detection model. If the request is malicious then it will be rejected automatically,
else it will be sent to the webserver.

Appl. Sci. 2021, 11, 7188 5 of 15

Figure 1. The architecture of DeepPTSD.

3.2. Model Initialization

The purpose of the model initialization step is to train the initial malicious HTTP
traffic detection model based on the public labeled dataset DPU.Since we focus on the
payload of single HTTP requests, and payload analysis task is similar with NLP (Natural
Language Processing) task [32], we treat malicious HTTP traffic detection as a special text
classification problem.

First, given a HTTP traffic sample s = (x, y), we have to segment x into discrete tokens
before inputting it into a text classifier. Unlike English sentences that can be naturally
segmented into words by space and punctuation, the payload of a HTTP traffic sample
is an integrated string. Although some studies used single characters [12,13] or N-gram
algorithm [8,19] to segment an integrated string, it would result in a large number of
tokens without semantic meanings. For instance, if we set N = 3, the N-gram algorithm
would segment the payload in Example 1 into many meaningless tokens (e.g., htt, est, cri),
which make it difficult for the text classifiers to learn real semantic patterns. Fortunately,
the payload of a HTTP traffic sample usually involves a variety of special characters (e.g.,
?, :, /). Therefore,

we use the 26 special characters in HTTP traffic (i.e., ’, ", <, >, +, -, _, *, =, {, }, (,), [,],
∼, /, \, #, :, ;, ?, !, -, and, @) as the basis for segmentation. We give an example of payload
segmentation in Example 2.

Example 2. The payload in Example 1 is segmented into http www test com scripts index php id
1 union select 1 2 3 from admin. It can be seen that tokens that have strong semantics related to
malicious behaviors (e.g., select, union) are correctly segmented.

Second, we apply TextCNN proposed in [33] to train the initial detection model,
since it shows a good balance between classification accuracy and training efficiency
for the text classification tasks. As shown in Figure 2, TextCNN is composed of four
sequentially stacked layers, i.e., an embedding layer, a convolutional layer, a pooling
layer, and an output layer. (1) The embedding layer is used to transform each discrete
token into a low-dimensional semantic vector, so that tokens with similar semantics would
be close in vector space. Here, we utilize word2vec [34] as the embedding technique.
Given a HTTP traffic sample s = (x, y), let the length of x be l and the dimension of the
semantic vectors be d, x can then be represented as an l × d matrix. Here, we denote the
semantic vector corresponding to the ith token in x as vi. Note that the payload would
be padded or truncated if it was shorter or longer than l. (2) The convolutional layer
uses multiple filters with different window sizes to extract feature maps. Specifically,
a filter with window size h × d is applied to each possible contiguous h tokens in x
(i.e., the concatenation of the semantic vectors vi, vi+1, . . . , vi+h−1, denoted as vi:i+h−1) to

Appl. Sci. 2021, 11, 7188 6 of 15

produce a feature value ci = ReLU(W · vi:i+h−1 + b), where W is the weight matrix and b
is the bias term. Thus, each filter would generate a feature vector c = [c1, c2, . . . , cl−h+1].
(3) The pooling layer applies a max-over-time pooling operation over each feature vector,
i.e., it takes the maximum value of the feature vector as the feature value corresponding to
the particular filter. Then, by concatenating the pooling results of all filters, we can obtain a
final feature vector with uniform length for different payloads (i.e., the length equals to
the number of filters). (4) The output layer accepts the final feature vector and output the
probability distribution over all the HTTP traffic types based on a fully connected operation.

Figure 2. The architecture of TextCNN.

3.3. Data Augmentation

Since the dataset of the target system DTS is usually limited in size and of low degree of
diversity, retraining or fine-tuning the initial detection model on such dataset would easily
lead to overfitting. Data augmentation is a process of generating more data with higher
degree of diversity by using the available limited data, so as to address the overfitting
issue [35].

Since payloads are in the form of textual data, it is intuitive to apply textual data
augmentation methods for the payload data augmentation task. The existing textual
data augmentation methods include back translation [36,37], word replacement [38,39],
and sentence generation [35,40] Back translation is a procedure of translating into another
language and then back to the original language. It can generate diverse paraphrases
while preserving the semantics of the original sentence. However, payloads are not human
language, and thus cannot be translated. Word replacement generates new sentences by
replacing selected words in the original sentence with new words, and the most intuitive
strategy is replacing with synonym. However, a large portion of tokens in payloads have
particular meaning. For example, if we replace “select” in the payload of Example 1 with
“choose”, the new payload /scripts/index.php?id=1’union choose 1,2,3 from admin# would
lose the ability of web attack, because “select” is a particular keyword for querying the
database. Sentence generation uses generative model such as VAE (variational autoencoder)
and GAN (generative adversarial network) to generate sentences from a latent space.
However, it is difficult to learn a conditional token distribution from the payloads, since
they do not have strong structure and grammar patterns as compared with the natural
human language.

Based on the above analysis, the existing textual data augmentation methods cannot
be directly used for payload data augmentation task. Aiming at this problem, we propose
a HTTP payload data augmentation method based on a keyword avoidance perturbation
mechanism. The idea is to add noises to the original payloads while keeping the particular
keywords unchanged. The proposed HTTP payload data augmentation method consists of
two steps, i.e., keyword mining and payload perturbation.

Appl. Sci. 2021, 11, 7188 7 of 15

Keyword mining: A simple approach is to manually build a keyword library for
HTTP payloads [12,14]. However, this approach has the following limitations. First, manual
building is tedious and costly, and it usually has a very low recall rate. Second, attackers
could use obfuscation operation to change the keywords in a payload into meaningless
substrings, in order to bypass the malicious keyword detection system. As shown in
Example 3, it is extremely difficult to manually collect these obfuscated keywords.

Example 3. The keywords “select” and “union” could be changed into “/*!50000%53elect*/”
and “uni%0bon”, respectively. Then, the payload in Example 1 can be transformed into:
http://www.test.com/scripts/index.php?id=1’ uni%0bon /*!50000%53elect*/ 1,2,3 from admin#.

Therefore, we use a TF-IDF based method for keyword mining. First, given a malicious
HTTP payload dataset MD and a benign HTTP payload dataset BD, where each payload
has been segmented based on the method in Section 3.2, we calculate the TF-IDF score
tis(w) for each token w based on Equation (1), where nMD(w) is the number of w in
MD, nMD is the number of all tokens in MD, and dj is the j th payload in BD. According
to Equation (1), a token that frequently appears in malicious payloads but seldom or never
appears in benign payloads would be given a high TF-IDF score. Second, for each token
w, if its TF-IDF score tis(w) is larger than a predefined threshold σ, it will be defined as a
keyword. Here, we give a partial of the mined keywords as follows: “script”, “cgi”, “bin”,
“path”, “cookie”, “cross”, “meta”, “select”, “where”, “from”, etc.

tis(w) =
nMD(w)

nMD
× log

|BD|∣∣{j : w ∈ dj
}∣∣+ 1

(1)

Payload perturbation: Once the keyword library is constructed, we generate new
payloads from the original payloads by retaining keywords and adding noises to the
uninformative tokens based on the rules in Table 1. Note that we adopt character-level
randomization rather than word-level replacement in Rule 4, because most tokens in the
payloads do not have natural language semantics (e.g., www, index, admin in the payload
of Example 1). We give an example of payload perturbation in Example 4.

Table 1. The rules of payload perturbation.

Rule 1 Keep all keywords in the keyword library unchanged.
Rule 2 Retain all the special characters (e.g., %, @, #).
Rule 3 Randomize each number in the range of [0,9].
Rule 4 Change each letter into a random letter.

Example 4. Suppose that the keyword library contained four keywords “union”, “select”, “from”,
and “scripts”, the payload in Example 1 could generate a new payload after perturbation as:
/scripts/raonb.bvp?br=7’ union select 4,7,2 from loogs#.

The dataset of the target system DTS includes a labeled dataset DTSL and an unlabeled
dataset DTSU. In practice, DTSL is usually of a very small size and DTSU is usually of a
relatively larger size. We perform payload data augmentation on both DTSL and DTSU. We
denote the generated labeled dataset and the generated unlabeled dataset as GDTSL and
GDTSU, respectively.

3.4. Transfer Semi-Supervised Learning

We transfer the initial detection model to the target system by fine-tuning it on
DTSL ∪DTSU ∪GDTSL ∪GDTSU. Here, fine-tuning is known as a process that copies the pa-
rameters of the initial model to initialize the corresponding part of the target model and then
the target model is retrained through backpropagation with target training samples [28].
The fine-tuning process is performed based on the proposed transfer semi-supervised learn-

Appl. Sci. 2021, 11, 7188 8 of 15

ing framework, which is designed by integrating a semi-supervised learning framework
into a transfer learning structure. We explain the details as follows.

First, the transfer learning structure is designed based on the idea proposed in [28].
The parameters of the initial model are copied to the target model. Then, the first n layers
of the target model are frozen, and then the parameters of the rest layers are retrained
based on the dataset of the target system. A frozen layer means that it does not change
during retraining. We explain the idea as follows. (1) We do not retrain all the layers, since
this would cause catastrophic forgetting, eliminating the knowledge of the initial model.
Especially, if the dataset of the target system is small, retraining all layers would easily
result in overfitting [41]. (2) We leave the last a few layers unfrozen, since they contain the
most specific knowledge that should be learnt from the target system [28]. For example,
if the public dataset and the dataset of target system have different types of malicious
HTTP traffic, the last layer of TextCNN (i.e., the output layer) is mandatory to be retrained.

Second, to better exploit the labeled and unlabeled samples from the target system,
we conduct the fine-tuning process in a semi-supervised learning style. In all the deep
semi-supervised learning styles, the smoothness enforcing method tries to regularize the
model’s prediction to be less sensitive to small perturbations [41–43]. The smoothness
enforcing method is the most suitable deep semi-supervised learning style for our problem,
since it is able to exploit all the labeled, unlabeled, and augmented samples. Specifically,
given an original sample so, the smoothness enforcing method creates a perturbed version
of so (denoted as sp

)
, and then trains the model to output similar predictions on so and sp.

In our problem, the payload data augmentation operation corresponds to the perturbation
operation of the smoothness enforcing method. To this end, we leverage and refine the UDA
framework proposed in [43] to perform the smoothness enforcing based semi-supervised
learning. Specifically, we fine-tune the initial model to minimize the loss function in
Equation (2), where LL

(
DTSL ∪ GDTSL) and UL

(
DTSU∪ GDTSU) denote the loss on labeled

datasets (i.e., DTSL and GDTSL) and unlabeled datasets (i.e., DTSU and GDTSU), λ is a
trade-off weight, pθ(x) denotes the predicted label distribution of sample x based on the
current model parameters θ, δ(x) is the real label distribution of sample x (i.e., a one-shot
vector where only the entry corresponding to the real label is 1), x∗ ∼ APL(x) represents
the augmented sample generated from sample x, and DKL(pθ(x)‖pe(x∗)) represents KL
divergence between pθ(x) and pθ(x∗).

L = LL
(

DTSL ∪ GDTSL
)
+ λ×UL

(
DTSU ∪ GDTSU

)
(2)

LL
(

DTSL ∪ GDTSL
)
= − ∑

x∈DTSL∪GDTSL

δ(x) · log pθ(x) (3)

UL
(

DTSU ∪ GDTSU
)
= ∑

x∈DTSU,x∗∼APL(x)∈GDTSU

DKL(pθ(x)‖pθ(x∗)) (4)

Finally, Figure 3 shows the structure of the proposed transfer semi-supervised learning
framework, and we summarize DeepPTSD in Algorithm 1.

Appl. Sci. 2021, 11, 7188 9 of 15

Figure 3. The proposed transfer semi-supervised learning framework.

Algorithm 1 DeepPTSD

Input: The public labeled dataset, DPU

The labeled dataset of the target system, DTSL

The unlabeled dataset of the target system, DTSU

The number of frozen layers, n
The trade-off weight, λ

Output: The detection model of the target system, TM
1: Train an initial TextCNN classifier (denoted as IM) with DPU

2: Generate an augmented dataset from DTSL (denoted as GDTSL)
3: Generate an augmented dataset from DTSU (denoted as GDTSU)
4: Initialize the TextCNN classifier of the target system (denoted as TM), by copying the

parameters of IM to TM
5: Freeze the first n layers of TM and retrain TM based on DTSL, DTSU, GDTSL, and GDTSU

by following Equation (2)

4. Experiment
4.1. Experiment Setup
4.1.1. Dataset

To conduct the experiments, we collected two raw datasets. One was an open dataset
from FSecurify [44], which contained a large number of HTTP requests to a WAF (web
application firewall). Only two types of HTTP requests were labeled (i.e., benign and mali-
cious), and thus it did not discriminate among different types of malicious HTTP requests.
The other one was collected from a honeypot server deployed by our lab during March,
2019. It contained 6465 HTTP traffic samples, including 879 benign samples, 614 SQL
injection samples, 4093 XSS samples, and 879 directory traversal samples. To balance the
data of different types, we resampled the above two raw datasets and form the following
two datasets.

(1) Dataset A: It contained 80,000 samples (including 40,000 benign samples and
40,000 malicious samples), which were randomly selected from the open dataset.

(2) Dataset B: It contained 800 samples (including 200 benign samples, 200 SQL
injection samples, 200 XSS samples, and 200 directory traversal samples), which were
randomly selected from the honeypot dataset.

4.1.2. Evaluation Strategy

First, the malicious HTTP traffic detection is essentially a classification problem. Thus,
we measured the performance based on three metrics, i.e., Precision, Recall, and F1-Measure.

Second, this paper focuses on cross-system malicious HTTP traffic detection problem.
Therefore, we treated Dataset A as the large public labeled dataset and Dataset B as the
small dataset of the target system. In addition, Dataset B was further divided into two
subsets, i.e., the labeled subset (called Subset BL) and the unlabeled subset (called Subset

Appl. Sci. 2021, 11, 7188 10 of 15

BU). Subset BL contained 200 samples (i.e., 50 samples for each type) and Subset BU
contained 600 samples (i.e., 150 samples for each type). To cope with different evaluation
scenarios, we designed the following two evaluation strategies.

(1) Strategy A: It corresponded to the standard training and testing strategy. Specifi-
cally, it trained the target model on Subset BL and tested it on Subset BU.

(2) Strategy B: It corresponded to the training and testing strategy for the small data
condition. Specifically, it trained the target model on Subset BL ∪ Subset BU (corresponding
to the semi-supervised learning scenario), Subset BL ∪ Dataset A (corresponding to the
transfer learning scenario), or Subset BL ∪ Subset BU ∪ Dataset A (corresponding to the
transfer semi-supervised learning scenario). Then, it tested the target model on Subset BU.

For both strategy A and strategy B, we adopted a four-fold-cross-validation proce-
dure, i.e., we randomly generated Subset BL and Subset BU four times and reported the
average performance.

4.1.3. Parameter Settings

Through a series of grid search experiment, we set the parameters of the proposed
method as follows. For the TextCNN in Section 3.2, we set the length of the input payload
l = 64 and the dimension of the word embeddings d = 32. We defined three window sizes
(i.e., h× d, h = 2, 3, and 4) for the convolutional filters. For the keyword mining algorithm
in Section 3.3, we set the TF-IDF score threshold σ = 0.5 based on a grid search experiment.
For the transfer semi-supervised learning framework in Section 3.4, we set the number
of frozen layers n = 2 and the trade-off weight of the loss function λ = 1 based on the
previous experiences.

4.2. Experiment 1: The Evaluation of Different Payload Segmentation Strategies

In this experiment, we tried to evaluate the effectiveness of the proposed payload
segmentation approach (abbreviated as SegAsWord) by comparing it with the following
two payload segmentation approaches, which were utilized in previous work.

(1) SegAsChar: It corresponded to the character-level payload segmentation approach [21].
(2) SegAsNGram: It corresponded to the approach that segments payloads based on the

character-level N-gram algorithm [9]. Here, we set N = 3.

Here, strategy A was used for evaluation and TextCNN is used as the classifier.
The experiment results are shown in Table 2. First, SegAsNGram outperforms SegAsChar.
It was intuitive that N-gram fragments could better capture the payload semantics than
single characters did. For example, if there was a 3-gram fragment “sel”, it was probably a
SQL injection payload with the keyword “select”, while it was almost impossible to draw a
reasonable conclusion if only a single character “s” was observed. However, although single
characters could not capture the payload semantics, the performance of SegAsChar was not
that bad. It is because that the convolution operation of TextCNN processed the adjacent
h characters in a filter, which could achieve a similar effect with character-level N-gram.
Second, it was also intuitive that SegAsWord outperformed SegAsNGram, because the
segmented keywords could capture the payload semantics in an explicit manner.

Table 2. The evaluation of the payload segmentation approaches.

SegAsChar SegAsNGram SegAsWord

Precision 0.7522 0.8134 0.8667
Recall 0.7893 0.8253 0.8722
F1-Measure 0.7703 0.8193 0.8694

Appl. Sci. 2021, 11, 7188 11 of 15

4.3. Experiment 2: Ablation Experiment

In the first experiment, we tried to evaluate the data augmentation module of DeepPTSD.
We compared the proposed payload data augmentation mechanism (abbreviated as Aug-
ByKeyword) with the following three variants of payload data augmentation mechanisms.

(1) NoAug: It corresponded to the variant that no payload data augmentation was
performed.

(2) RandomAug: It corresponded to the variant that the noises were added to all the
tokens without retraining the keywords. Note that the special characters (e.g., %, @, #)
were retained.

(3) AugByDic: It corresponded to the variant that the keywords needed to be retrained
were predefined in a dictionary instead of being extracted from the dataset.

Here, strategy A was used for evaluation and TextCNN was used as the classifier.
The experiment results are shown in Table 3. First, RandomAug had the worst performance
and it performed even worse than NoAug. It showed that adding randomized noises
without considering the keywords would not increase the diversity of the training samples
but even damaged the semantic integrity of the payloads. It verified the effectiveness of
the keyword avoidance perturbation mechanism. Second, AugByDic and AugByKeyword
outperformed NoAug. It demonstrated the necessity of the payload data augmentation
module. Third, AugByKeyword had only a sight advantage over AugByDic. However,
AugByDic required manual efforts for defining the dictionary, and thus AugByKeyword
had stronger scalability.

Table 3. The evaluation of the payload data augmentation module.

NoAug RandomAug AugByDic AugByKeyword

Precision 0.8667 0.8020 0.9012 0.9107
Recall 0.8722 0.7944 0.8847 0.8913
F1-Measure 0.8694 0.7982 0.8929 0.9009

In the second experiment, we tried to evaluate the transfer learning module and
the semi-supervised learning module. Given the five datasets DPU, DTSL, DTSU, GDTSL,
and GDTSU (specified in Algorithm 1), we compared the performance of the following
three variants of DeepPTSD.

(1) DeepPTSD_None: It referred to the standard deep learning model. Specifically, it
trained the target detection model on DTSL based on TextCNN (in Section 3.2).

(2) DeepPTSD_T: It referred to the transfer learning model with augmented labeled
data. Specifically, it trained the initial detection model on DPU, and fine-tuned it
on DTSL ∪ GDTSL to get the target detection model based on the transfer learning
structure (in Section 3.4). Here, the first two layers of the initial detection model were
frozen and we fine-tuned it to minimize the loss function in Equation (3).

(3) DeepPTSD_S: It referred to the semi-supervised learning model with augmented
labeled and unlabeled data. Specifically, it trained the target detection model on
DTSL ∪ GDTSL ∪ DTSU ∪ GDTSU based on the UDA framework (in Section 3.4).

Here, strategy A was used for evaluating DeepPTSD_None, while strategy B was
used for evaluating DeepPTSD, DeepPTSD_T, and DeepPTSD_S. All the methods were
tested on DTSU. The experiment results are shown in Table 4 to control sequence.
First, DeepPTSD_T outperformed DeepPTSD_None and DeepPTSD_S outperformed
AugByKeyword and DeepPTSD_None. It demonstrated that both the transfer learn-
ing module and the semi-supervised learning module contributed to the detection
model. As a result, DeepPTSD had the best performance. Second, AugByKeyword and
DeepPTSD_A outperformed DeepPTSD_T. It indicated that the data augmentation and
semi-supervised learning modules were more effective for the detection model than

Appl. Sci. 2021, 11, 7188 12 of 15

the transfer learning module. This result might be affected by the experiment dataset.
Transfer learning usually requires a very large source domain dataset to gain its power
(e.g., the pre-training language model such as BERT and GPT). When the source domain
dataset is limited, leveraging the unlabeled data and performing data augmentation
directly on target domain dataset could achieve better results.

Table 4. The evaluation of the payload data augmentation module.

DeepPTSD_None DeepPTSD_T DeepPTSD_S DeepPTSD

Precision 0.8667 0.9067 0.9223 0.9333
Recall 0.8722 0.8864 0.9207 0.9348
F1-Measure 0.8694 0.8964 0.9215 0.9340

4.4. Experiment 3: Comparison Experiment

To evaluate the competitive performance of DeepPTSD, we compared it with the
following five baselines.

(1) SVM_C: It corresponded to the character-level feature based method. Specifically, it
first segmented each HTTP traffic sample into characters, and built a feature vector to
reflect the character distribution based on VSM (vector space model). Then, it trained
a SVM (support vector machine) classifier based on the character feature vectors.

(2) SVM_W: It corresponded to the word-level feature based method [18]. Specifically, it
first segmented each HTTP traffic sample into words based on the approach proposed
in Section 3.2, and built a feature vector to reflect the word distribution based on VSM.
Then, it trained a SVM classifier based on the word feature vectors.

(3) CNN: It trained the detection model based on the TextCNN model [14]. Here, a HTTP
traffic sample was segmented based on the approach proposed in Section 3.2.

(4) RNN: It trained the detection model based on a BiLSTM model [22]. Here, a HTTP
traffic sample was also segmented based on the approach proposed in Section 3.2.

(5) AE: It corresponded to the autoencoder based method [12]. Specifically, it first trained
an autoencoder on DPU ∪DTSL ∪DTSU in an unsupervised manner to map each HTTP
traffic sample into a unified latent feature space. Then, it trained a MLP (multi-layer
perceptron) classifier based on the latent feature vectors.

Here, strategy A was used for evaluating SVM_C, SVM_W, CNN, and RNN, while
strategy B was used for evaluating AE and DeepPTSD. AE was trained on DPU, DTSL,
and DTSU, while DeepPTSD is trained on DPU, DTSL, DTSU, GDTSL, and GDTSU. AE can
be viewed as an alternative way to implement the transfer semi-supervised learning.
The experiment results are shown in Table 5 and the following tendencies can be discerned.
First, SVM_C had a far lower performance than SegAsChar and SVM_W. It indicated
that single characters could not capture the payload semantics. Although SegAsChar also
accepted single characters as input, the convolution operation of TextCNN could process
multiple adjacent characters in a filter. Second, CNN and RNN outperformed SVM_W.
It showed that deep learning based methods could extract more advanced features to
capture the payload semantics. Third, AE outperformed CNN and RNN. It verified the
effectiveness of the utilization of source domain data and unlabeled target domain data,
which could provide richer knowledge to improve the generalization ability of the detection
model when the labeled target domain data are insufficient. Finally, DeepPTSD had the
best performance. It showed that it could achieve a better performance by integrating
transfer learning, data augmentation, and semi-supervised learning.

Appl. Sci. 2021, 11, 7188 13 of 15

Table 5. The evaluation of the payload data augmentation module.

SVM_C SVM_W CNN RNN AE DeepPTSD

Precision 0.6103 0.8139 0.8667 0.8661 0.8936 0.9333
Recall 0.6324 0.7717 0.8722 0.8746 0.8816 0.9348
F1-Measure 0.6212 0.7922 0.8694 0.8703 0.8876 0.9340

5. Conclusions

In this paper, aiming at the huge training data collection cost and low cross-system
detection ability of the existing malicious HTTP traffic detection methods, we propose
DeepPTSD, a payload based malicious HTTP traffic detection method based on deep
transfer semi-supervised learning technique. It improves the generalization ability of the
detection model under the situation of insufficient training data by using two strategies.
The first is a transfer learning strategy, which learns generalized knowledge from a public
dataset and adapts the knowledge to the target system. The second is a semi-supervised
learning strategy, which performs data augmentation by using a keyword avoidance
perturbation mechanism and trains the detection model in a smoothness enforcing style by
exploiting all the labeled, unlabeled, and augmented target domain data. Through a series
of experiments based on real datasets, we demonstrate that DeepPTSD outperforms the
existing baselines when the training dataset is highly limited.

In the future, we will extend our work from the following directions. First, the dataset
used in the experiments only contains simple types of web attacks (e.g., SQL injection, XSS).
We will extend our method to detect advanced web attacks (e.g., webshell). Second, we will
fuse our method with statistic based method to detect encrypted malicious HTTP traffic.
Third, the malicious HTTP traffic detection is treated as a text classification task, and only
the payload data in the form of string are considered in the detection model. In the future,
we will extend our method to accommodate other elements of the HTTP protocol (e.g.,
request header, response header, etc.). Fourth, we will study the anomaly detection based
method for the malicious HTTP traffic detection problem, in case no malicious samples
are available.

Author Contributions: Methodology, M.L.; Software, Y.C. and G.H.; Supervision, T.C.; Writing—review
and editing, T.Z., T.W. and Z.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Joint Funds of the National Natural Science Foundation
of China (No. U1936215), Science Foundation of China (No. 62002324), Zhejiang Provincial Natural
Science Foundation of China (No. LQ21F020016), Primary R&D Plan of Zhejiang Province (No.
2021C01117), the Innovative Development of the Industrial Internet Project (No. TC200H01V), and
Innovative Leading Talent Project of Zhejiang Province (No. 2020R52001).

Data Availability Statement: The data can be found at https://github.com/faizann24/Using-
machine-learning-to-detect-malicious-URLs, accessed on 28 July 2021.

Acknowledgments: This work was supported by the Joint Funds of the National Natural Science
Foundation of China (No. U1936215), the Natural Science Foundation of China (No. 62002324),
the Zhejiang Provincial Natural Science Foundation of China (Nos. LQ21F020016, LY20F020027),
the Primary Research and Development Plan of Zhejiang Province (No. 2021C01117), the Innovative
Development of the Industrial Internet Project (No. TC200H01V), and the Wenzhou Key Scientific
and Technological Project (No. ZG2020031).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/faizann24/Using-machine-learning-to-detect-malicious-URLs
https://github.com/faizann24/Using-machine-learning-to-detect-malicious-URLs

Appl. Sci. 2021, 11, 7188 14 of 15

References
1. Rotsos, C.; Van Gael, J.; Moore, A.W.; Ghahramani, Z. Probabilistic graphical models for semi-supervised traffic classification. In

Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, Caen, France, 28 June–2 July
2010; pp. 752–757.

2. Jadidi, Z.; Muthukkumarasamy, V.; Sithirasenan, E.; Singh, K. Flow-based anomaly detection using semisupervised learning. In
Proceedings of the 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, QLD,
Australia, 14–16 December 2015; pp. 1–5.

3. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of encrypted and vpn traffic using time-
related. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy,
19–21 February 2016; pp. 407–414.

4. Bapat, R.; Mandya, A.; Liu, X.; Abraham, B.; Brown, D.E.; Kang, H.; Veeraraghavan, M. Identifying malicious botnet traffic using
logistic regression. In Proceedings of the 2018 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville,
VA, USA, 27 April 2018; pp. 266–271.

5. Shekhawat, A.S.; Di Troia, F.; Stamp, M. Feature analysis of encrypted malicious traffic. Expert Syst. Appl. 2019, 125, 130–141.
[CrossRef]

6. Zhenqi, W.; Xinyu, W. Netflow based intrusion detection system. In Proceedings of the 2008 International Conference on
Multimedia and Information Technology, Yichang, China, 30–31 December 2008; pp. 825–828.

7. Nguyen, T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv.
Tutor. 2008, 10, 56–76. [CrossRef]

8. Machlica, L.; Bartos, K.; Sofka, M. Learning detectors of malicious web requests for intrusion detection in network traffic.
arXiv 2017, arXiv:1702.02530.

9. Verma, R.; Das, A. What’s in a url: Fast feature extraction and malicious url detection. In Proceedings of the 3rd ACM on
International Workshop on Security and Privacy Analytics, Scottsdale, AZ, USA, 24 March 2017; pp. 55–63.

10. Liu, C.; Wang, L.; Lang, B.; Zhou, Y. Finding effective classifier for malicious URL detection. In Proceedings of the 2018 2nd
International Conference on Management Engineering, Software Engineering and Service Sciences, Wuhan, China, 13–15 January
2018; pp. 240–244.

11. Patgiri, R.; Katari, H.; Kumar, R.; Sharma, D. Empirical study on malicious URL detection using machine learning. In Proceedings
of the International Conference on Distributed Computing and Internet Technology; Springer: Cham, Switzerland, 2019; pp. 380–388.

12. Park, S.; Kim, M.; Lee, S. Anomaly detection for HTTP using convolutional autoencoders. IEEE Access 2018, 6, 70884–70901.
[CrossRef]

13. Peng, Y.; Tian, S.; Yu, L.; Lv, Y.; Wang, R. A joint approach to detect malicious URL based on attention mechanism. Int. J. Comput.
Intell. Appl. 2019, 18, 1950021. [CrossRef]

14. Le, H.; Pham, Q.; Sahoo, D.; Hoi, S.C. URLNet: Learning a URL representation with deep learning for malicious URL detection.
arXiv 2018, arXiv:1802.03162.

15. Yang, W.; Zuo, W.; Cui, B. Detecting malicious urls via a keyword-based convolutional gated-recurrent-unit neural network.
IEEE Access 2019, 7, 29891–29900. [CrossRef]

16. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

17. Wang, C.; Guan, X.; Qin, T.; Wang, P.; Tao, J.; Meng, Y.; Liu, J. Addressing the train–test gap on traffic classification combined
subflow model with ensemble learning. Knowl. Based Syst. 2020, 204, 106192. [CrossRef]

18. Ma, J.; Saul, L.K.; Savage, S.; Voelker, G.M. Beyond blacklists: Learning to detect malicious web sites from suspicious URLs.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France,
28 June–1 July 2009; pp. 1245–1254.

19. Yang, J.; Wang, L.; Xu, Z. A novel semantic-aware approach for detecting malicious web traffic. In Proceedings of the International
Conference on Information and Communications Security; Springer: Cham, Switzerland, 2017; pp. 633–645.

20. Yang, J.; Yang, P.; Jin, X.; Ma, Q. Multi-classification for malicious URL based on improved semi-supervised algorithm. In
Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 1, pp. 143–150.

21. Saxe, J.; Berlin, K. eXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file
paths and registry keys. arXiv 2017, arXiv:1702.08568.

22. Yu, Y.; Liu, G.; Yan, H.; Li, H.; Guan, H. Attention-based Bi-LSTM model for anomalous HTTP traffic detection. In Proceedings of
the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, China, 21–22 July
2018; pp. 1–6.

23. Li, Z.; Yao, H.; Ma, F. Learning with Small Data. In Proceedings of the 13th International Conference on Web Search and Data
Mining, Houston, TX, USA, 3–7 February 2020; pp. 884–887.

24. Long, Y.; Liu, L.; Shen, F.; Shao, L.; Li, X. Zero-shot learning using synthesised unseen visual data with diffusion regularisation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2498–2512. [CrossRef]

25. Antoniou, A.; Storkey, A.; Edwards, H. Data augmentation generative adversarial networks. arXiv 2017, arXiv:1711.04340.

http://doi.org/10.1016/j.eswa.2019.01.064
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1109/ACCESS.2018.2881003
http://dx.doi.org/10.1142/S1469026819500214
http://dx.doi.org/10.1109/ACCESS.2019.2895751
http://dx.doi.org/10.3390/app9204396
http://dx.doi.org/10.1016/j.knosys.2020.106192
http://dx.doi.org/10.1109/TPAMI.2017.2762295

Appl. Sci. 2021, 11, 7188 15 of 15

26. Chen, Z.; Fu, Y.; Zhang, Y.; Jiang, Y.G.; Xue, X.; Sigal, L. Semantic feature augmentation in few-shot learning. arXiv 2018,
arXiv:1804.05298.

27. Ramachandram, D.; Taylor, G.W. Deep multimodal learning: A survey on recent advances and trends. IEEE Signal Process. Mag.
2017, 34, 96–108. [CrossRef]

28. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
29. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
30. Davis, E.; Marcus, G. Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 2015,

58, 92–103. [CrossRef]
31. Stewart, R.; Ermon, S. Label-free supervision of neural networks with physics and domain knowledge. In Proceedings of the

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.
32. Fang, Y.; Xu, Y.; Jia, P.; Huang, C. Providing Email Privacy by Preventing Webmail from Loading Malicious XSS Payloads. Appl.

Sci. 2020, 10, 4425. [CrossRef]
33. Kim, Y. ConvolutionalNeuralNetworksforSentence Classification. arXiv 2014, arXiv:1408.5882.
34. Google. Word2vec. 2013. Available online: https://code.google.com/p/word2vec/ (accessed on 28 February 2021)
35. Qiu, S.; Xu, B.; Zhang, J.; Wang, Y.; Shen, X.; de Melo, G.; Long, C.; Li, X. EasyAug: An automatic textual data augmentation

platform for classification tasks. In Companion Proceedings of the Web Conference 2020; ACM: New York, NY, USA, 2020;
pp. 249–252.

36. Silfverberg, M.; Wiemerslage, A.; Liu, L.; Mao, L.J. Data augmentation for morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, Vancouver, BC, Canada, 3–4 August 2017;
pp. 90–99.

37. Yu, A.W.; Dohan, D.; Luong, M.T.; Zhao, R.; Chen, K.; Norouzi, M.; Le, Q.V. Qanet: Combining local convolution with global
self-attention for reading comprehension. arXiv 2018, arXiv:1804.09541.

38. Kobayashi, S. Contextual augmentation: Data augmentation by words with paradigmatic relations. arXiv 2018, arXiv:1805.06201.
39. Wei, J.; Zou, K. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. arXiv 2019,

arXiv:1901.11196.
40. Zhang, Y.; Gan, Z.; Carin, L. Generating text via adversarial training. In NIPS Workshop on Adversarial Training; Academia.edu:

San Francisco, CA, USA, 2016; Volume 21, pp. 21–32.
41. Miyato, T.; Maeda, S.i.; Koyama, M.; Ishii, S. Virtual adversarial training: A regularization method for supervised and semi-

supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1979–1993. [CrossRef] [PubMed]
42. Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised

deep learning results. arXiv 2017, arXiv:1703.01780.
43. Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.T.; Le, Q.V. Unsupervised data augmentation for consistency training. arXiv 2019,

arXiv:1904.12848.
44. FSecurify. Using-Machine-Learning-to-Detect-Malicious-URLs. 2017. Available online: http://fsecurify.com/using-machine-

learning-detect-malicious-urls/ (accessed on 31 January 2021).

http://dx.doi.org/10.1109/MSP.2017.2738401
http://dx.doi.org/10.1145/2701413
http://dx.doi.org/10.3390/app10134425
https://code.google.com/p/word2vec/
http://dx.doi.org/10.1109/TPAMI.2018.2858821
http://www.ncbi.nlm.nih.gov/pubmed/30040630
http://fsecurify.com/using-machine-learning-detect-malicious-urls/
http://fsecurify.com/using-machine-learning-detect-malicious-urls/

	Introduction
	Related work
	Malicious Network Traffic Detection
	Small Data Learning

	Methodology
	Preliminary
	Model Initialization
	Data Augmentation
	Transfer Semi-Supervised Learning

	Experiment
	Experiment Setup
	Dataset
	Evaluation Strategy
	Parameter Settings

	Experiment 1: The Evaluation of Different Payload Segmentation Strategies
	Experiment 2: Ablation Experiment
	Experiment 3: Comparison Experiment

	Conclusions
	References

