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Abstract: The solution of robot inverse kinematics has a direct impact on the control accuracy of
the robot. Conventional inverse kinematics solution methods, such as numerical solution, algebraic
solution, and geometric solution, have insufficient solution speed and solution accuracy, and the
solution process is complicated. Due to the mapping ability of the neural network, the use of neural
networks to solve robot inverse kinematics problems has attracted widespread attention. However, it
has slow convergence speed and low accuracy. This paper proposes the FOA optimized BP neural
network algorithm to solve inverse kinematics. It overcomes the shortcomings of low convergence
accuracy, slow convergence speed, and easy to fall into local minima when using BP neural network
to solve inverse kinematics. The experimental results show that using the trained FOA optimized BP
neural network to solve the inverse kinematics, the maximum error range of the output joint angle is
[−0.04686, 0.1271]. The output error of the FOA optimized BP neural network algorithm is smaller
than that of the ordinary BP neural network algorithm and the PSO optimized BP neural network
algorithm. Using the FOA optimized BP neural network algorithm to solve the robot kinematics can
improve the control accuracy of the robot.

Keywords: inverse kinematics; FOA algorithm; PSO algorithm; BP neural network

1. Introduction

Solving the problem of robot inverse kinematics is the basis of robot trajectory plan-
ning and motion control. Inverse kinematics is the mapping from Cartesian space to joint
space [1,2]. Its essence is to obtain the value of each joint variable from the position and
posture of the end of the robot. Traditional methods for solving robot inverse kinemat-
ics include geometric [3,4], algebraic [5–7], and iterative [8,9] methods. The geometric
method has strict requirements on the configuration of the robot, poor versatility, certain
limitations, and the modeling and solving process is more complicated. The algebraic
method can obtain closed solutions of simple mechanisms. However, it is difficult to obtain
closed solutions of complex mechanisms. This method involves a quantity of coordinate
transformations in the solution process, and the solution accuracy is relatively low. The
iterative method solves the problem through repeated iterations. This method requires
numerous calculations and is difficult to meet the requirements of real-time control.

In view of the shortcomings of traditional methods, more and more intelligent algo-
rithms are widely used in robot control, such as neural network algorithms [10,11], genetic
algorithms [12–15], and particle swarm algorithms [15–18]. Artificial neural network has
powerful approximation ability when solving the problem of nonlinear mapping. Taking
a large number of positive kinematics information of the robot as samples, through the
training and learning of the BP neural network, the mapping from the Cartesian space to
the joint space is realized. As a result, complicated calculation and derivation processes
are avoided. The trained neural network has a fast calculation speed and can meet the
requirements of real-time control.
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In [19], Karlik and Aydin proved that the double hidden layer BP neural network
structure has advantages in solving the inverse kinematics of the manipulator. However,
the traditional BP neural network has the disadvantages of large output error, easy to fall
into a local extreme value, and slow convergence speed. In [15], Mustafa et al. designed
two scenarios of randomly selected points and following a specific trajectory in the robot
workspace, compared four different optimization algorithms, and proved the effectiveness
of the QPSO algorithm to solve the inverse kinematics of a 4-DOF serial robot. Ozgoren [20]
used the analytical method to solve the inverse kinematics of the redundant manipulator
and optimized it accordingly, but the solution process was complicated, and the solution
accuracy was not high.

In [21], Dereli et al. proposed global-local best inertia PSO algorithm and proved the
effectiveness of the PSO algorithm in solving the optimal solution of redundant robots. Ren
and Ben-Tzvi [22] proposed a series of improved GANs that use limited data to approximate
the real model, effectively solving the inverse kinematics problem of high-dimensional
nonlinear systems. Dereli and Köker [23] proposed using the firefly algorithm to solve the
inverse kinematics of a 7-DOF robot, but the population size has a great influence on the
speed and quality of the solution. In [24], Zhou et al. proposed an intelligent algorithm that
initializes the inverse kinematics solution with extreme learning machine and optimizes
it with a genetic algorithm based on sequence mutation. This algorithm improves the
efficiency of the solution while ensuring accuracy.

Fruit fly optimization algorithm has few applications in the field of robot kinemat-
ics [25–28]. The FOA algorithm has the characteristics of simple operation and fast conver-
gence speed. This paper uses the FOA algorithm to optimize the threshold and weight of
the BP neural network to improve the convergence speed and output accuracy of the neural
network. The optimized neural network is used to solve the inverse kinematics of the robot
shown in Figure 1, and compared with the ordinary BP neural network algorithm and the
PSO optimized BP neural network algorithm. The robot structure shown in Figure 1 is a
part of the service robot. It can be installed on a mobile chassis with laser radar [29] and
equipped with robotic arms to form a complete service robot.
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Figure 1. The robot prototype.

This paper proposes an FOA optimized BP neural network algorithm to improve
the accuracy of solving robot inverse kinematics. This paper is organized as follows: In
Section 2, the robot kinematics model is established. In Section 3, the FOA optimized BP
neural network algorithm is introduced. The distance and direction of the individual in
the FOA algorithm are regarded as the threshold and weight of the neural network for
iterative optimization. In Section 4, the proposed FOA optimized BP neural network is
compared with the ordinary BP neural network and the PSO optimized BP neural network,
and the error of the inverse kinematics of the robot is compared. In Section 5, the results
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show that the FOA optimized BP neural network algorithm can improve the accuracy of
solving robot inverse kinematics.

2. Robot Kinematics

The robot torso coordinate system is established according to the D-H method, as
shown in Figure 2.
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Figure 2. Robot kinematics model.

The system has four linkages and five coordinate systems. Here, αi, ai, di, and θi
respectively represent the connecting rod torsion angle, connecting rod length, connecting
rod offset, and joint angle. According to the built robot kinematics model, Table 1 shows
the link parameters of the robot.

Table 1. Link parameters of the robot.

i αi−1 (rad) ai−1 (mm) di (mm) θi (rad)

1 −π/2 0 0 θ1
2 π/2 0 l1 θ2
3 −π/2 0 0 θ3 − π

4 0 l2 0 0

After defining the linkage coordinate system and the corresponding linkage parame-
ters, the kinematic equation can be established. The D-H transformation matrix i−1

i T can
be obtained by right multiplying the following four transformation matrices:

i−1
i T = Rx(αi−1)Dx(ai−1)Rz(θi)Dz(di)

=


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (1)

where i−1
i T is the D-H transformation matrix transformed from coordinate system i to i− 1,

Rx(αi−1) is the rotation matrix representing a rotation of αi−1 around the X axis, Dx(ai−1)
is the translation matrix representing a translation of ai−1 along the X axis, Rz(θi) is the
rotation matrix representing a rotation of θi around the Z axis, Dz(di) is the translation
matrix representing a translation of di around the Z axis, cθi is short for cos θi, sθi is short
for sin θi, etc. The transformation matrices of each link determined by the link parameters
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are multiplied to obtain the position and posture of the center point of the robot’s chest in
the base coordinate system:

0
4T = 0

1T1
2T2

3T3
4T =

[ 0
4R3×3

0
4P3×1

0 1

]
=


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2)

where 0
4R3×3 is the rotation transformation matrix transformed from coordinate system

4 to 0, 0
4P3×1 is the position vector transformed from coordinate system 4 to 0, rij is the

element of 0
4R3×3, and px, py, py is the component of the translation vector 0

4P3×1.
The rotation matrix 0

4R3×3 can be described by rotating around the axis of a fixed
reference coordinate system, as shown in Formula (3):

0
4RXYZ(γ, β, α) =

 cαcβ cαsβsγ− sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ− cαsγ
−sβ cβsγ cβcγ

 (3)

where 0
4RXYZ(γ, β, α) is the equivalent rotation matrix that rotates γ, β, and α around the

X, Y, and Z axes of the fixed reference coordinate system.
Equivalently derived X-Y-Z fixed angle from the rotation matrix:

β = Atan2(−r31,
√

r2
11 + r2

21)

α = Atan2(r21/cβ, r11/cβ)
γ = Atan2(r32/cβ, r33/cβ)

(4)

where Atan2(y, x) is the arctangent function of a two-parameter variable.
These equations can provide the pose of the robot relative to the world coordinate

system. The forward kinematics equation of the robot can be expressed as:

Fforword kinematics
(
θ1, θ2, θ3) = (px, py, pz, α, β, γ) (5)

As shown in Equation (5), the end pose of the robot can be obtained through the joint
variables of the robot. However, in practical applications, it is often necessary to obtain the
joint angles of the robot through the end pose of the robot, so the robot inverse kinematics
is solved by the formula:

Finverse kinematics(px, py, pz, α, β, γ) = (θ1, θ2, θ3) (6)

In order to avoid the complicated process of solving robot inverse kinematics, this
paper proposes an FOA optimized BP algorithm. The BP neural network is used to fit
Equation (5). The fruit fly optimization algorithm is used to optimize the initial weights
and thresholds of the BP neural network to improve the global optimization ability of the
neural network. The data set is used to continuously train the FOA optimized BP neural
network to find the optimal neural network. Finally, the optimal network is used to solve
the robot inverse kinematics. The model of the algorithm is shown in Figure 3.
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3. Algorithm Principle
3.1. BP Neural Network Algorithm

In 1985, the scholars Rumelhart and McCelland proposed a multi-layer feedforward
artificial neural network using the error back propagation algorithm, namely BP neural
network [30]. The ordinary BP neural network contains two parts: the forward propagation
of the signal and the back propagation of the error. The actual output is calculated from
the input to the output, and weights and thresholds are corrected from the output to the
input. A single basic artificial neuron model is shown in Figure 4.
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Among them, xj(j = 1, 2, · · · , N) is the input of the j-th node, wij is the weight, θi is
the threshold, and yi is the output of neuron i. The output yi can be expressed as:

yi = f (neti) = f (
N

∑
j=1

wijxj + θi) (7)

Among them, the f function is the activation function, and the most commonly used
form is the Sigmoid function, and its expression is Formula (8):

f (x) =
1

1 + e−ax , a ∈ C (8)

If the net activation f is positive, the neuron is in an excited state. Otherwise, the
neuron is in a suppressed state.

This paper uses the BP algorithm to solve inverse kinematics. A neural network
structure is established, and the input layer has six input signals, corresponding to px, py,
pz, α, β, γ. The output layer has three output signals, respectively, corresponding to the
robot’s three joints θ1, θ2, θ3.

According to Kolmogorov’s theorem, a BP neural network with one hidden layer
can complete any n-dimensional to m-dimensional mapping [31]. Increasing the number
of layers of the neural network can improve the accuracy. However, it will complicate
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the neural network and extend the training time. Using two hidden layers can make the
mapping effect of the neural network better, and increasing the number of neurons in the
hidden layer can improve the accuracy. In the BP neural network, the number of neurons
in each layer has a great influence on the network performance. According to Equation (6),
after experiments and comparisons, this paper chooses a network structure containing two
hidden layers. The first hidden layer has 24 neurons, and the second hidden layer has
43 neurons. The designed BP neural network topology is shown in Figure 5.
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Figure 5 shows the topology of the designed BP neural network. The layers are fully
interconnected, and there is no interconnection between the same layers.

The core of the BP neural network algorithm is to solve the minimum value of the error
function. BP neural network adjusts the weights and thresholds of each layer according
to the error gradient descent method. There are weaknesses, such as slow convergence,
low learning efficiency, weak generalization ability, and easy to fall into local minimums.
Therefore, the optimization algorithm is combined for improvement.

3.2. Fruit Fly Optimization Algorithm

The scholar Pan Wenchao proposed a fruit fly optimization algorithm after long-term
observation of fruit flies [32]. Compared with other organisms, fruit flies have a particularly
sensitive sense of vision and smell. During their activities, fruit flies perceive the taste of
food through smell, and use their unique vision to move in the direction where other fruit
flies gather.

The fruit fly optimization algorithm is to find the global optimum through the foraging
evolution of Drosophila fruit flies. Foraging for fruit flies is divided into two procedures.
The first procedure is relying on a strong sense of smell to initially locate the food source
and quickly approach the food source; the second procedure is discovering where food and
companions gather through vision and fly in that direction. The basic optimization process
of the fruit fly optimization algorithm is the fruit fly population starts from a given initial
position, and performs an olfactory search according to the given flight direction and step
distance. Then, the approximate direction of the optimal solution and the distance between
the fruit fly and the optimal solution are preliminarily determined by the concentration,
and finally the position of the optimal solution is reached through visual search. The
fruit fly optimization algorithm has a good global optimization ability, and can meet the
optimization problems in different fields.

According to the foraging process of fruit flies, the fruit fly algorithm performs opti-
mization according to the following necessary steps:

1. Set the size of the fruit fly population and initialize the position of the fruit fly
population randomly;

2. Set the direction and distance for individual fruit flies to search randomly through smell:

Xi = Xaxis + RandomValue
Yi = Yaxis + RandomValue

(9)
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3. The location of the food is unknown. First, calculate the distance D(i) from the
origin, and use the reciprocal of the distance D(i) as the taste concentration judgment
value S(i):

D(i) =
√

X2
i + Y2

i
S(i) = 1/D(i)

(10)

4. Substitute S(i) into the taste concentration judgment function fitness, the taste concen-
tration Smell(i) at the individual position of the fruit fly can be obtained:

Smell(i) = Fitness(S(i)) (11)

5. Find the fruit fly with the best taste concentration Smell in the population:

[bestSmell, bestindex] = minimum(Smell) (12)

6. Keep the X and Y coordinates of the best individual fruit fly, and the best taste
concentration value;

7. Repeat steps (2) to (5) for iterative optimization, and judge whether the taste concen-
tration of the current iteration is better than that of the previous iteration, and if so,
proceed to the next iteration after step (6).

3.3. FOA Optimized BP Algorithm

In order to make up for the shortcomings of the BP algorithm, this paper uses the FOA
algorithm to optimize the parameters of the BP algorithm and improve the generalization
ability and output accuracy of the BP algorithm. The algorithm flow is shown in Figure 6.
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According to Equation (6), px, py, pz, α, β, γ are input, and θ1, θ2, θ3 are output. A
BP neural network structure is constructed with six inputs and three outputs. The input
and output samples are normalized. The initial weight and initial threshold of the neural
network are randomly generated. In the FOA optimized BP neural network algorithm, the
initial weights and initial thresholds are used as the initial position of the fruit fly. The seven
steps of the fruit fly optimization algorithm are followed, the value of the corresponding
fitness calculated, and then the optimal weight and threshold are found through iteration.
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Among them, the fitness function is represented by the variance function of the joint angle
output by the BP and the expected joint angle, expressed as:

J(k) =
1
N

N

∑
i=1

(θi(k) − θi)
2 (13)

where N represents the number of training samples, θi(k) represents the output of the i-th
sample at the k-th iteration, and θi represents the expected output value of the i-th sample.

The optimal weights and thresholds found by the fruit fly optimization algorithm are
used as the initial weights and initial thresholds of the BP algorithm to train the neural
network. Finally, the trained neural network is used to solve the inverse kinematics. In
the FOA optimized BP algorithm, the fruit fly population size is set to 30 and set up to
50 iterations.

The FOA optimized BP algorithm uses the FOA algorithm to find the global optimum,
and the BP algorithm to find the local optimum. The algorithm’s convergence speed,
generalization ability, and convergence accuracy are improved.

4. Simulation and Discussion

In the simulation experiment, based on the Monte Carlo method, 2000 sets of samples
are generated in the robot workspace, of which 1950 sets are used as training samples
and 50 sets are used as test samples. The robot end position coordinates and fixed angle
samples in the training samples are used as the input of the BP neural network, and the
joint angle samples of the robot are used as the output of the BP neural network. Then,
theFOA algorithm is used to optimize the convergence of the network, and the weights
and thresholds of the BP neural network are returned. The training samples are brought
into the FOA optimized BP algorithm to train the network. Finally, the test samples are
brought into the trained network for testing, and the joint variables of the robot outputted
by the test samples are obtained.

The FOA optimized BP algorithm contains two hidden layers. The first hidden layer
has 24 neurons and the second hidden layer has 43 neurons. The number of fruit flies is set
to 30, and the number of iterations is set to 50. In order to intuitively reflect the effect of
the algorithm proposed in this article, the FOA optimized BP algorithm is compared with
the ordinary BP algorithm and the PSO optimized BP algorithm. In the PSO optimized BP
algorithm, the number of particles is set to 30, and 50 iterations are set. The learning factor
c1 = c2 = 2, and the inertia factor w = 0.95, are used.

After the simulation, the robot joint variables output by the three algorithms are
compared with the expected values in the test samples. Table 2 shows the maximum
error range and the overall mean square error (MSE) range of each joint in the 50 groups
of samples.

Table 2. The range of joint error and the range of MSE.

Joint Error
and MSE BP PSO-BP FOA-BP

∆θ1(
◦) −0.1530–0.1775 −0.07472–0.07594 −0.02583–0.03612

∆θ2(
◦) −0.2723–0.2977 −0.1570–0.2022 −0.04686–0.1271

∆θ3(
◦) −0.11206–0.2087 −0.07277–0.1599 −0.02986–0.03678

MSE 6.400 × 10−6–1.983 × 10−3 6.390 × 10−6–1.116 × 10−3 2.870 × 10−7–3.258 × 10−4

From the results in Table 2, it can be seen that the maximum error range of the joint
variables output by the ordinary BP algorithm is [−0.2723, 0.2977], and the range of MSE is
[6.400 × 10−6, 1.983 × 10−3]. The maximum error range of the joint variables output by the
PSO optimized BP algorithm is [−0.1570, 0.2022], and the range of MSE is [6.390 × 10−6,
1.116× 10−3]. The maximum error range of the joint variables output by the FOA optimized
BP algorithm is [−0.04686, 0.1271], and the range of MSE is [2.870 × 10−7, 3.258 × 10−4].
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Figures 7–9 show the comparison of the errors of each joint output by the three algorithms
for 50 sets of samples. Figure 10 is a comparison of the MSE output by the three algorithms.
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It can be seen from Figures 7–9 that the output error of the ordinary BP algorithm is
the largest, and the output error of the FOA optimized BP algorithm is the smallest. The
error distribution of the FOA optimized BP algorithm is relatively uniform. From Figure 10,
it can be seen that the MSE output by the FOA optimized BP algorithm is much smaller
than the MSE output by the other two algorithms.

It can be seen that when solving the robot inverse kinematics, the error of the FOA
optimized BP algorithm is smaller than that of the ordinary BP algorithm and PSO opti-
mized BP algorithm, and the MSE is also significantly reduced. The FOA optimized BP
algorithm can improve the accuracy of solving inverse kinematics. The effectiveness of the
FOA optimized BP algorithm in solving the inverse kinematics of the robot is verified.

5. Conclusions

This paper proposes an FOA optimized BP algorithm to solve the robot inverse kine-
matics. The nonlinear mapping ability of the BP neural network was used to avoid the
complicated derivation process of solving robot inverse kinematics. Using the characteris-
tics of the fruit fly optimization algorithm, the convergence accuracy, convergence speed,
and generalization ability of BP algorithm were improved. The proposed FOA optimized
BP algorithm can significantly improve the problems of complex calculations, large cal-
culations, and difficult-to-guarantee accuracy in other robot inverse kinematics solving
methods. The experimental results prove that the error of the FOA optimized BP algorithm
is obviously smaller than that of the ordinary BP algorithm and the PSO optimized BP
algorithm. After obtaining a large amount of experimental data, the positioning accuracy
of the robot can be improved, which has important application value.
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