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Abstract: Conventional analysis techniques and sample preprocessing methods for identifying trace
metals in soil and sediment samples are costly and time-consuming. This study investigated the
determination and quantification of heavy metals in sediments by using a Laser-Induced Breakdown
Spectroscopy (LIBS) system and multivariate chemometric analysis. Principle Component Analysis
(PCA) was conducted on the LIBS spectra at the emission lines of 11 selected elements (Al, Ca, Cd,
Cr, Fe, K, Mg, Na, Ni, Pb, and Si). The results showed apparent clustering of four types of sediment
samples, suggesting the possibility of application of the LIBS technique for distinguishing different
types of sediments. Mainly, the Cd, Cr, and Pb concentrations in the sediments were analyzed. A
data-smoothing method—namely, the Savitzky–Golay (SG) derivative—was used to enhance the
performance of the Partial Least Squares Regression (PLSR) model. The performance of the PLSR
model was evaluated in terms of the coefficient of determination (R2), Root Mean Square Error
of Calibration (RMSEC), and Root Mean Square Error of Cross Validation (RMSECV). The results
obtained using the PLSR with the SG derivative were improved in terms of the R2 and RMSECV,
except for Cr. In particular, the results for Cd obtained with the SG derivative showed a decrease of
25% in the RMSECV value. This demonstrated that the PLSR model with the SG derivative is suitable
for the quantitative analysis of metal components in sediment samples and can play a significant role
in controlling and managing the water quality of rivers.

Keywords: LIBS; sediment analysis; heavy metal; PLSR; data processing

1. Introduction

The construction of artificial impoundments has been on the rise over the last few
decades. The construction of dams or weirs results in hydrologic alteration, which im-
pacts trophic levels, sedimentation rates, and the quantity and quality of freshwater sedi-
ments [1–4]. The amount of sediments retained by impoundment structures has reached
4–5 Gt/yr, which corresponds to approximately 25–30% of the global land–ocean transfer
of sediments by rivers [5]. An extensive river restoration project conducted in Korea during
the period of 2010–2011 included the construction of weirs and the enlargement of river
channels, which led to the dredging of a large amount of benthic sediment from riverbeds
and riverside floodplains.

Sediments are important components in the study of heavy metal contamination in
rivers because many contaminants and particle-reactive elements are eventually deposited
in the bottom sediment [6,7]. Trace metals may reach water systems from lithogenic or
anthropogenic sources, such as industrial waste, fossil fuel combustion, sewage wastewa-
ter, energy production, and construction. Because trace metals are mainly adsorbed and
accumulated at the bottom of the sediments, the sediments act as both a sink and source of
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trace metals, which may be released again into water bodies through various remobiliza-
tion processes, resulting in potential environmental and human health issues [8]. Hence,
sediments can be used as indicators of local pollution.

Several analytical techniques, such as Atomic Absorption Spectrometry (AAS), X-ray
fluorescence spectroscopy, and Inductively Coupled Plasma–Optical Emission Spectroscopy
(ICP-OES), have been applied to the identification of trace metals in soil and sediment sam-
ples. Conventional analysis techniques and complicated sample preprocessing methods,
such as fusion dissolution and microwave digestion, are costly and time-consuming. To
overcome these limitations, we employed Laser-Induced Breakdown Spectroscopy (LIBS)
as a fast and minimally destructive measurement technique for analyzing trace metals in
sediments.

LIBS has been used in various fields, particularly for soil analyses. The authors of [9]
applied LIBS to investigate the feasibility of detecting heavy metals in sand matrices. Dry
synthetic sand samples were used in the test stage for a field application. The authors
of [10] quantitatively identified the total content of heavy metals in reference soil samples
by comparing their results with those obtained using Inductively Coupled Plasma (ICP)
spectroscopy. The authors of [11] studied a set of heavy metals, particularly chromium, in
soil and sewage sludge based on a constructed calibration curve. Furthermore, multivariate
statistical analysis techniques coupled with LIBS were applied to reduce spectrum noise.
The authors of [12] employed principal component analysis (PCA) for the discrimination
of varieties of soil. The authors of [13] tested a calibration method and scatter diagram
of principal components (PCs) to extract the correlation and discriminate between soils
contaminated with heavy metals (or oils) and clean soils.

The objective of this study was to understand and evaluate heavy metal pollution in
sediments by collecting surface sediments from the vicinity of weirs constructed across four
rivers, considering that many potential pollutants in the sediments significantly influence
the river environment. Multivariate chemometrics based on LIBS data were utilized for the
determination and quantification of heavy metals in the sediments. PCA was applied to
distinguish the characteristics of the sediment samples. The concentrations of heavy metals,
particularly Cd, Cr, and Pb were evaluated by using the Savitzky–Golay (SG) derivative
and partial least squares regression (PLSR) methods. For the stability of the measurement,
starch was mixed into the sample preparation process.

2. Materials and Methods
2.1. Study Site

The Han, Nakdong, Geum, and Yeongsan rivers are the four major rivers in Korea.
During the period of 2010–2011, a large river restoration project was implemented to control
flooding and water supply due to climate change in the Korean peninsula. The Korean
peninsula is located in the monsoon region of northeast Asia, which is characterized by
heavy rainfall in the summers and long drought periods in the winters; it is classified as
an extreme-risk area in terms of the climate change vulnerability index [9,14]. The project
included expansion of the river channel capacity and the construction of multipurpose
weirs, which involved the dredging of large amounts of benthic sediment and riverside
floodplains. As the weirs began operation in 2013 to maintain the designated water
levels, the rivers upstream from the weirs were expected to be river–reservoir systems.
Sediment samples were collected 0.5–1.0 km upstream from each weir, as shown in Figure 1
(http://water.nier.go.kr, accessed on 31 May 2019). The collected sediments were primarily
built up after the construction of the weirs because the original river sediments were
dredged during the restoration project.

http://water.nier.go.kr
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Figure 1. Study site.

2.2. Sample Preparation

The sediment samples were collected from the upstream areas of 14 weirs: Gangcheon,
Yeoju, and Ipo in Han River; Nakdan, Gumi, Chilgok, Gangjung, Dalsung, and Hapcheon in
Nakdong River; Seijong, Gongju, and Baekje in Geum River; and Seungchon and Juksan in
Yeongsan River. All showed the representative characteristics of the sediments along each
weir. The sediment samples were finely ground and dried in an oven for a homogeneous
mixing of the sample. The sediment samples were prepared with a grain size of <100 µm
and blended with starch for adhesion of the powdered sample. The powdered raw samples
and compressed pellets were compared to evaluate the measurement accuracy [14]. The
LIBS signals of the powder samples were less intense than those of the corresponding
compressed pellets. The powder samples were ablated with a high-energy laser pulse. The
shockwave produced scattered the sample powder, and the laser pulse was absorbed in
front of the sample because of the flying debris. Therefore, the density and compactness of
the sample had a significant effect on the measurement efficiency. Each sediment sample
(0.6 g) containing starch was compressed under 10 tons of force for 3 min to be pelletized
to a diameter of 13 mm.

The reference concentrations of Cd, Cr, and Pb in the sediment samples were assessed
by using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) (ICP-5800,
Agilent, Santa Clara, CA, USA). The analysis was performed by the National Instrumenta-
tion Center for Environmental Management (NICEM) at Seoul National University, South
Korea (https://nicem.snu.ac.kr, accessed on 1 September 2018). Table 1 lists the results.
The ground sample (0.2 g) was placed in 100 mL perfluorinated acid (PFA) in a Teflon
beaker and mixed with 6 mL of HF and 3 mL of HNO3 at 25 ◦C for more than 2 h. Two
milliliters of HClO4 (Merck, Kenilworth, NJ, USA) were then added, and the mixture was
covered with a Teflon lid, heated on a hot plate, and completely evaporated to dryness.
Until the dried sample showed a white or pale yellow color, the above procedure was
repeated to completely decompose the sample. HNO3 (1%) was added to dissolve the
residue in the beaker. The solution volume was adjusted to 10 mL, appropriately diluted,
and measured using ICP-OES.

https://nicem.snu.ac.kr
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Table 1. The concentrations of heavy metals (Cd, Cr, and Pb) in sediment samples obtained with the
ICP-OES analysis.

Sample
Number

Reference Concentration

Cd
(mg/kg)

Cr
(mg/kg)

Pb
(mg/kg)

M1 0.04 196.17 13.08
M2 0.28 12.98 9.42
M3 0.10 17.33 9.41
M4 0.33 40.75 16.97
M5 0.26 29.46 14.05
M6 0.27 43.38 20.25
M7 0.21 21.14 11.88
M8 0.13 9.90 5.80
M9 0.31 38.34 20.98
M10 0.28 25.90 13.65
M11 0.18 21.90 5.70
M12 0.31 55.90 23.80
M13 0.44 36.55 34.15
M14 0.12 17.30 16.45

2.3. Instrumentation

The samples were analyzed using a J200-EC LIBS system (Applied Spectra Inc., West
Sacramento, CA, USA). A pulsed neodymium-doped yttrium aluminum garnet (Nd-YAG;
Nd-Y3Al5O12) laser (1064 nm, 4th harmonic generation) was used to ablate the sample
with a pulse energy between 9.9 and 87.3 mJ at ambient temperature. The laser, operating
at a repetition frequency of 10 Hz, emitted a pulse with an energy of 40 mJ. The beam
was focused vertically onto the sample surface using a lens with a 25 mm focal length.
The laser spot size was approximately 100 µm. The emission signals of the laser-induced
plasma were collected using an optical fiber bundle with a five-channel charge-coupled
device spectrometer covering wavelengths ranging from 190 to 890 nm. This instrument
was equipped with a high-efficiency particulate air filter, which could spurge the particles
produced from the laser. To obtain the optimal signal/background ratio, the gate delay
time and repetition rate were optimized to be 0.8 µs and 10 Hz, respectively. The gate
delay time is the time between the end point of the laser pulse and the point at which
the emission lines are collected from the spectrometer. Initially, only low intensities were
visible because the emitted spectrum was mainly continuous. After a few microseconds,
the peak emission lines became apparent. However, if the time delay was set too long, the
plasma could cool down, and the peak emission lines could not be distinguished. Therefore,
it was important to set an appropriate time delay to obtain clear signals [15]. Although the
sediment samples were ground, they exhibited some degree of heterogeneity. To reduce
the heterogeneity and the shot-to-shot signal fluctuation, each sediment sample pellet was
ablated at 64 different locations using an 8 × 8 grid pattern on the sample surface with a
40 mJ laser pulse energy. The averaged intensities obtained from the 64 points were used
to develop a PLSR model and to obtain two analytical spectra (32 points each) from the
samples collected at each weir.

2.4. Data Analysis

To analyze the heavy metals in the 14 sediment samples, pricipal component analysis
(PCA) and partial least squares regression (PLSR) were utilized in this study. PCA is a
multivariate discrimination method that reduces the dimension of a group of data and
enables transformation with a reduced number of variables to intuitively distribute the
data [16]. PLSR is a multivariate regression method that maximizes the covariance between
a response variable (y) and a predictor matrix (X) by defining orthogonal and linear
combinations from the original predictor variables (xi). These results can be interpreted in
terms of the variable loadings and weights on the most explanatory factors and regression
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coefficients of the individual predictors. The main advantage of PLSR over standard
multiple linear regression is that it can handle multidimensional and collinear datasets [17,
18].

To use the full range of informative data and eliminate noise, a data-processing method
is essential for generating a robust calibration model. In this study, the SG derivative was
applied to obtain a better relationship from the measured data. The SG derivative provides
a simplified least squares procedure for simultaneously smoothing and differentiating
data [19]. Numerical derivation of a vector that includes a smoothing step is well known in
data preprocessing [20]. The SG derivative can effectively eliminate spectrum noise because
the derivatives are calculated for the fitted polynomial of each point. The smoothing
method of linear least squares can accurately fit the subsets of adjacent data with a certain
polynomial order. Smoothing and transformation of digitized data from a continuous
spectrum to a first or second derivative may be appropriate preprocessing techniques [21].
The first-order derivative and second-order polynomial with five points were selected in
the SG derivative as the appropriate mode in this study to avoid calculation error and
excessive smoothness.

The performance of the model in quantitatively measuring the sediments was evalu-
ated in terms of the coefficient of determination (R2), root mean square error of calibration
(RMSEC), and root mean square error of cross validation (RMSECV). The R2 is defined as
the proportion of variance explained by the linear regression model. It is a measure of the
success of predicting a dependent variable from independent variables and is calculated as
follows [21]:

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 = 1 − SSE
SST

(1)

where n, yi, ŷi, and yi are the number of observations, measured value, predicted responses,
and average of y, respectively. SSE is the sum of the square error, and SST is the sum of the
square total. Therefore, the coefficient of determination ranges from 0 to 1. As the value
approaches 1, the model is said to be well fitted.

The root mean square error (RMSE) is generally employed in model evaluation stud-
ies. It has been used as a standard statistical metric to measure models in climatic and
environmental studies [22]. The RMSE is calculated as follows:

RMSE(V) =

√
∑n

i=1(ŷi − yi)
2

n
(2)

where ŷi, yi, and n are the reference concentration of the ith sample, predicted concentration
of the ith sample, and total number of samples, respectively. This can be used for calibration
(RMSEC) and cross-validation (RMSECV). Our calibration results were plotted against the
RMSEC, where the RMSECV was used to compare the prediction error of each validation
method.

3. Results and Discussion
3.1. Selection of the Major Peak Wavelength and Binder-Mixing Ratio

The LIBS spectra acquired included 10,239 peaks collected from the wavelength
channels ranging from 187 to 894 nm. The sediment samples from Juksan of Yeongsan
River and Gangcheon of Han River were taken as examples to show the characteristic LIBS
lines based on the database of atomic spectra. Figure 2 shows the spectra of the sediment
samples obtained from the Juksan and Gangcheon weirs. The major peak wavelengths of
the heavy metals—361.051 nm for Cd, 274.898 nm for Cr, and 537.210 nm for Cd—were
selected with the optimal signal-to-background ratio.
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Figure 2. Main emission lines of the target elements (Cd, Cr, Pb) in the LIBS spectra of the sediment
samples.

The powder-type sediment samples had to be pelletized with a binding material
that had an adequate mechanical strength for LIBS analyses. Because the laser beam
interacted with the sample material, the sample would disintegrate during laser ablation
because of mechanical shocks [23]. To improve the quantitative and qualitative analyses
of the sediment samples, the samples were pelletized with an appropriate amount of
binder (starch). The starch was generally composed of 20–25% amylose and 75–80%
amylopectin by weight. Because the main components (mainly C, H, and O) of starch did
not interfere with the target components (heavy metals) used in this study, the relative
standard deviations (RSDs) from repeated measurements were compared to select an
appropriate starch-mixing ratio for the sediment samples. The amount of starch was
increased from 10 to 50%. The RSDs were calculated using the following equation [24]:

RSDs = 100% ×
[
∑(xi − M)2/(n − 1)

]1/2
/M (3)

where n, xi, and M are the number of measurement sets, the result of each measurement,
and the arithmetic mean value of the set of repeated measurements, respectively.

Figure 3 shows the variations in the RSD values of the Cd, Cr, and Pb measurements
with increases in the starch-mixing ratio. In the case of Cd, the RSD values decreased
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with the increasing starch-mixing ratio, particularly from 10–20%, as shown in Figure 3.
Therefore, the appropriate mixing ratio for the sediment sample was determined to be 20%.
Although the sediment sample that was mixed with a starch content of >20% did not break
during the LIBS measurements, the RSD values were low.
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3.2. Determination and Classification of Sediment Samples

The determination and classification of the sediment samples contribute to the ability
to distinguish the quality and characteristics of the sediments influencing the water quality.
The quality and characteristics of the sediments depend on the differences and correspond-
ing concentrations of the components in the sediments, which can be confirmed by the
differences between the integrated spectral intensity and the wavelengths of the sediment
measurements.

Before the application of PCA, area normalization, a preprocessing method, was used
to scale the samples to ensure that all of the data were on approximately the same scale.
The signal could be compensated for spectral changes due to matrix effects and variations
in experimental conditions [12]. The classification process of the spectra could extend the
calculation time and increase the performance requirements of the equipment for the LIBS
measurements. Hence, the removal of undesired variables and the selection of only a few
crucial emission lines were significant for the multivariate analyses.

The application of PCA transformed the full spectra into several PCs; the first seven
PCs explained 90.75% of the variations in the original spectral information. Based on the
score plot of the PCA, two PCs were selected as optimal PCs to explain the results of the full
spectra (Figure 4a). The loading plot of the seven PCs was drawn to select the important
emission lines, as shown in Figure 4b. Most of the emission lines of the main elements
(Al, Ca, Cd, Cr, Fe, K, Mg, Na, Ni, Pb, and Si) exhibited relatively large loading coefficient
values, which were consistent with the labeled lines for each element in Figure 4b. The
emission lines with high signal-to-noise ratios were selected for further analysis. A total of
11 characteristic lines corresponding to the LIBS spectral peaks of Al, Ca, Cd, Cr, Fe, K, Mg,
Na, Ni, Pb, and Si were chosen from the identified emission lines. A matrix of 896 by 11
(number of observations by lines) was then obtained to implement the subsequent analysis.

Another PCA was conducted by using the LIBS spectra at the selected characteristic
lines to display any variations among the four types of sediment samples. The first two
PCs explained 93.56% (PC-1: 79.21% and PC-2: 15.25%) of the variations among the total
spectral results; Figure 5 shows their scores and loading plots. Each point in the scatter plot
represented one spectrum. Figure 5a shows that an apparent clustering could be produced
with PC-1 and PC-2. The LIBS spectra of the sediments were distinguished on the side of
PC-1, whereas some spectra tended to be on the positive side of PC-2. Notably, there were
distinct differences among the four groups of sediment samples.
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Figure 5b shows the loading plot of the PCA, which indicated the importance of the
analyzed variables. The data show that Al, Ca, and Na provided the dominant contributions
to PC-1 and PC-2. To completely explain the scattering of the score plot, the loading
coefficient, which is shown in Figure 5b, was utilized to analyze the scattering distribution
of the four types of sediments. The Nakdong and Yeongsan classes, which had relatively
high concentrations of Al and Ca, were located on the positive side of PC-1, and the Han
and Geum classes, which had relatively low concentrations of Al and Ca, were located on
the negative side of PC-1. In addition, the classes of Nakdong and Geum, which contained
relatively high concentrations of Na, were distributed on the positive side of PC-2, and
the classes of Han and Yeongsan, which had relatively low concentrations of Na, were
scattered on the negative side of PC-2.
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3.3. Quantitative Analysis of the Sediment Using the PLSR Model

A quantitative analysis of the metal components of sediment samples plays a signif-
icant role in the quality control and water quality management of rivers. Multivariate
chemometric methods combined have recently been employed in combination with the
LIBS technology in the field of soil analysis [12].

One of the multivariate chemometric methods, PLSR, was used to determine the
elemental content in soil samples because it is an effective dimension-reduction method
for LIBS data. Because soil is composed of various chemical components, which might
increase the complexity of LIBS data [12], preprocessing of SG derivatives was employed
to improve the results of the PLSR model.

Optimally performing the preprocessing for LIBS analysis can effectively reduce the
noise and enhance the prediction accuracy of the PLSR model. The SG derivative is a widely
used preprocessing method that can effectively eliminate noise with the appropriate selec-
tion of the derivative and smoothing parameters, such as the derivative order, polynomial
degree, and number of smoothing points (NSP). It is essential to select an appropriate NSP
and polynomial order in the preprocessing process. Excessive smoothing can lead to the
loss of information because the emission peak lines, which contain important information,
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can be regarded as noise. In this study, the simple first-order derivative and second-order
polynomial with five points were employed.

To determine the correlations between the samples, PLSR models were constructed
by using a full cross-validation method on the averaged recorded spectra. The calibration
and validation performance of the PLSR model was assessed using the R2, RMSEC, and
RMSECV. For an ideal model, the R2 should be close to 1, whereas the RMSEC should be
close to 0. Moreover, the RMSEC and RMSECV were proposed in order to assess the overall
performance of the model. Lower RMSEC and RMSECV values indicate a better model
quality. The number of PLS factors applied in the model presented the lowest RMSECV
value. Twenty-eight analytical spectral data samples were selected to build the calibration
model, and the same samples were used to test the cross-validation of the PLSR model
with a leave-one-out strategy.

Table 2 shows the performance of the PLSR model before and after the application of
preprocessing with the SG derivative for the analysis of Cd, Cr, and Pb. The results output
for the Cd and Pb analysis were significantly improved with respect to the R2 and RMSE
from the application of the SG derivative.

Table 2. The calibration and validation performance of the PLSR model.

Metal Process
Original SG Derivative

R2 RMSE R2 RMSE

Cd
Calibration 0.9963 0.0063 0.9989 0.0035
Validation 0.9406 0.0264 0.9670 0.0197

Cr
Calibration 0.9690 7.9131 0.9736 7.3066
Validation 0.8574 17.6165 0.8136 20.1409

Pb
Calibration 0.9718 1.2379 0.9836 0.9430
Validation 0.6815 4.3146 0.7120 4.1029

For the Cd analysis, the R2 values for calibration and cross-validation without the
SG derivative were 0.9963 and 0.9406, respectively. The RMSE of calibration (RMSEC)
and the RMSE of cross-validation (RMSECV) were 0.0063 and 0.0264, respectively. The
R2 and RMSE were improved with the SG derivative smoothing method. The R2 values
for calibration and cross-validation, the RMSEC, and the RMSECV with the SG derivative
were 0.9989, 0.9670, 0.0035, and 0.0197, respectively.

For the Cr analysis, the R2 values for calibration and cross-validation without the SG
derivative were 0.9690 and 0.8574, respectively. The RMSEC and RMSECV were 7.91311
and 17.61650, respectively. However, the smoothing of the SG derivative did not improve
the values of the R2 and RMSE. The R2 values for calibration and cross-validation were
0.9736 and 0.8136, respectively. The RMSEC and RMSECV decreased to 7.3066 and 20.1409,
respectively.

The results of the Pb analysis showed a similar trend to those of the Cr analysis.
Without the SG derivative, the R2 values for calibration and cross-validation were 0.9718
and 0.6815, respectively. The RMSEC and RMSECV were 1.2379 and 4.3146, respectively.
The R2 and RMSE were improved with the SG derivative smoothing method. The R2 values
for calibration and cross-validation, the RMSEC, and the RMSECV with the SG derivative
were 0.9836, 0.7120, 0.9430, and 4.1029, respectively.

In the case of Cr, the R2 values for cross-validation and the RMSECV without prepro-
cessing were better. For the cases of Cd and Pb, the R2 values for cross-validation and the
RMSECV were improved when the SG derivative preprocessing method was applied. To
quantitatively compare the RMSEC and RMSECV for metals, the averages of the RMSEC
and RMSECV were employed as follows [21]:

RMSEC(V)avg(%) =
RMSEC(V)

Average of Property
× 100 (4)
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The averages of the RMSECV were calculated by dividing the RMSECV by the average
of the properties to quantitatively compare the RMSECV for each metal. This value allows
for comparisons between the properties of samples with unequal sizes [25]. The authors
of [26] used the averages of the RMSECV to find the lowest errors of different spectral
features in the standard volume of forests. The authors of [27] used the averages of the
RMSECV to determine the optimal model between multilinear regression and an artificial
neural network for biomass.

Table 3 lists the averaged RMSECV values that were calculated. The results of the
Cd analysis with the SG derivative show the lowest averaged RMSECV of 8.35. Although
the Cd content was low in the sediment, the Cd analysis showed a somewhat higher error
value. The results of the analysis of Cd showed the lowest error among the metals because
Cd was in a similar concentration range. In the case of Cr, the RMSECV values were high.
This can be attributed to the large deviations among the amounts of Cr contained in the
samples. In terms of the averaged RMSECV, except for the Cr analysis, the application
of the preprocessing with the SG derivative to the original data was conducive to the
reduction of errors in the results.

Table 3. The averages (%) in the middle of the values (RMSEC and RMSECV).

Metal Data Type RMSEC Average (%) RMSECV Average (%)

Cd
Original 2.7227 11.1519

SG derivative 1.49018 8.35241

Cr
Original 19.5385 46.213

SG derivative 18.0409 50.6646

Pb
Original 8.03888 27.7485

SG derivative 6.12366 26.63

The accuracy of quantitative analyses that use PLSR models can be improved by utiliz-
ing data-preprocessing techniques, such as the SG derivative. From LIBS measurements, a
good amount of data can be obtained. The RSD can be too high to find a reliable correlation.
Therefore, this approach will be effective in improving the ability to detect heavy metals
in sediments for in situ monitoring of rivers. Furthermore, the combination of the LIBS
technique with a data-processing method is expected to contribute to the provision of
better interpretations and visualizations of data. From the results of this research, it was
determined that the LIBS system together with multivariate chemometric analysis is useful
for providing practical guidelines for the management of freshwater sediments and water
quality by understanding and evaluating many potential pollutants in the sediments.

4. Conclusions

This study investigated the determination and quantification of heavy metals in river
sediments using a LIBS system and multivariate chemometric analysis. Based on the
characteristics of LIBS data and a PCA conducted on the full spectra, 11 characteristic lines
of the main elements were identified. To simplify the discriminant model, the 11 emission
lines of Al, Ca, Cd, Cr, Fe, K, Mg, Na, Ni, Pb, and Si were selected for further analysis.
The PCA, which was based on the LIBS spectra at the emission lines, showed apparent
clustering of four types of sediment samples, suggesting the possibility of applying this
technique to discriminate different types of sediments.

PLSR models were established, and their performance was evaluated in terms of the
R2, RMSEC, and RMSECV. The results obtained using the PLSR with an SG derivative were
improved with respect to the R2 and RMSECV, except for Cr. In particular, the results for
Cd obtained with the SG derivative showed a decrease of 25% in the RMSECV value. This
demonstrates that the PLSR model with the SG derivative is suitable for the quantitative
analysis of metal components in sediment samples. This combination can play a significant
role in the quality control and water quality management of rivers.
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To improve the applicability of our approach, more samples and a diversified analyti-
cal dataset should be considered to obtain sufficient spectral data in further investigations.
This could provide theoretical guidance for the management of freshwater sediments and
water quality.
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