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Abstract: Applying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle
model with variable-temperature heat reservoirs is established, the expressions of power (P) and
efficiency (η) are derived. By numerical calculations, the characteristic relationships among P and η

and the heat conductance distribution (uL) of the heat exchangers, as well as the thermal capacity
rate matching (Cw f 1/CH) between working fluid and heat source are studied. The results show that
when the heat conductances of the hot- and cold-side heat exchangers (UH , UL) are constants, P-η
is a certain “point”, with the increase of heat reservoir inlet temperature ratio (τ), UH , UL, and the
irreversible expansion efficiency (ηe), P and η increase. When uL can be optimized, P and η versus
uL characteristics are parabolic-like ones, there are optimal values of heat conductance distributions
(uLP(opt), uLη(opt)) to make the cycle reach the maximum power and efficiency points (Pmax, ηmax).
As Cw f 1/CH increases, Pmax-Cw f 1/CH shows a parabolic-like curve, that is, there is an optimal value
of Cw f 1/CH ((Cw f 1/CH)opt) to make the cycle reach double-maximum power point ((Pmax)max); as

CL/CH , UT , and ηe increase, (Pmax)max and (Cw f 1/CH)opt increase; with the increase in τ, (Pmax)max

increases, and (Cw f 1/CH)opt is unchanged.

Keywords: finite-time thermodynamics; irreversible steady-flow Lenoir cycle; cycle power; thermal
efficiency; heat conductance distribution; thermal capacity rate matching

1. Introduction

As a further extension of traditional irreversible process thermodynamics, finite-time
thermodynamics (FTT) [1–11] has been applied to analyze and optimize performances of
actual thermodynamic cycles, and great progress has been made. FTT has been applied in
micro- and nano-cycles [12–15], thermoelectric devices [16,17], thermionic devices [18,19],
gas turbine cycles [20–22], internal combustion cycles [23,24], cogeneration plants [25,26],
thermoradiative cell [27], chemical devices [28,29], and economics [30,31].

According to the nature of the cycle, the researched heat engine (HEG) cycles include
steady flow cycles [32–37] and reciprocating cycles [38–48]. For the steady flow HEG cycle,
considering the temperature change of the heat reservoir (HR) can make the cycle closer to
the actual working state of the HEG, therefore, some scholars have studied the steady flow
cycles with variable temperature HR [49–53].

The Lenoir cycle (LC) model [54] was proposed by Lenoir in 1860. From the perspec-
tive of the cycle process, the LC lacks a compression process. It looks like a triangle in
the cycle T-s diagram. It is a typical atmosphere pressure compression HEG cycle, the
compression process required by the HEG during operation is realized by atmosphere
pressure and it can be used in aerospace, ships, vehicles, and power plants in engineering
practice. Georgiou [55] first used classical thermodynamics to study the steady flow Lenoir
cycle (SFLC) and compared its performance with that of a steady flow Carnot cycle.
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Compared to the classical thermodynamics, the finite time process of the finite rate
heat exchange (HEX) between the system and the environment and the finite size device
are considered in the FTT [1–11,56–59], therefore, the result obtained is closer to the actual
HEG performance

Considering the heat transfer loss, Shen et al. [60] established an endoreversible
SFLC model with constant-temperature HRs by applying FTT theory, analyzed the influ-
ences of HR temperature ratio and total heat conductance (HTC) on the power output
(P) and efficiency (η) characteristics, and obtained the maximum P and maximum η and
the corresponding optimal HTC distributions. Based on the NSGA-II algorithm, Ah-
madi et al. [61] optimized the ecological performance coefficient and thermoeconomic
performance of the endoreversible SFLC with constant-temperature HRs. Based on the
Ref. [60], Wang et al. [62] further considered the internal irreversibility loss, established the
irreversible SFLC model and optimized its P and η performance.

The above-mentioned were all studies on the SFLC with constant temperature HR.
Based on Refs. [60–62], an irreversible SFLC with a variable temperature HR will be
established in this paper, and the influence of internal irreversibility, HR inlet temperature
ratio, thermal capacity rate (TCR) matching, and total HTC on cycle performance will
be studied.

2. Cycle Model and Thermodynamic Performance

Figure 1 shows the T-s diagram of an irreversible variable temperature HR SFLC.
Process 1→ 2 (3→ 1) is a constant volume (pressure) endothermic (exothermic) one, and
process 2→ 3 is an irreversible expansion one (2→ 3s is the corresponding isentropic one).
Assuming the cycle working fluid is an ideal gas, as well as the inlet (outlet) temperature
of the hot- and the cold-side fluid are THin(THout) and TLin(TLout).
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The irreversible expansion efficiency (ηe) is defined as [41,44,46,51]:

ηe =
T2 − T3

T2 − T3s
(1)
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Assuming the heat transfer between the working fluid and HR obeys the law of
Newton heat transfer, according to the ideal gas properties and the theory of HEX, the
cycle heat absorption and heat release rates are, respectively:

QH = Cw f 1(T2 − T1) = CHminEH1(THin − T1) (2)

QL = Cw f 2(T3 − T1) = CLminEL1(T3 − TLin) (3)

where CH(CL) and Cw f 1(Cw f 2) are heat source and working fluid TCRs (Cw f 1 =
.

mCv,
Cw f 2 =

.
mCP = kCw f 1), respectively,

.
m is the working fluid mass flow rate, Cv(CP) is the

constant volume (pressure) specific heat, k is the specific heat ratio. EH1 and EL1 are the
effectiveness of hot- and cold-side HEXs, respectively:

EH1 =
1− e−NH1(1−CHmin/CHmax)

1− (CHmin/CHmax)e−NH1(1−CHmin/CHmax)
(4)

EL1 =
1− e−NL1(1−CLmin/CLmax)

1− (CLmin/CLmax)e−NL1(1−CLmin/CLmax)
(5)

where NH1 and NL1 are the heat transfer unit number of the two HEXs, CHmax(CHmin) is
the larger (smaller) of CH and Cw f 1, and CLmax(CLmin) is the larger (smaller) of CL and
kCw f 1. Their expressions are, respectively:

NH1 =
UH

CHmin
(6)

NL1 =
UL

CLmin
(7)

CHmax = max
{

CH , Cw f 1

}
, CHmin = min

{
CH , Cw f 1

}
(8)

CLmax = max
{

CL, kCw f 1

}
, CLmin = min

{
CL, kCw f 1

}
(9)

According to the second law of thermodynamics, one obtained:

T2

T1
= (

T3s

T1
)

k
(10)

From Equations (2) and (3), the expressions of T2 and T3 are, respectively:

T2 =
CHmin

Cw f 1
EH1(THin − T1) + T1 (11)

T3 =
CLminEL1TLin − kCw f 1T1

CLminEL1 − kCw f 1
(12)

From Equations (1) and (10)–(12), the expression of T1 can be obtained as:

T1 =
[(CLminELTLin − Cw f 2T1)/(CLminEL − Cw f 2)] + [(CHmin/Cw f 1)EH(THin − T1) + T1](ηe − 1)

[(CHmin/Cw f 1)EH(THin − T1) + T1]
1
k T1
− 1

k ηe

(13)

From to Equations (2), (3), and (11)–(13), the expressions of P and η can be obtained as:

P = QH −QL =
CHminEH1(THin − T1)(CLminEL1 − kCw f 1)− kCLminEL1Cw f 1(TLin − T1)

CLminEL1 − kCw f 1
(14)
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η = P/
.

QH =
CHminEH1(THin − T1)(CLminEL1 − kCw f 1)− kCLminEL1Cw f 1(TLin − T1)

CHminEH1(CLminEL1 − kCw f )(THin − T1)
(15)

When ηe = 1, substituting into Equation (13), the expression of T1 for an endore-
versible SFLC with variable temperature HR can be obtained as:

T1 =
(CLminEL1TLin − kCw f 1T1)

(CLminEL1 − kCw f 1)
{
[(CHminEH1/Cw f 1)(THin − T1) + T1]

1
k T1
− 1

k

} (16)

Combining Equations (4)–(9) and (14)–(16), by the numerical solution, the relationship
between the P and η characteristics of the variable temperature HR endoreversible SFLC
can be obtained.

Substituting CH = CL → ∞ into Equations (4), (5) and (13)–(15) yields the expressions
of the effectiveness of the two HEXs, P, η, and T1 for an irreversible SFLC with constant
temperature HR [62]:

EH = 1− exp(−NH) (17)

EL = 1− exp(−NL) (18)

T1 =
EHTH(ηe − 1) + (T1 − ELTL)/(1− EL){

(1− EH)(1− ηe) + {[EHTH + (1− EH)T1]/T1}
1
k ηe

} (19)

P =
.

Q1→2 −
.

Q3→1 =
.

mCv[EH(TH − T1)−
kEL(T1 − TL)

1− EL
] (20)

η = P/
.

Q1→2 = 1− kEL(T1 − TL)

EH(1− EL)(TH − T1)
(21)

When ηe = 1 and CH = CL → ∞ , all of the expressions become the results of an
endoreversible SFLC with constant temperature HR [60].

3. Numerical Examples and Discussions
3.1. Cycle Performance Analysis When the HTC of Hot- and Cold-Side HEXs Is Constant

Determining the relevant parameters according to the Refs. [53,60–62]:
Cv = 0.7165 kJ/(kg · K),

.
m = 1.1165 kg/s, TL = 300K, CH = CL = 1.2, k = 1.4, and

ηe = 0.92.
Because the LC lacks an adiabatic compression process, it is a three-branch cycle, miss-

ing constraints on cycle pressure ratio, and the basic optimization relationship between P
and η cannot be obtained. When UH and UL are given, it can be seen from Equations (4)–(7)
and (13)–(15), when the corresponding effectiveness of HEXs and HR inlet temperature
are given, the cycle P and η can be obtained as a certain point. Figure 2 shows the P-η
characteristic of the cycle. It can be seen that when EH1 and EL1 take 0.8 and 0.9, as well
as the HR inlet temperature ratio τ (τ = THin/TLin) are 3.25 and 3.75, respectively, the
corresponding P-η show a “point” change. Parameters UH , UL, τ and ηe have significant
effects on P and η. When UH , UL, τ, and ηe increase, P and η increase. When ηe changes
from 0.75 to 1, P and η increase by about 639.3 and 632.2%, respectively.
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3.2. Cycle Performance Optimization When the HTC Distributions of the Two HEXs Can
Be Optimized

Assuming that the sum of the HTCs of the two HEXs are a constant value:

UL + UH = UT (22)
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UH = (1− uL)UT , UL = uLUT (23)

where uL = UL/UT and 0 < uL < 1. Combining Equations (4)–(7), (22) and (23), EH1 and
EL1 expressions are, respectively:

EH1 =
1− e−[(1−uL)UT/CHmin](1−CHmin/CHmax)

1− (CHmin/CHmax)e−[(1−uL)UT/CHmin](1−CHmin/CHmax)
(24)

EL1 =
1− e−(uLUT/CLmin)(1−CLmin/CLmax)

1− (CLmin/CLmax)e−(uLUT/CLmin)(1−CLmin/CLmax)
(25)

Combining Equations (13)–(15) and (24)–(25), the relationships between P and η versus
uL of the irreversible SFLC with variable temperature HR can be obtained.

Figures 3 and 4 show the P and η versus uL characteristics when uL can be optimized.
The two figures show that the characteristics of P-uL and η-uL are parabolic-like ones,
that is, there are maximum P (Pmax) and maximum η (ηmax) as well as the corresponding
optimal HTC distributions (uLP(opt) and uLη(opt)).
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Figures 5–8 show the influences of τ, UT , and ηe on Pmax, ηmax, uLP(opt), and uLη(opt).
It can be seen from Figures 5 and 6, when τ is fixed and as UT increases, Pmax and ηmax
increase, uLP(opt) and uLη(opt) first increase and then decrease; when UT is fixed and as τ
increases, Pmax, ηmax, uLP(opt), and uLη(opt) increase; according to Figures 7 and 8, with the
increases of ηe, Pmax, and ηmax increase, uLP(opt) and uLη(opt) decrease.
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3.3. TCR Matching Optimization

Setting CH = 1.2, τ = 3.25, UT = 5 kW/K, and CL/CH = 1, and taking P as the
objective function and uL as the optimization variable, the influences of HR TCR ratio
(CL/CH), UT and τ on the characteristics of Pmax-Cw f 1/CH were studied.

Figures 9–12 show the influences of the CL/CH , UT , τ and ηe on the characteristics of
Pmax-Cw f 1/CH . It can be seen that with the increases of Cw f 1/CH , Pmax-Cw f 1/CH shows
a parabolic-like change that first increases and then decreases, that is, there is an opti-
mal Cw f 1/CH((Cw f 1/CH)opt) which makes the cycle reach double-maximum power point

((Pmax)max).
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0.49, 0.52, and 0.54, respectively. CL/CH increases from 1 to 5, (Pmax)max increases by about
22.5%, (Cw f 1/CH)opt increases by about 28.6%.

Figure 10 shows the influence of UT on the characteristics of Pmax-Cw f 1/CH . When UT
increases, (Pmax)max and (Cw f 1/CH)opt increase. When UT takes 2.5, 5, 7.5, and 10 kW/K,

(Pmax)max are 20.84, 33.78, 42.44, and 48.56 kW, and (Cw f 1/CH)opt is 0.27, 0.42, 0.50, and

0.56, respectively. When UT increases from 2.5 to 10 kW/K, (Pmax)max and (Cw f 1/CH)opt
increase by about 133.01% and 107.4%, respectively.

Figure 11 shows the influence of τ on the characteristics of Pmax-Cw f 1/CH . When τ
increases, (Pmax)max increases and (Cw f 1/CH)opt is unchanged. When τ takes 3.25, 3.5,

3.75, and 4, (Pmax)max is 33.78, 40.58, 47.75, and 55.25 kW, respectively, and (Cw f 1/CH)opt
is 0.42. When τ increases from 3.25 to 4, (Pmax)max increases by about 63.6%.

Figure 12 shows the influence of ηe on the characteristics of Pmax-Cw f 1/CH . When
ηe increases, (Pmax)max and (Cw f 1/CH)opt increase. When ηe takes 0.85, 0.9, 0.95, and 1,

(Pmax)max is 22.06, 30.36, 39.01, and 47.97 kW, (Cw f 1/CH)opt is 0.38, 0.41, 0.43, and 0.46,

respectively. When ηe increases from 0.85 to 1, (Pmax)max increases by about 117.5%, and
(Cw f 1/CH)opt increases by about 21.1%.

4. Conclusions

In this paper, an irreversible SFLC model with variable temperature HR is established
by applying FTT theory, the expressions of P and η are derived, and the influences of UT ,
τ, CL/CH , ηe, and Cw f 1/CH on P and η performances are analyzed. The results show that:

(1) When UH and UL are constants, P-η is a certain “point”, and with the increases in τ, UH , UL,
and ηe, P and η increase. When uL can be optimized, P and η versus uL characteristics are
parabolic-like ones, there are uLP(opt) and uLη(opt) which makes the cycle reach Pmax and ηmax.

(2) With the increase of Cw f 1/CH , Pmax-Cw f 1/CH show a parabolic-like change, there is an
(Cw f 1/CH)opt, which makes the cycle reach (Pmax)max. With the increases in CL/CH , UT , and

ηe, (Pmax)max and (Cw f 1/CH)opt increase. With the increases in τ, (Pmax)max increases, and

(Cw f 1/CH)opt is unchanged.

(3) Internal irreversibility and variable temperature HR are two general properties of practical
cycles. It is necessary to study their influences on the cycle performance. FTT is a powerful
theoretical tool for thermodynamic cycles with those properties.
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Nomenclature

CP specific heat at constant pressure (kJ/(kg ·K))
Cv specific heat at constant volume (kJ/(kg ·K))
E effectiveness of heat exchanger
k specific heat ratio (-)
.

m mass flow rate of the working fluid (kg/s)
N number of heat transfer units
P cycle power (kW)
.

Q quantity of heat transfer rate (kW)
T temperature (K)
U heat conductance (kW/K)
UT total heat conductance (kW/K)
u heat conductance distribution
Greek symbols
τ heat reservoirs inlet temperature ratio
η cycle thermal efficiency
Subscripts
H hot-side
L cold-side
max maximum value
opt optimal
P maximum power point
η maximum thermal efficiency point
1-3, 3s cycle state points

Abbreviations

FTT finite-time thermodynamic
HEG heat engine
HEX heat exchanger
HR heat reservoirs
HTC heat conductance
LC Lenoir cycle
SFLC steady flow Lenoir cycle
TCR thermal capacity rate
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