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Abstract: Flow-induced vibration (FIV) is a phenomenon in which the flow passing through a
structure exerts periodic forces on the structure. Most studies on FIVs focus on suppressing this
phenomenon. However, the Marine Renewable Energy Laboratory (MRELab) at the University of
Michigan, USA, has developed a technology called the vortex-induced vibration for aquatic clean
energy (VIVACE) converters that reinforces FIV and converts the energy in tidal currents to electrical
energy. This study introduces the experimental data of the VIVACE converter and the associated
method using deep neural networks (DNNs) to predict the dynamic responses of the converter.
The DNN was trained and verified with experimental data from the MRELab, and the findings
show that the amplitudes and frequencies of a single cylinder in the FIV predicted by the DNN
under various test conditions were in good agreement with the experimental data. Finally, based
on both the predicted and experimental data, the optimal power envelope of the VIVACE converter
was generated as a function of the flow speed. The predictions using DNNs are expected to be
more accurate as they can be trained with more experimental data in the future and will help to
substantially reduce the number of experiments on FIVs.

Keywords: deep learning; flow-induced vibration (FIV); renewable energy; dynamic response

1. Introduction

Interest in marine renewable energy has gradually been increasing worldwide, and
various marine technologies have been developed for commercialization of the energy
generated thereof. With more than 70% of the Earth’s surface covered by water, signifi-
cant amounts of potential energy are stored in storm surges, sea waves, and resources in
the form of heat and salts in the ocean. However, most marine renewable energy tech-
nologies have not yet been commercialized because of their low efficiencies and high
cost of power generation compared to conventional fossil fuels. Recently, marine power
generation technologies have been developed specifically for commercialization [1]. The
vortex induced vibration for aquatic clean energy (VIVACE) converter, a marine renewable
energy technology, converts the hydrokinetic energy in water to electrical energy [2]. The
VIVACE converter was invented and patented by the Marine Renewable Energy Labo-
ratory (MRELab) at the University of Michigan and was developed based on the simple
idea of maintaining and enhancing vortex-induced vibrations (VIVs) while maximizing
flow-induced vibration (FIV), rather than suppressing them. Several lab-scale converters
have been built and tested in the low-turbulence free surface water (LTFSW) channel at the
MRELab since 2005 [2]. The research team has been investigating methods to improve the
power output of the converter by enhancing the FIVs of multiple cylinders over a wide
range of flow speeds. For this study, the MRELab provided the experimental data of a
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single-cylinder converter to train our deep neural network (DNN) to predict the dynamic
responses and power outputs of the converter.

FIVs are caused in various structures, such as bridges, buildings, and offshore struc-
tures resulting from fluid flows. One of the most common types of FIVs is the VIV, which
was first observed by Leonardo da Vinci in 1504 [3].

VIV is generally caused by alternate vortex shedding on both sides of the cylinder like
Figure 1, which causes periodic lift forces to act on the cylinder. Galloping is another type
of FIV that has a lower frequency and a larger amplitude compared to VIV and is caused
by the asymmetric motions of the shear layers. Galloping is a more powerful phenomenon
than VIV and can occur for a cylinder with noncircular cross sections above a certain critical
flow speed. The amplitude of the galloping continues to increase with the flow velocity
until the structure is destroyed. In general, as the flow velocity increases, VIVs occur
first, followed by galloping. Because of the destructive nature of FIVs in structures, most
researchers have focused on its suppression. In 2006, however, the MRELab research team
developed the VIVACE converter, where the kinetic energy of the fluid could be converted
to electrical energy by enhancing and controlling the FIVs [4–6].
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Figure 1. Schematic of the vortex-induced vibration of a cylinder.

This study is concerned with predicting the amplitude and frequency of a single
cylinder installed in the VIVACE converter by learning the FIV experiment data through
a deep learning model. The study was conducted using experimental data provided
by MRELab. When a neural network learns the test data and a deep learning model is
constructed to predict the dynamic responses of FIVs for different conditions without
learning, the results can be confirmed within a relatively short time. In addition, learning
the experimental data under various conditions can be an alternative to statistical methods,
such as regression analysis [7].

Therefore, in recent research, studies have been actively conducted on the system
to predict data measured via experiments or with sensors by learning the deep learning
model. Deep learning can be used not only for interpretation of incomplete and noisy input
data but also for pattern recognition, classification, generalization, and abstraction while
learning of large amounts of data [8]. In addition, the prediction model through data-based
learning is highly applicable as it learns and builds the model relationships with key input
and output variables compared to performance predictions using the traditional dynamic
simulation tools [9].

To train the different conditions and variables used in the experiment, data prepro-
cessing steps, such as data regularization, were performed, and a deep learning model was
constructed. To predict the amplitude and frequency of the cylinder as the output value,
optimization was performed by adjusting the hyperparameters of the deep learning model.
Using the deep learning model prediction responses of FIVs, we can reduce the number of
experiments substantially and produce the optimal power envelope of the VIVACE converter
more efficiently. The concepts and techniques of VIVACE using FIVs used in this study are
described in Section 2. Section 3 describes data preprocessing and training in the development
of deep learning models to predict the dynamic response of FIVs. Section 4 decides on a new
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optical power envelope by verifying the dynamic response results of FIVs using the deep
learning model and predicting untested data.

2. Power Generation Technology of VIVACE Converter Using FIVs

Contrary to previous efforts to suppress FIVs, which can destroy structures subject to
fluid flows, the VIVACE converter utilizes and even enhances FIVs to harness the power
from rivers and currents. The first prototype of the converter was developed at the end of
2003 and tested at MRELab in 2004. The left side of Figure 2 shows the schematic of the
simplest unit of the VIVACE converter, comprising a single circular cylinder suspended
by springs and a power take-off system. On the right side of Figure 2, four of the units
installed on the LTFSW channel at the MRELab are shown [10].
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Figure 2. (Left) Simple schematic of the VIVACE module with coordinate system; (Right) four new VIVACE converters
mounted on the LTFSW channel [10,11].

The experiments were conducted in the flow range of 30,000 < Re < 120,000 for the
Reynolds number (Re) to harness the optimal power envelopes at various flow veloci-
ties [12]. The Reynolds number is defined by:

Re =
U D

ν

where U, D, and ν are the free stream velocity, the diameter of a circular cylinder, and the
kinematic viscosity of fresh water, respectively.

All tests with the single cylinder with passive turbulence control (PTC) presented
herein were performed in the LTFSW channel of the MRELab. The measured turbulence
intensity of the test section normalized by the free stream velocity was reported lower
than 0.1% [1,4,6,10] and it is suitable for the experiments [13]. A virtual spring-damping
(Vck) system, a servo-motor controller that replaces physical damping and springs were
designed and built to investigate the effects of damping and spring stiffness on power
generation [11]. A schematic of the design model is shown in Figure 3.
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The first VIVACE converter was intended to utilize only VIV, as implied by the
name. Because of the self-limiting characteristics of the VIV phenomenon, the harness
power of the single-cylinder VIVACE converter is limited by its lock-in range and the
self-limiting VIV characteristics. However, previous works on FIVs in circular cylinders
have shown that fluid dynamic changes caused by attachments to the cylinders can cause
galloping in circular cylinders [14]. In contrast to VIV, galloping is a vibration type with a
short period compared to its high amplitude in a single degree of freedom and generally
occurs in noncircular cross sections. Galloping is caused by motion-aiding forces, resulting
in very high amplitude motions with the total system damping falling below zero and
induction of negative aero/hydrodynamic damping. To overcome the shortcomings of VIV
and initiate galloping, the MRELab team extensively investigated the effects of passive
turbulence control (PTC), which is applied in the form of roughness strips attached to
the cylinders [10,12,15]. This study shows that the selectively applied roughness on the
cylinder surface can cause significant changes in the properties of the boundary or shear
layers; accordingly, the cylinder responses may change. For some PTC positions, as shown
in Figure 4, the PTC extends the upper VIV branch point to the reduced velocity U* ≈ 11
and increases fully from U* ≈ 12. The reduced velocity is defined by:

U∗ =
U

fnwD
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Figure 4. Flow induced motions (FIM) zone nomenclature for a circular cylinder with PTC [1].

The natural frequency of the system including added mass is defined by:

fnw =

√
K

mosc + madd

where K, mosc, and madd are the spring stiffness, oscillating mass, and added mass, respec-
tively.

The transition range in which both VIV and galloping mechanisms coexist is 11 <
U* < 12. Therefore, the synchronization region of FIVs, which covers both the alternately
occurring VIV and galloping, increases rapidly. Thus, the VIVACE converter was able
to harness higher quantities of power at over a wide range of speeds from 0.38 m/s to
1.45 m/s and maximum speed of the LTFSW channel. An optimal harnessed power curve
is created by superimposing the results of the harnessed power calculated from different
combinations of the damping and spring stiffness values, as shown in Figure 5.
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The optimal harnessed power of a cylinder with PTC is larger than that of a smooth
cylinder in the synchronization region of VIV. Further, when the flow velocity exceeds
1.2 m/s, the harnessed power curve increases sharply, reaching 49.35 W at a flow velocity
of 1.45 m/s for K = 2000 N/m and ζharness = 0.16; however, the smooth cylinder is asyn-
chronous and can no longer supply power. The power calculated at 1.45 m/s is more than
three times the maximum harnessed power of the smooth cylinder.

3. Deep Learning Model for Dynamic Response Prediction of FIVs
3.1. FIV Tested Data for Learning

Experiments were performed with the learning data using the second-generation Vck
system developed by MRELab. Figure 6 shows the single-cylinder converter mounted in
the LTFSW channel.
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The Reynolds number in the range of 30,000 < Re < 120,000 and the flow velocity in
the range of 0.395 m/s < U < 1.315 m/s were the tested data conditions used in this study.
When the mass ratio (m* = mosc/md) was 1.343, the spring constant (K) was 400, 600, 755,
1000, and 1200 N/m, and the harness damping ratio (ζharness) for each spring constant was
0.04, 0.08, 0.12, 0.16, 0.2, and 0.24. Table 1 and Figure 7 show the results for the dynamic
responses of a single rigid circular cylinder mounted with PTC [11,12,14]. In addition, the
specifications of the single cylinder oscillator model, along with the tested conditions, are
summarized in Table 2.
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Table 1. PTC parameters (P60).

Parameter Value

Placement angle
(αPTC, degree) 20

Angular coverage of strip
(θ, degree) 16

Sandpaper plus tape thickness
(P, mm) 0.587

Average grit height
(k, mm) 0.26

Total thickness of strip
(T − P + k, mm) 0.847
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Table 2. Particulars of single-cylinder oscillator model.

Particular Value

K (N/m) 400 600 755 1000 1200
Temperature (◦C) 20.5

µ (N·s/m2) 1.004 × 10−3

ν (m2/s) 9.940 × 10−7

ρ (kg/m3) 999.72965
D (m) 0.0889
L (m) 0.89535

mdisplacement (kg) 5.425
moscillation (kg) 7.285775

madded (kg) 5.425
ζstructure 0.02
fn,water 0.893 1.093 1.227 1.412 1.546

Through testing under the above conditions, the parameters to train the tested data of
the single-cylinder amplitude and natural frequency of the system for the deep learning
model were first extracted. A total of six parameters were extracted, as follows: spring
constant K, harness damping ratio of the system ζharness, number of rotations of the in-
duction generator to circulate the water in the LTFSW channel fmotor, natural frequency of
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the cylinder in water, fn,water, reduced velocity U*, and finally the Reynolds number Re.
Correlation analysis was then performed to identify the effects of the extracted parameters
on the dependent variables, amplitude (A/D), and frequency (fcyl) of the cylinder. The
correlation coefficient was calculated using the Pearson method in this study, which is a
parametric correlation coefficient, as shown in Table 3.

Table 3. Correlation analysis for selecting the independent variables (N = 714).

K ζharness fmotor fn,water U* Re A/D fcyl

K 1.000
ζharness 0.000 1.000
fmotor 0.030 0.000 1.000

fn,water 0.997 0.000 0.030 1.000
U* −0.500 0.000 0.825 −0.508 1.000
Re 0.030 0.000 1.000 0.030 0.825 1.000

A/D −0.244 −0.334 0.707 −0.246 0.755 0.707 1.000
fcyl 0.261 −0.177 0.277 0.260 0.065 0.277 0.473 1.000

Equation (1) shows the expression used to calculate the correlation coefficient of the
Pearson method.

Pearson Coefficient(r) = n ∑ XiYi−∑ Xi ∑ Yi√
n ∑ X2

i −(∑ Xi)
2
√

n ∑ Y2
i −(∑ Yi)

2

where X = Independent variable
Y = Dependent variables
n = Number of specimens

(1)

The four input values of the deep learning model selected through correlation analysis
were: K, ζharness, U*, and Re. The variables U* and Re were selected, which have large
positive linear relationships with the amplitude of the cylinder. The variable K was added
as it had a relatively large correlation, and there were no other variables that correlated
with the frequency compared to the amplitude of the cylinder. Finally, by adding ζharness
with a negative correlation coefficient to the amplitude and frequency of the cylinder, the
four selected input parameters are obtained. For the output parameters, the amplitude
ratio A/D of the cylinder in FIVs and the cylinder frequency, fcyl, at the nodes of the output
layer, respectively, were predicted.

We constructed a dataset of 667 cases by VIVACE converter results and a untested
dataset of 647 cases. Most of the tested data of the VIVACE converter was used as Training
data, and some as test data to verify the general performance of the trained model. After
verifying the general performance of the trained network, we input the untested data to
predict the amplitude and frequency of the cylinder. The contents of the data classification
are summarized in Table 4.

3.2. Deep Learning Model Structure

The structure of the neural network is composed of an input layer, a hidden layer, and
an output layer. Here, the input layer receives the external inputs, and the hidden layer is
located between the input and output layers and invisible to the outside. The output layer
provides the results processed by the last hidden layer [8,9,16].

In this study, the neural network shown in Figure 8 is constructed. A fully connected
neural network structure consisting of one input layer, one output layer, and five hidden
layers is used. The number of hidden layers and the nodes in the hidden layers were
trained for the specifications shown in Table 5, and the number of hidden layers and nodes
with the lowest average error rate of the test data were selected.
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Table 4. Data classification for learning in deep learning models.

Spring
Constants (K)

ζharness for Training
(No. of Training Data)

ζharness for Test
(No. of Test Data)

Number of
Total Data

Tested data by
VIVACE
converter

400 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (150) - 150

600 0.04, 0.08, 0.12, 0.2, 0.24
(120)

0.16
(24) 144

755 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (138) - 138

1000 0.04, 0.08, 0.12, 0.2, 0.24
(115)

0.16
(23) 138

1200 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (144) - 144

Untested data

500 - 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (150) 150
700 - 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (150) 150
900 - 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (150) 150

1100 - 0.04, 0.08, 0.12, 0.16, 0.2, 0.24 (150) 150

Total data 667 647 1314
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Table 5. Learning condition.

Learning Condition Range

Hidden layers 3,5,7,9
Nodes Minimum of 48 to Maximum of 468

Batch sizes 256, 512, 1024
Learning rates 0.1, 0.01, 0.001

Epochs 10,000–50,000

For the input values of the deep learning model, four values were extracted through
correlation analysis and entered. The output values predict the amplitude A/D and
cylinder frequency fcyl for the FIVs of the cylinder at the node of the output layer. The
number of nodes for each hidden layer is set to 80 × 64 × 48 × 32 × 16. Finally, before
learning the classified data, the input values were normalized to uniformly match the input
values between 0 and 1 for all results [17], as expressed by Equation (2).

d = d−minv
maxv−minv

where, d = Normalized datad = Data be f ore normalize
minv = Minimum value o f the f eature
maxv = Maximum value o f the f eature

(2)

3.3. Deep Learning Model Training

In this study, cross-validation was used to learn the overall characteristics of the
experimental data and increase the reliability of the generalization performances of the
deep learning models. There are various cross-validation methods available; however,
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the repeated random subsampling validation method, using which the ratio between the
training and validation sets is adjusted and not affected by the number of training data, is
employed as shown in Figure 9.
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Figure 9. Random subsampling validation method to reduce bias in the learning data by randomly
extracting validation data for each iteration, thereby preventing underfitting and overfitting.

The goal of the deep learning model optimization is to determine the values of the
hyperparameters such that the learning of the neural network models and value of the loss
function according to their results are minimized. Therefore, fine tuning was performed
by controlling the number of nodes per hidden layer. The optimal number of nodes was
selected by repeating the increase and decrease in the number of nodes. In addition, the
hyperparameters, such as learning rate, iteration, and batch size, that affect the neural
network were adjusted.

Then, the functions for learning the deep learning model were selected. The activation
function converts the sum of the input signals into output signals, such as the step function
used in perceptrons. At the nodes of the hidden layers, the sum of the linear product of
the data and its weight are calculated, and the threshold is applied to obtain the activation
level [18]. In this study, the rectified linear unit (ReLU) activation function was used [19,20].
Compared to the sigmoid function, which has been majorly used in the past, the ReLU can be
implemented with a simple formula, and the function also resolves the vanishing gradient
problem, which was considered as a chronic problem in the deep learning model [21]. The
function is expressed as a graph in Figure 10 and as an equation in Equation (3).

f =

{
x < 0, f (x) = 0
x ≥ 0, f (x) = x

(3)
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The optimization function accelerates the learning of the deep learning models and
uses the Adam optimizer, which is efficient in terms of computational resources. The
cost function uses the root mean square error (RMSE), and the He initialization is used
for the weight initialization method. The He initialization method is to initialize the
ReLU function and considers the characteristics of the input and output values rather
than random initialization [22]. In this study, the He initialization method was used, as
shown in Equation (4). The initialization for the ReLU activation function considers the
characteristics of the input and output values, rather than random initialization. Depending
on the characteristics of the data, when there were n nodes in the previous layer, a normal
distribution with a square root of 2/n is used. This method was able to significantly increase
the learning speed of the neural network, and it was confirmed that the loss function was
reduced early in the learning process.

He Normal Initialization W ∼ N(0, Var(W))
N = Normal distribution

W = Weight beween nodes

Var(W) =
√

2
nin+nout

nin = Number of nodes in the previous layer
nout = Number of nodes in the next layer

(4)

Learning was performed based on a batch size of 300. The learning rate determines
the value of the weight that the neural network updates after learning. The deep learning
model checks the RMSE every 1000 learnings and adjusts the learning rate and number
of learning steps until the cost function is minimized. In the selection of the number of
hidden layers, the greater the depth of the neural network hidden layer, the lower is the
cost function. However, when the depth increased above a certain level, the cost function
could not converge and showed divergence. In this study, the best-learned cost function
with five hidden layers is shown in Figure 11, and the average error rate for each data
structure of the neural network that completed learning is presented in Table 6.
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fcyl 3.12 8.47 11.29

* Only include Tested data by VIVACE converter.
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4. Deep Learning Model Prediction
4.1. Prediction Results of Data Tested through VIVACE Converter

In this study, test data were applied to a deep learning model constructed using neural
network learning to predict the dynamic responses of FIVs via deep learning. First, we
investigated the results when ζharness = 0.16 at K = 600 and 1000 N/m extracted from the
experimental data. It was confirmed that the predicted results of the test data applied
to the learned neural network followed the trends of the VIV and galloping phenomena
throughout the experiment. Figures 12 and 13 below show the predicted results of cylinder
amplitude and frequency of the test data extracted from the experimental data. The error
rate was predicted to be within 5% compared with the actual experimental data. However,
relatively large errors occurred in the initial section, where the VIV phenomenon started
occurring, and the transition section from the VIV to the galloping section.
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Next, the power curve obtained by the VIVACE converter was calculated using the
predicted results of the amplitude and frequency of the cylinder. The equation used in the
calculation is the actual equation used for the experiment with the VIVACE converter and
is represented by Equation (5). Figure 14 shows the power curve of the VIVACE converter,
which is calculated using the amplitude and frequency of the cylinder.

Powerharness(W) = 4π2ζharness
√

K ∗mosc

(
D ∗ A

D ∗ fcyl

)2

ζharness = Harness damping ratio
K = Spring constant

mosc = mass of oscilation
D = Cylinder diameter

A = Amplitude of cylinder
fcyl = Frequency of cylinder

(5)
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4.2. Prediction Results of Untested Data

In this study, we confirmed the validity of the power curves through experiments
with the VIVACE converter and the above predicted results. Therefore, the amplitude and
frequency of the cylinder were predicted for each input data ζharness in the learned neural
network model in the range of K = 500, 700, 900, and 1100 N/m, which are in the untested
range. Figure 15 shows the power curves, using which the optimal power envelope with
the maximum power for each Re according to the flow velocity is shown in Figure 16. The
optimal power envelope is a curve expressed to obtain the highest power generation and
high efficiency by the Re, by considering the effects of the mass ratio, spring stiffness, and
harness damping ratio. The combination curve is created by combining the experimental
and predicted curves. By comparing the predicted optimal power curve using the deep
learning model and optimal power curve prepared via the previous experiments, new K
and ζharness values with optimal power were obtained when m* was 1.343.
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Table 7 lists the optimal power curve values that combine the experimental results of
the VIVACE converter with those predicted through deep learning.

Table 7. Parameters for optimal harness and converted power curve for combination power.

Re K (N/m) ζharness Power (W)

35,292 400 0.12 0.7
38,869 400 0.12 1.0
42,447 600 0.16 1.5
46,024 600 0.2 3.0
49,602 700 0.24 4.3
53,179 700 0.24 5.3
56,756 900 0.24 7.0
60,334 900 0.24 8.4
63,911 1000 0.24 9.3
67,489 1200 0.24 9.2
71,066 1200 0.2 8.4
74,644 1200 0.12 4.9
78,221 1200 0.08 4.2
80,010 1200 0.08 3.5
81,799 1200 0.12 5.6
85,376 1200 0.12 6.8
88,954 1200 0.16 7.9
92,531 1200 0.16 8.5
96,109 1200 0.16 9.0
99,686 1200 0.2 9.9
103,264 700 0.24 10.7
106,841 700 0.24 11.6
110,418 700 0.24 12.5
113,996 1200 0.2 14.2
117,573 1200 0.2 16.8

5. Conclusions

This study involved the development of a deep learning model that can predict
the cylinder amplitudes and frequencies by training the FIV experimental data from the
MRELab team with a neural network. Using four input values for deep learning model
training, we performed data preprocessing, and the cylinder amplitudes and frequencies
were predicted as output values. The experimental data obtained through the VIVACE
converter was used as training data, with some used as test data to verify the generalization
performance of the learned neural network. After validating the generalization perfor-
mance of the network, the untested data were input to predict the cylinder amplitudes and
frequencies of the VIVACE converter. The optimal power curves were calculated from the
cylinder dynamic responses predicted by the deep learning model, and the results were
compared with the experimental results. In conclusion, a new optimal harnessed power
curve was created by combining the experimental results of the VIVACE converter and the
predicted results through deep learning. The findings of the experimental study are thus
summarized as follows:

(1) The deep learning model was trained to predict the dynamic response of the cylinder
amplitude and frequency. When compared with the actual experimental results, an
average error rate of approximately 10% was observed for the mean values of the
cylinder amplitude and frequency.

(2) The optimal power curve was calculated using the amplitude and frequency of the
cylinder predicted by deep learning. It was further verified by comparing with the
actual experimental results, and the new optimal power envelope was created by the
predicted dynamic response of the cylinder.
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(3) A new optimal harness power curve was created to obtain the maximum power
according to the flow velocity when m* = 1.343, compared with the optimal power
envelope calculated through the experiment.

(4) A part of the experimental conditions was classified into test data and predictions
were obtained using the deep learning model. The results confirmed the possibility of
identifying the dynamic responses of the cylinder under the conditions experimented
before the VIVACE converter experiment.

Based on the above results, the deep learning model adequately predicted the experi-
mental results of the dynamic response of the cylinder in the VIVACE converter, but the
error rate was rather large in the region where the initial VIV phenomenon occurred or in
the transition region. These regions require various experimental data and research condi-
tions because of the complexity of the phenomenon itself, which is difficult to accurately
measure even in actual experiments. However, due to the complexity of the phenomenon
itself, experimental data and research under various conditions are required to replace the
experiment. While this study predicts the dynamic response for a single cylinder, it can be
used to predict the dynamic response for each cylinder in an entire system with multiple
cylinders. In the future, it is expected that this work will be helpful for the initial stage of
experiments by learning the experimental data of the VIVACE converter under various
conditions and calculating the optimum power in the early stages of the experiment in
advance.
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